Skip to main content

Fertilizer Nitrogen as a Significant Driver of Rhizosphere Microbiome in Rice Paddies

  • Chapter
  • First Online:
Microbial Interventions in Agriculture and Environment

Abstract

Rice, a globally important cereal crop, is chiefly cultivated under irrigated conditions. It is a key contributor to the food, nutritional, and economic security, especially in the Asian countries. To meet the growing demand of human population, innovative or improved, but above all, sustainable production strategies are required for important reasons such as (i) most farmers are poor and many external inputs are expensive, (ii) the water use and chemical fertilizer use efficiencies in farmers’ fields are often low, and (iii) potential risks to the ecological health because of chemical fertilizers and pesticides are high. In the strategies for sustainable agriculture, the important challenge is to stimulate the appropriate microbial activities at the optimal rates for plant health and productivities. Microbial activities in the rhizosphere are of great importance to rice plants. Nutrient cycling, especially carbon and nitrogen, stimulation or inhibition of rice plant growth, and the onset of diseases are largely due to the functioning of microbial communities; no single organism alone can be considered decisive to their functions. Interestingly, the rhizosphere of rice supports simultaneously both oxic (aerobic) processes, such as oxidation of ammonia, iron, sulfur, and methane, and anoxic (anaerobic) processes, such as reduction of nitrate, ferric iron, and sulfate and methanogenesis in different niches. To successfully manage the rhizosphere with desired microbial activities, with or without fertilizer application, it is necessary to identify all the microbial and plant factors that determine root colonization, to understand the structure and functions of microbial communities in greater detail, and to develop rapid and reliable methods to measure and monitor the dynamics of microbial communities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altieri MA (2018) Agroecology: the science of sustainable agriculture. CRC Press, Boca Raton

    Book  Google Scholar 

  • Arth I, Frenzel P, Conrad R (1998) Denitrification coupled to nitrification in the rhizosphere of rice. Soil Biol Biochem 30(4):509–515

    Article  CAS  Google Scholar 

  • Aulakh MS, Bodenbender J, Wassmann R, Rennenberg H (2000) Methane transport capacity of rice plants. II. Variations among different rice cultivars and relationship with morphological characteristics. Nutr Cycl Agroecosys 58(1–3):367–375

    Article  CAS  Google Scholar 

  • Aulakh MS, Wassmann R, Bueno C, Kreuzwieser J, Rennenberg H (2001) Characterization of root exudates at different growth stages of ten rice (Oryza sativa L.) cultivars. Plant Biol 3(2):139–148

    Article  CAS  Google Scholar 

  • Bai Q, Gattinger A, Zelles L (2000) Characterization of microbial consortia in paddy rice soil by phospholipid analysis. Microb Ecol 39(4):273–281

    CAS  PubMed  Google Scholar 

  • Barraquio WL, Revilla L, Ladha JK (1997) Isolation of endophytic diazotrophic bacteria from wetland rice. Plant Soil 194:15–24

    Article  CAS  Google Scholar 

  • Bédard C, Knowles R (1989) Physiology, biochemistry, and specific inhibitors of CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers. Microbiol Rev 53(1):68–84

    PubMed  PubMed Central  Google Scholar 

  • Bhattacharyya P, Neogi S, Roy KS, Dash PK, Nayak AK, Mohapatra T (2014) Tropical low land rice ecosystem is a net carbon sink. Agri Ecosyst Environ 189:127–135

    Article  Google Scholar 

  • Breidenbach B, Pump J, Dumont MG (2016) Microbial community structure in the rhizosphere of rice plants. Front Microbiol 6:1537

    Article  PubMed  PubMed Central  Google Scholar 

  • Briones AM, Okabe S, Umemiya Y, Ramsing NB, Reichardt W, Okuyama H (2002) Influence of different cultivars on populations of ammonia-oxidizing bacteria in the root environment of rice. Applied Environ Microbiol 68(6):3067–3075

    Article  CAS  Google Scholar 

  • Briones AM, Okabe S, Umemiya Y, Ramsing NB, Reichardt W, Okuyama H (2003) Ammonia-oxidizing bacteria on root biofilms and their possible contribution to N use efficiency of different rice cultivars. Plant Soil 250(2):335–348

    Article  CAS  Google Scholar 

  • Cao S, Tanji KK, Scardaci SC (2003) Incorporating straw may induce sulfide toxicity in paddy rice. Calif Agr 57(2):55–59

    Article  Google Scholar 

  • Cassman KG, Peng S, Olk DC, Ladha JK, Reichardt W, Dobermann A, Singh U (1998) Opportunities for increased nitrogen-use efficiency from improved resource management in irrigated rice systems. Field Crop Res 56(1–2):7–39

    Article  Google Scholar 

  • Chi F, Shen SH, Cheng HP, Jing YX, Yanni YG, Dazzo FB (2005) Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Applied Environ Microbiol 71(11):7271–7278

    Article  CAS  Google Scholar 

  • Chin KJ, Hahn D, Hengstmann U, Liesack W, Janssen PH (1999) Characterization and identification of numerically abundant culturable bacteria from the anoxic bulk soil of rice paddy microcosms. Applied Environ Microbiol 65(11):5042–5049

    CAS  Google Scholar 

  • Chowdhury A, Kennedy IR (2005) Nitrogen fertilizer losses from rice soils and control of environmental pollution problems. Commun Soil Sci Plan 36:1625–1639

    Article  CAS  Google Scholar 

  • Cicerone RJ, Shetter JD (1981) Sources of atmospheric methane: measurements in rice paddies and a discussion. J Geophys Res 86(C8):7203–7209

    Article  CAS  Google Scholar 

  • Conrad R, Klose M, Noll M, Kemnitz D, Bodelier PL (2008) Soil type links microbial colonization of rice roots to methane emission. Glob Change Biol 14(3):657–669

    Article  Google Scholar 

  • Daniel R (2005) The metagenomics of soil. Nature Rev Microbiol 3(6):470–478

    Article  CAS  Google Scholar 

  • Darrah PR (1991) Models of the rhizosphere. Plant Soil 133(2):187–199

    Article  CAS  Google Scholar 

  • De Datta SK (1981) Principles and practices of rice production. International Rice Research Institute, The Philippines

    Google Scholar 

  • Delmont TO, Robe P, Cecillon S, Clark IM, Constancias F, Simonet P, Hirsch PR, Vogel TM (2011) Accessing the soil metagenome for studies of microbial diversity. Appl Environ Microbiol 77(4):1315–1324

    Article  CAS  PubMed  Google Scholar 

  • Dennis PG, Miller AJ, Hirsch PR (2010) Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol Ecol 72(3):313–327

    Article  CAS  PubMed  Google Scholar 

  • Dilly O (2005) Microbial energetics in soils. In: Varma A, Buscot F (eds) Microorganisms in soils: roles in genesis and functions. Soil biology, vol 3. Springer, Berlin/Heidelberg

    Google Scholar 

  • Dobermann A, Witt C, Dawe D, Abdulrachman S, Gines HC, Nagarajan R, Satawathananont S, Son TT, Tan PS, Wang GH, Chien NV (2002) Site-specific nutrient management for intensive rice cropping systems in Asia. Field Crops Res 74(1):37–66

    Article  Google Scholar 

  • Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, Sundaresan V (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci U S A 112(8):E911–E920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards JA, Santos-Medellín CM, Liechty ZS, Nguyen B, Lurie E, Eason S, Phillips G, Sundaresan V (2018) Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice. PLoS Biol 16(2):e2003862

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Einhellig FA, Rasmussen JA, Hejl AM, Souza IF (1993) Effects of root exudate sorgoleone on photosynthesis. J Chem Ecol 19(2):369–375

    Article  CAS  PubMed  Google Scholar 

  • FAO (2017) World fertilizer trends and outlook to 2020. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70(2):153–226

    Article  CAS  Google Scholar 

  • Ghosh P, Kashyap AK (2003) Effect of rice cultivars on rate of N-mineralization, nitrification and nitrifier population size in an irrigated rice ecosystem. Appl Soil Ecol 24(1):27–41

    Article  Google Scholar 

  • Großkopf R, Janssen PH, Liesack W (1998) Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval. Appl Environ Microbiol 64(3):960–969

    PubMed  PubMed Central  Google Scholar 

  • Handelsman J, Liles M, Mann D, Riesenfeld C, Goodman RM (2002) Cloning the metagenome: culture-independent access to the diversity and functions of the uncultivated microbial world. Methods Microbiol 33:241–255

    Article  CAS  Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60(2):439–471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16(10):463–471

    Article  CAS  PubMed  Google Scholar 

  • Hardoim PR, Andreote FD, Reinhold-Hurek B, Sessitsch A, van Overbeek LS, van Elsas JD (2011) Rice root-associated bacteria: insights into community structures across 10 cultivars. FEMS Micrbiol Ecol 77(1):154–164

    Article  CAS  Google Scholar 

  • Hardoim PR, Hardoim CC, Van Overbeek LS, Van Elsas JD (2012) Dynamics of seed-borne rice endophytes on early plant growth stages. PLoS One 7(2):e30438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harley JL (1989) The significance of mycorrhiza. Mycol Res 92(2):129–139

    Article  Google Scholar 

  • Hartmann A, Schmid M, Van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321(1–2):235–257

    Article  CAS  Google Scholar 

  • Hayden HL, Drake J, Imhof M, Oxley APA, Norng S, Mele PM (2010) The abundance of nitrogen cycle genes amoA and nifH depends on land-uses and soil types in South-Eastern Australia. Soil Biol Biochem 42:1774–1783

    Article  CAS  Google Scholar 

  • He JZ, Shen JP, Zhang LM, Zhu YG, Zheng YM, Xu MG, Di H (2007) Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environ Microbiol 9(9):2364–2374

    Article  CAS  PubMed  Google Scholar 

  • Hengstmann U, Chin KJ, Janssen PH, Liesack W (1999) Comparative phylogenetic assignment of environmental sequences of genes encoding 16S rRNA and numerically abundant culturable bacteria from an anoxic rice paddy soil. Appl Environ Microbiol 65(11):5050–5058

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hernández M, Dumont MG, Yuan Q, Conrad R (2015) Different bacterial populations associated with the roots and rhizosphere of rice incorporate plant-derived carbon. Appl Environ Microbiol 81:2244–2253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hinton DM, Bacon CW (1985) The distribution and ultrastructure of the endophyte of toxic tall fescue. Can J Bot 63(1):36–42

    Article  Google Scholar 

  • Horz HP, Yimga MT, Liesack W (2001) Detection of methanotroph diversity on roots of submerged rice plants by molecular retrieval of pmoA, mmoX, mxaF, and 16S rRNA and ribosomal DNA, including pmoA-based terminal restriction fragment length polymorphism profiling. Appl Environ Microbiol 67(9):4177–4185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang XF, Chaparro JM, Reardon KF, Zhang R, Shen Q, Vivanco JM (2014) Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany 92(4):267–275

    Article  Google Scholar 

  • Hussain Q, Liu Y, Jin Z, Zhang A, Pan G, Li L, Crowley D, Zhang X, Song X, Cui L (2011) Temporal dynamics of ammonia oxidizer (amoA) and denitrifier (nirK) communities in the rhizosphere of a rice ecosystem from tai Lake region, China. Appl Soil Ecol 48(2):210–218

    Article  Google Scholar 

  • Ikeda S, Sasaki K, Okubo T, Yamashita A, Terasawa K, Bao Z, Liu D, Watanabe T, Murase J, Asakawa S, Eda S (2014) Low nitrogen fertilization adapts rice root microbiome to low nutrient environment by changing biogeochemical functions. Microbes Environ 29(1):50–59

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishii S, Ikeda S, Minamisawa K, Senoo K (2011) Nitrogen cycling in rice paddy environments: past achievements and future challenges. Microbes Environ 26(4):282–292

    Article  PubMed  Google Scholar 

  • Jia Z, Conrad R (2009) Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Environ Microbiol 11(7):1658–1671

    Article  CAS  PubMed  Google Scholar 

  • Jiao N, Zheng Q (2011) The microbial carbon pump: from genes to ecosystems. Appl Environ Microbiol 77(21):7439–7444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura M, Murase J, Lu Y (2004) Carbon cycling in rice field ecosystems in the context of input, decomposition and translocation of organic materials and the fates of their end products (CO2 and CH4). Soil Biol Biochem 36(9):1399–1416

    Article  CAS  Google Scholar 

  • Kirk GJD, Kronzucker HJ (2005) The potential for nitrification and nitrate uptake in the rhizosphere of wetland plants: a modelling study. Ann Bot-Lond 96(4):639–646

    Article  CAS  Google Scholar 

  • Klüber HD, Conrad R (1998) Effects of nitrate, nitrite, NO and N2O on methanogenesis and other redox processes in anoxic rice field soil. FEMS Microbiol Ecol 25(3):301–318

    Article  Google Scholar 

  • Knief C, Delmotte N, Chaffron S, Stark M, Innerebner G, Wassmann R, Von Mering C, Vorholt JA (2012) Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J 6(7):1378–1390

    Article  CAS  PubMed  Google Scholar 

  • Kristin A, Miranda H (2013) The root microbiota—a fingerprint in the soil? Plant Soil 370(1–2):671–686

    Article  CAS  Google Scholar 

  • Kronzucker HJ, Siddiqi MY, Glass AD, Kirk GJ (1999) Nitrate-ammonium synergism in rice. A subcellular flux analysis. Plant Physiol 119(3):1041–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumaraswamy S, Ramakrishnan B, Satpathy SN, Rath AK, Misra S, Rao VR, Sethunathan N (1997) Spatial distribution of methane-oxidizing activity in a flooded rice soil. Plant Soil 191(2):241–248

    Article  CAS  Google Scholar 

  • Kumaraswamy S, Rath AK, Ramakrishnan B, Sethunathan N (2000) Wetland rice soils as sources and sinks of methane: a review and prospects for research. Biol Fertil Soils 31(6):449–461

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Domanski G (2000) Carbon input by plants into the soil. Review. J Plant Nutr Soil Sci 163:421–431

    Article  CAS  Google Scholar 

  • Ladha JK, Reddy PM (2000) The quest for nitrogen fixation in rice. International Rice Research Institute, The Philippines

    Google Scholar 

  • Lassaletta L, Billen G, Grizzetti B, Anglade J, Garnier J (2014) 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environ Res Lett 9(10):105011

    Article  Google Scholar 

  • Liang C, Balser TC (2011) Microbial production of recalcitrant organic matter in global soils: implications for productivity and climate policy. Nature Rev Microbiol 9(1):75

    Article  CAS  Google Scholar 

  • Liesack W, Schnell S, Revsbech NP (2000) Microbiology of flooded rice paddies. FEMS Microbiol Rev 24(5):625–645

    Article  CAS  PubMed  Google Scholar 

  • Locey KJ, Lennon JT (2016) Scaling laws predict global microbial diversity. Proc Natl Acad Sci U S A 113(21):5970–5975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Conrad R (2005) In situ stable isotope probing of methanogenic archaea in the rice rhizosphere. Science 309(5737):1088–1090

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Murase J, Watanabe A, Sugimoto A, Kimura M (2004) Linking microbial community dynamics to rhizosphere carbon flow in a wetland rice soil. FEMS Microbiol Ecol 48(2):179–186

    Article  CAS  PubMed  Google Scholar 

  • Macfadyen A (1963) Contribution of the microfauna to total soil metabolism. In: Doeksen J, Van der Drift J (eds) Soil organisms, Amsterdam, pp 3–16

    Google Scholar 

  • Mano H, Morisaki H (2008) Endophytic bacteria in the rice plant. Microbes Environ 23(2):109–117

    Article  PubMed  Google Scholar 

  • Marcus IM, Wilder HA, Quazi SJ, Walker SL (2013) Linking microbial community structure to function in representative simulated systems. Appl Environ Microbiol 79:2552–2559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mele PM, Crowley DE (2008) Application of self-organizing maps for assessing soil biological quality. Agri Ecosyst Environ 126:139–152

    Article  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    Article  CAS  PubMed  Google Scholar 

  • Meyer A, Focks A, Radl V, Keil D, Welzl G, Schöning I, Boch S, Marhan S, Kandeler E, Schloter M (2013) Different land use intensities in grassland ecosystems drive ecology of microbial communities involved in nitrogen turnover in soil. PLoS One 8(9):e73536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minoda T, Kimura M, Wada E (1996) Photosynthates as dominant source of CH4 and CO2 in soil water and CH4 emitted to the atmosphere from paddy fields. J Geophys Res 101(D15):21091–21097

    Article  CAS  Google Scholar 

  • Mora C, Tittensor DP, Adl S, Simpson AG, Worm B (2011) How many species are there on Earth and in the ocean? PLoS Biol 9(8):e1001127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narteh LT, Sahrawat KL (2000) Ammonium in solution of flooded west African soils. Geoderma 95(3–4):205–214

    Article  CAS  Google Scholar 

  • Nouchi I, Mariko S (1993) Mechanism of methane transport by rice plants. In: Oremland RS (ed) Biogeochemistry of global change. Springer, Boston, MA, pp 336–352

    Chapter  Google Scholar 

  • Ollivier J, Töwe S, Bannert A, Hai B, Kastl EM, Meyer A, Su MX, Kleineidam K, Schloter M (2011) Nitrogen turnover in soil and global change. FEMS Microbiol Ecol 78(1):3–16

    Article  CAS  PubMed  Google Scholar 

  • Ooyama N (1975) Nitrogen supplying patterns of paddy soils for rice plant in temperate area in Japan. J Sci Soil Manure 46:297–302

    Google Scholar 

  • Øvreås L, Torsvik V (1998) Microbial diversity and community structure in two different agricultural soil communities. Microb Ecol 36(3–4):303–315

    PubMed  Google Scholar 

  • Paungfoo-Lonhienne C, Rentsch D, Robatzek S, Webb RI, Sagulenko E, Näsholm T, Schmidt S, Lonhienne TG (2010) Turning the table: plants consume microbes as a source of nutrients. PLoS One 5(7):e11915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peng S, Bouman B, Visperas RM, Castañeda A, Nie L, Park HK (2006) Comparison between aerobic and flooded rice in the tropics: agronomic performance in an eight-season experiment. Field Crops Res 96(2–3):252–259

    Article  Google Scholar 

  • Petersen DG, Blazewicz SJ, Firestone M, Herman DJ, Turetsky M, Waldrop M (2012) Abundance of microbial genes associated with nitrogen cycling as indices of biogeochemical process rates across a vegetation gradient in Alaska. Environ Microbiol 14(4):993–1008

    Article  CAS  PubMed  Google Scholar 

  • Poretsky R, Rodriguez-R LM, Luo C, Tsementzi D, Konstantinidis KT (2014) Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics. PLoS One 9(4):e93827

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Priya H, Prasanna R, Ramakrishnan B, Bidyarani N, Babu S, Thapa S, Renuka N (2015) Influence of cyanobacterial inoculation on the culturable microbiome and growth of rice. Microbiol Res 171:78–89

    Article  CAS  PubMed  Google Scholar 

  • Prosser JI, Bohannan BJ, Curtis TP, Ellis RJ, Firestone MK, Freckleton RP, Green JL, Green LE, Killham K, Lennon JJ, Osborn AM (2007) The role of ecological theory in microbial ecology. Nature Rev Microbiol 5(5):384–392

    Article  CAS  Google Scholar 

  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    Article  CAS  Google Scholar 

  • Raich JW, Schlesinger WH (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 44(2):81–99

    Article  Google Scholar 

  • Rajagopal BS, Belay N, Daniels L (1988) Isolation and characterization of methanogenic bacteria from rice paddies. FEMS Microbiol Lett 53(3–4):153–158

    Article  CAS  Google Scholar 

  • Ramakrishnan B, Lueders T, Conrad R, Friedrich M (2000) Effect of soil aggregate size on methanogenesis and archaeal community structure in anoxic rice field soil. FEMS Microbiol Ecol 32(3):261–270

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishnan B, Lueders T, Dunfield PF, Conrad R, Friedrich MW (2001) Archaeal community structures in rice soils from different geographical regions before and after initiation of methane production. FEMS Microbiol Ecol 37(2):175–186

    Article  CAS  Google Scholar 

  • Rao VR, Ramakrishnan B, Adhya TK, Kanungo PK, Nayak DN (1998) Review: current status and future prospects of associative nitrogen fixation in rice. World J Microbiol Biotechnol 14:621–633

    Article  CAS  Google Scholar 

  • Rath AK, Swain B, Ramakrishnan B, Panda D, Adhya TK, Rao VR, Sethunathan N (1999) Influence of fertilizer management and water regime on methane emission from rice fields. Agri Ecosyst Environ 76(2–3):99–107

    Article  CAS  Google Scholar 

  • Reichardt W, Briones A, De Jesus R, Padre B (2001) Microbial population shifts in experimental rice systems. Applied Soil Ecol 17(2):151–163

    Article  Google Scholar 

  • Rondon MR, August PR, Bettermann AD, Brady SF, Grossman TH, Liles MR, Loiacono KA, Lynch BA, MacNeil IA, Minor C, Tiong CL (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 66(6):2541–2547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roszak DB, Colwell RR (1987) Survival strategies of bacteria in the natural environment. Microbiol Rev 51(3):365–379

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rütting T, Boeckx P, Müller C, Klemedtsson L (2011) Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle. Biogeosciences 8(7):1779–1791

    Article  CAS  Google Scholar 

  • Sahrawat KL, Narteh LT (2001) Organic matter and reducible iron control of ammonium production in submerged soils. Commun Soil Sci Plan 32(9–10):1543–1550

    Article  CAS  Google Scholar 

  • Sakai S, Imachi H, Sekiguchi Y, Ohashi A, Harada H, Kamagata Y (2007) Isolation of key methanogens for global methane emission from rice paddy fields: a novel isolate affiliated with the clone cluster rice cluster I. Appl Environ Microbiol 73(13):4326–4331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satpathy SN, Rath AK, Ramakrishnan B, Rao VR, Adhya TK, Sethunathan N (1997) Diurnal variation in methane efflux at different growth stages of tropical rice. Plant Soil 195(2):267–271

    Article  CAS  Google Scholar 

  • Satpathy SN, Mishra S, Adhya TK, Ramakrishnan B, Rao VR, Sethunathan N (1998) Cultivar variation in methane efflux from tropical rice. Plant Soil 202(2):223–229

    Article  CAS  Google Scholar 

  • Schmidt MW, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens A, Kleber M, Kogel-Knabner I, Lehmann J, Manning DA, Nanipieri P (2011) Persistence of soil organic matter as an ecosystem property. Nature 478(7367):49

    Article  CAS  PubMed  Google Scholar 

  • Sethunathan N, Rao VR, Adhya TK, Raghu K (1982) Microbiology of rice soils. CRC Crit Rev Microbiol 10(2):125–172

    Article  Google Scholar 

  • Six J, Frey SD, Thiet RK, Batten KM (2006) Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am J 70(2):555–569

    Article  CAS  Google Scholar 

  • Strauss SL, Reardon CL, Mazzola M (2014) The response of ammonia-oxidizer activity and community structure to fertilizer amendment of orchard soils. Soil Biol Biochem 68:410–418

    Article  CAS  Google Scholar 

  • Torsvik VL (1980) Isolation of bacterial DNA from soil. Soil Biol Biochem 12(1):15–21

    Article  CAS  Google Scholar 

  • Tringe SG, Von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW, Podar M, Short JM, Mathur EJ, Detter JC, Bork P (2005) Comparative metagenomics of microbial communities. Science 308(5721):554–557

    Article  CAS  PubMed  Google Scholar 

  • Valm AM, Welch JLM, Rieken CW, Hasegawa Y, Sogin ML, Oldenbourg R, Dewhirst FE, Borisy GG (2011) Systems-level analysis of microbial community organization through combinatorial labeling and spectral imaging. Proc Natl Acad Sci U S A 108(10):4152–4157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Der Gon HD, Kropff MJ, Van Breemen N, Wassmann R, Lantin RS, Aduna E, Corton TM, Van Laar HH (2002) Optimizing grain yields reduces CH4 emissions from rice paddy fields. Proc Natl Acad Sci U S A 99(19):12021–12024

    Article  CAS  Google Scholar 

  • van Niftrik L, Jetten MS (2012) Anaerobic ammonium-oxidizing bacteria: unique microorganisms with exceptional properties. Microbiol Mol Biol Rev 76(3):585–596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wallenstein MD, Vilgalys RJ (2005) Quantitative analyses of nitrogen cycling genes in soils. Pedobiologia 49:665–672

    Article  CAS  Google Scholar 

  • Wang B, Adachi K (2000) Differences among rice cultivars in root exudation, methane oxidation, and populations of methanogenic and methanotrophic bacteria in relation to methane emission. Nutr Cycl Agroecosys 58(1–3):349–356

    Article  CAS  Google Scholar 

  • Yang CH, Crowley DE (2000) Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microbiol 66:345–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanni YG, Rizk RY, Corich V, Squartini A, Ninke K, Philip-Hollingsworth S, Orgambide G, De Bruijn F, Stoltzfus J, Buckley D, Schmidt TM (1997) Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. Plant Soil 194(1–2):99–114

    Article  CAS  Google Scholar 

  • Ying-Hua D, Ya-Li Z, Qi-Rong S, Song-Wei W (2006) Nitrate effect on Rice growth and nitrogen absorption and assimilation at different growth stages. Pedosphere 16(6):707–717

    Article  Google Scholar 

  • Yuan Q, Pump J, Conrad R (2012) Partitioning of CH4 and CO2 production originating from rice straw, soil and root organic carbon in rice microcosms. PLoS One 7(11):e49073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeigler RS, Barclay A (2008) The relevance of rice. Rice 1:3–10

    Article  Google Scholar 

  • Zhang X, Liu W, Schloter M, Zhang G, Chen Q, Huang J, Li L, Elser JJ, Han X (2013) Response of the abundance of key soil microbial nitrogen-cycling genes to multi-factorial global changes. PLoS One 8(10):e76500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Liu SL, Pu C, Zhang XQ, Xue JF, Zhang R, Wang YQ, Lal R, Zhang HL, Chen F (2016) Methane and nitrous oxide emissions under no-till farming in China: a meta-analysis. Glob Change Biol 22(4):1372–1384

    Article  Google Scholar 

Download references

Acknowledgments

The study was partly funded by the SERB Project on “Archaeal- and anaerobic ammonia oxidative processes of nitrogen cycling in oxic and anoxic soils,” DST, Government of India, and the ICAR extramural research project on “Soil microbiome modulation strategies to enhance nitrogen acquisition efficiency in rice,” granted to BR. We are thankful to the Division of Microbiology, ICAR-IARI, New Delhi, for providing necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balasubramanian Ramakrishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramakrishnan, B., Prusty, P.K., Sagar, S., Elakkya, M.M., Rana, A. (2019). Fertilizer Nitrogen as a Significant Driver of Rhizosphere Microbiome in Rice Paddies. In: Singh, D., Gupta, V., Prabha, R. (eds) Microbial Interventions in Agriculture and Environment. Springer, Singapore. https://doi.org/10.1007/978-981-13-8383-0_12

Download citation

Publish with us

Policies and ethics