Skip to main content

Memristive Biosensors for Ultrasensitive Diagnostics and Therapeutics

  • Chapter
  • First Online:

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 63))

Abstract

The coupling of memristive effect with biological interactions results in innovative nanobiosensors with high performance in both diagnostics and therapeutics. Silicon nanowire arrays exhibiting a memristive electrical response are acquired through a top-down nanofabrication process. Surface treatments implementing sophisticated bio-functionalization strategies and adopting suitably selected biological materials give rise to the memristive biosensors. The particular electrical response of these novel biosensors leverages the modification of the hysteretic properties exhibited by the memristive effect before and after the bio-modification, to achieve an efficient detection of biological processes. Memristive biosensors successfully address the issue of the early detection of cancer biomarkers providing a new technology for high performance, ultrasensitive, label-free electrochemical sensing platforms. They also offer the capability of detecting extremely small traces of cancer biomarkers, as well as effective screening and continuous monitoring of therapeutic compounds in full human serum bringing novelty and solutions in the medical practice, especially in the field of personalized medicine.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Source of original text [3].

  2. 2.

    Source of original text [3, 33].

References

  1. M.-A. Doucey, S. Carrara, Nanowire sensors in cancer. Trends Biotechnol. (2018)

    Google Scholar 

  2. S. Carrara, D. Sacchetto, M.-A. Doucey, C. Baj-Rossi, G.D. Micheli, Y. Leblebici, Memristive-biosensors: a new detection method by using nanofabricated memristors. Sens. Actuators B Chem. 171–172, 449–457 (2012)

    Article  Google Scholar 

  3. I. Tzouvadaki, P. Jolly, X. Lu, S. Ingebrandt, G. de Micheli, P. Estrela, S. Carrara, Label-free ultrasensitive memristive aptasensor. Nano Lett. 16(7), 4472–4476 (2016)

    Article  Google Scholar 

  4. Y.V. Pershin, M. Di Ventra, Memory effects in complex materials and nanoscale systems. Adv. Phys. 60(4), 145–227 (2011)

    Article  Google Scholar 

  5. F. Puppo, M. Di Ventra, G. De Micheli, S. Carrara, Memristive sensors for ph measure in dry conditions. Surf. Sci. 624, 76–79 (2014)

    Article  Google Scholar 

  6. I. Tzouvadaki, N. Madaboosi, I. Taurino, V. Chu, J.P. Conde, G. de Micheli, S. Carrara, Study on the bio-functionalization of memristive nanowires for optimum memristive biosensors. J. Mater. Chem. B 4(12), 2153–2162 (2016)

    Article  Google Scholar 

  7. T. Mauser, C. Déjugnat, G.B. Sukhorukov, Reversible ph-dependent properties of multilayer microcapsules made of weak polyelectrolytes. Macromol. Rapid Commun. 25(20), 1781–1785 (2004)

    Article  Google Scholar 

  8. H. Riegler, F. Essler, Polyelectrolytes. 2. intrinsic or extrinsic charge compensation? Quantitative charge analysis of pah/pss multilayers. Langmuir 18(8), 6694–6698 (2002)

    Article  Google Scholar 

  9. W. Chen, T.J. McCarthy, Layer-by-layer deposition: a tool for polymer surface modification. Macromolecules 30(1), 78–86 (1997)

    Article  Google Scholar 

  10. F. Puppo, M. Doucey, J. Delaloye, T.S.Y. Moh, G. Pandraud, P.M. Sarro, G.D. Micheli, S. Carrara, Sinw-fet in-air biosensors for high sensitive and specific detection in breast tumor extract. IEEE Sens. J. 16(10), 3374–3381 (2016)

    Article  Google Scholar 

  11. F. Puppo, A. Dave, M. Doucey, D. Sacchetto, C. Baj-Rossi, Y. Leblebici, G.D. Micheli, S. Carrara, Memristive biosensors under varying humidity conditions. IEEE Trans. NanoBioscience 13(1), 19–30 (2014)

    Article  Google Scholar 

  12. I. Tzouvadaki, J. Zapatero-Rodriguez, S. Naus, G. de Micheli, R. O’Kennedy, S. Carrara, Memristive biosensors based on full-size antibodies and antibody fragments. Submitted to Sens. Actuator B-Chem

    Google Scholar 

  13. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453(5), 80–83 (2008)

    Article  Google Scholar 

  14. M.D. Ventra, Y.V. Pershin, L.O. Chua, Circuit elements with memory: memristors, memcapacitors, and meminductors. Proc. IEEE 97(10), 1717–1724 (2009)

    Article  Google Scholar 

  15. A. Gelencsér, T. Prodromakis, C. Toumazou, T. Roska, Biomimetic model of the outer plexiform layer by incorporating memristive devices. Phys. Rev. E 85(4), 041918 (2012)

    Article  Google Scholar 

  16. J.J. Yang, M.D. Pickett, X. Li, D.A. Ohlberg, D.R. Stewart, R.S. Williams, Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3(7), 429–433 (2008)

    Article  Google Scholar 

  17. S. Shin, K. Kim, S.M. Kang, Compact models for memristors based on charge-flux constitutive relationships. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(4), 590–598 (2010)

    Article  Google Scholar 

  18. D. Biolek, M. Di Ventra, Y.V. Pershin, Reliable spice simulations of memristors, memcapacitors and meminductors. Radioengineering 22 (2013)

    Google Scholar 

  19. I. Vourkas, A. Batsos, G.C. Sirakoulis, Spice modeling of nonlinear memristive behavior. Inter. J. Circuit Theory Appl. 43(5), 553–565 (2015). CTA-13-0128

    Article  Google Scholar 

  20. F. Puppo, F.L. Traversa, M.D. Ventra, G.D. Micheli, S. Carrara, Surface trap mediated electronic transport in biofunctionalized silicon nanowires. Nanotechnology 27(34), 345503 (2016)

    Article  Google Scholar 

  21. Z. Biolek, D. Biolek, V. Biolkova, Spice model of memristor with nonlinear dopant drift. Radioengineering 18(2), 210–214 (2009)

    MATH  Google Scholar 

  22. S. Benderli, T.A. Wey, On spice macromodelling of tio2 memristors. Electron. Lett. 45(7), 377–379 (2009)

    Article  Google Scholar 

  23. A. Rak, C. Gyorgy, Macromodeling of the memristor in spice. Trans. Comp. Aided Des. Integ. Circuit Sys. 29, 632–636 (2010)

    Article  Google Scholar 

  24. I. Tzouvadaki, F. Puppo, M. Doucey, G.D. Micheli, S. Carrara, Computational study on the electrical behavior of silicon nanowire memristive biosensors. IEEE Sens. J. 15(11), 6208–6217 (2015)

    Article  Google Scholar 

  25. S.H. Lee, Y.S. Yu, S.W. Hwang, D. Ahn, A spice-compatible new silicon nanowire field-effect transistors (snwfets) model. IEEE Trans. Nanotechnol. 8, 643–649 (2009)

    Article  Google Scholar 

  26. H. Elhadidy, J. Sikula, J. Franc, Symmetrical current-voltage characteristic of a metal-semiconductor-metal structure of schottky contacts and parameter retrieval of a cdte structure. Semicond. Sci. Technol. 27(1), 015006 (2012)

    Article  Google Scholar 

  27. S. Lee et al., Equivalent circuit model of semiconductor nanowire diode by spice. J. Nanosci. Nanotechnol. (2007)

    Google Scholar 

  28. C.Y. Yim, et al., Electrical properties of the zno nanowire transistor and its analysis with equivalent circuit model. J. Korean Phys. Soc. 48, 1565–1569 (2006)

    Google Scholar 

  29. K. Steiner, Capacitance-voltage measurements on schottky diodes with poor ohmic contacts. IEEE Trans. Instrum. Meas. 42(1), 39–43 (1993)

    Article  Google Scholar 

  30. M. Bleicher, E. Lange, Schottky-barrier capacitance measurements for deep level impurity determination. Solid State Electron. 16(3), 375–380 (1973)

    Article  Google Scholar 

  31. P.S. Ho, E.S. Yang, H.L. Evans, X. Wu, Electronic states at silicide-silicon interfaces. Phys. Rev. Lett. 56(1), 177–180 (1986)

    Article  Google Scholar 

  32. J. Werner, A.F.J. Levi, R.T. Tung, M. Anzlowar, M. Pinto, Origin of the excess capacitance at intimate schottky contacts. Phys. Rev. Lett. 60(1), 53–56 (1988)

    Article  Google Scholar 

  33. I. Tzouvadaki, N. Aliakbarinodehi, G. de Micheli, S. Carrara, The memristive effect as a novelty in drug monitoring. Nanoscale 9(27), 9676–9684 (2017)

    Article  Google Scholar 

  34. S. Shigdar, J. Lin, Y. Yu, M. Pastuovic, M. Wei, W. Duan, Rna aptamer against a cancer stem cell marker epithelial cell adhesion molecule. Cancer Sci. 102(5), 991–998 (2011)

    Article  Google Scholar 

  35. D.H.J. Bunka, P.G. Stockley, Aptamers come of age -at last. Nat. Rev. Microbiol. 4(8), 588–596 (2006)

    Article  Google Scholar 

  36. E. Levy-Nissenbaum, A.F. Radovic-Moreno, A.Z. Wang, R. Langer, O.C. Farokhzad, Nanotechnology and aptamers: applications in drug delivery. Trends Biotechnol. 26(8), 442–449 (2008)

    Article  Google Scholar 

  37. M. Souada, B. Piro, S. Reisberg, G. Anquetin, V. Noël, M. Pham, Label-free electrochemical detection of prostate-specific antigen based on nucleic acid aptamer. Biosens. Bioelectron. 68, 49–54 (2015)

    Article  Google Scholar 

  38. P. Jolly, N. Formisano, J. Tkáč, P. Kasák, C.G. Frost, P. Estrela, Label-free impedimetric aptasensor with antifouling surface chemistry: a prostate specific antigen case study. Sens. Actuators B Chem. 209, 306–312 (2015)

    Article  Google Scholar 

  39. B. Liu, L. Lu, E. Hua, S. Jiang, G. Xie, Detection of the human prostate-specific antigen using an aptasensor with gold nanoparticles encapsulated by graphitized mesoporous carbon. Microchim. Acta 178(1), 163–170 (2012)

    Article  Google Scholar 

  40. B. Kavosi, A. Salimi, R. Hallaj, F. Moradi, Ultrasensitive electrochemical immunosensor for psa biomarker detection in prostate cancer cells using gold nanoparticles/pamam dendrimer loaded with enzyme linked aptamer as integrated triple signal amplification strategy. Biosens. Bioelectron. 74, 915–923 (2015)

    Article  Google Scholar 

  41. Z. Yang, B. Kasprzyk-Hordern, S. Goggins, C.G. Frost, P. Estrela, A novel immobilization strategy for electrochemical detection of cancer biomarkers: DNA-directed immobilization of aptamer sensors for sensitive detection of prostate specific antigens. Analyst 140(8), 2628–2633 (2015)

    Article  Google Scholar 

  42. P. Jolly, V. Tamboli, R.L. Harniman, P. Estrela, C.J. Allender, J.L. Bowen, Aptamer-mip hybrid receptor for highly sensitive electrochemical detection of prostate specific antigen. Biosens. Bioelectron. 75, 188–195 (2016)

    Article  Google Scholar 

  43. K. Radhapyari, P. Kotoky, M.R. Das, R. Khan, Graphene-polyaniline nanocomposite based biosensor for detection of antimalarial drug artesunate in pharmaceutical formulation and biological fluids. Talanta 111, 47–53 (2013)

    Article  Google Scholar 

  44. B. Bo, X. Zhu, P. Miao, D. Pei, B. Jiang, Y. Lou, Y. Shu, G. Li, An electrochemical biosensor for clenbuterol detection and pharmacokinetics investigation. Talanta 113(9), 36–40 (2013)

    Article  Google Scholar 

  45. D.-M. Kim, M.A. Rahman, M.H. Do, C. Ban, Y.-B. Shim, An amperometric chloramphenicol immunosensor based on cadmium sulfide nanoparticles modified-dendrimer bonded conducting polymer. Biosens. Bioelectron. 25(3), 1781–1788 (2010)

    Article  Google Scholar 

  46. W.U. Wang, C. Chen, K.-H. Lin, Y. Fang, C.M. Lieber, Label-free detection of small-molecule-protein interactions by using nanowire nanosensors. Proc. Natl. Acad. Sci. USA 102(3), 3208–3212 (2005)

    Article  Google Scholar 

  47. H. Karimi-Maleh, F. Tahernejad-Javazmi, N. Atar, M.L. Yola, V.K. Gupta, A.A. Ensafi, A novel DNA biosensor based on a pencil graphite electrode modified with polypyrrole/functionalized multiwalled carbon nanotubes for determination of 6-mercaptopurine anticancer drug. Ind. Eng. Chem. Res. 54(4), 3634–3639 (2015)

    Article  Google Scholar 

  48. R.N. Goyal, V.K. Gupta, S. Chatterjee, Voltammetric biosensors for the determination of paracetamol at carbon nanotube modified pyrolytic graphite electrode. Sens. Actuators B Chem. 149(8), 252–258 (2010)

    Article  Google Scholar 

  49. Ľ. Švorc, J. Sochr, P. Tomčík, M. Rievaj, D. Bustin, Simultaneous determination of paracetamol and penicillin V by square-wave voltammetry at a bare boron-doped diamond electrode. Electrochim. Acta 68(4), 227–234 (2012)

    Article  Google Scholar 

  50. K. Radhapyari, P. Kotoky, R. Khan, Detection of anticancer drug tamoxifen using biosensor based on polyaniline probe modified with horseradish peroxidase. Mater. Sci. Eng. C Mater. Biol. Appl. 33, 583–587 (2013)

    Article  Google Scholar 

  51. M.N. Kammer, I.R. Olmsted, A.K. Kussrow, M.J. Morris, G.W. Jackson, D.J. Bornhop, Characterizing aptamer small molecule interactions with backscattering interferometry. Analyst 139, 5879–5884 (2014)

    Article  Google Scholar 

  52. M. Simiele, C. Carcieri, A. De Nicolò, A. Ariaudo, M. Sciandra, A. Calcagno, S. Bonora, G. Di Perri, A. D’Avolio, A LC-MS method to quantify tenofovir urinary concentrations in treated patients. J. Pharm. Biomed. Anal. 114(10), 8–11 (2015)

    Article  Google Scholar 

  53. R. Jain, R. Sharma, Cathodic adsorptive stripping voltammetric detection and quantification of the antiretroviral drug tenofovir in human plasma and a tablet formulation. J. Electrochem. Soc. 160(8), H489–H493 (2013)

    Article  Google Scholar 

  54. M.E. Barkil, M.-C. Gagnieu, J. Guitton, Relevance of a combined uv and single mass spectrometry detection for the determination of tenofovir in human plasma by hplc in therapeutic drug monitoring. J. Chromatogr. B 854(7), 192–197 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioulia Tzouvadaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tzouvadaki, I., De Micheli, G., Carrara, S. (2020). Memristive Biosensors for Ultrasensitive Diagnostics and Therapeutics. In: Suri, M. (eds) Applications of Emerging Memory Technology. Springer Series in Advanced Microelectronics, vol 63. Springer, Singapore. https://doi.org/10.1007/978-981-13-8379-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8379-3_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8378-6

  • Online ISBN: 978-981-13-8379-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics