Skip to main content

Recent Advances in Targeting Human Mitochondrial AAA+ Proteases to Develop Novel Cancer Therapeutics

  • Chapter
  • First Online:
Mitochondria in Health and in Sickness

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1158))

Abstract

The mitochondrion is a vital organelle that performs diverse cellular functions. In this regard, the cell has evolved various mechanisms dedicated to the maintenance of the mitochondrial proteome. Among them, AAA+ ATPase-associated proteases (AAA+ proteases) such as the Lon protease (LonP1), ClpXP complex, and the membrane-bound i-AAA, m-AAA and paraplegin facilitate the clearance of misfolded mitochondrial proteins to prevent the accumulation of cytotoxic protein aggregates. Furthermore, these proteases have additional regulatory functions in multiple biological processes that include amino acid metabolism, mitochondria DNA transcription, metabolite and cofactor biosynthesis, maturation and turnover of specific respiratory and metabolic proteins, and modulation of apoptosis, among others. In cancer cells, the increase in intracellular ROS levels promotes tumorigenic phenotypes and increases the frequency of protein oxidation and misfolding, which is compensated by the increased expression of specific AAA+ proteases as part of the adaptation mechanism. The targeting of AAA+ proteases has led to the discovery and development of novel anti-cancer compounds. Here, we provide an overview of the molecular characteristics and functions of the major mitochondrial AAA+ proteases and summarize recent research efforts in the development of compounds that target these proteases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Furoukh N, Ianni A, Nolte H, Holper S, Kruger M, Wanrooij S, Braun T (2015) ClpX stimulates the mitochondrial unfolded protein response (UPRmt) in mammalian cells. Biochim Biophys Acta 1853:2580–2591. doi:S0167-4889(15)00206-2 [pii]. https://doi.org/10.1016/j.bbamcr.2015.06.016

    Article  CAS  PubMed  Google Scholar 

  2. Al-Furoukh N, Kardon JR, Kruger M, Szibor M, Baker TA, Braun T (2014) NOA1, a novel ClpXP substrate, takes an unexpected nuclear detour prior to mitochondrial import. PLoS One 9:e103141. https://doi.org/10.1371/journal. pone.0103141 [doi] PONE-D-14-12184 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  3. Almajan ER et al (2012) AFG3L2 supports mitochondrial protein synthesis and Purkinje cell survival. J Clin Invest 122:4048–4058. :64604 [pii]. https://doi.org/10.1172/JCI64604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Amor AJ, Schmitz KR, Sello JK, Baker TA, Sauer RT (2016) Highly dynamic interactions maintain kinetic stability of the ClpXP protease during the ATP-fueled mechanical cycle. ACS Chem Biol 11:1552–1560. https://doi.org/10.1021/acschembio.6b00083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Atorino L et al (2003) Loss of m-AAA protease in mitochondria causes complex I deficiency and increased sensitivity to oxidative stress in hereditary spastic paraplegia. J Cell Biol 163:777–787. https://doi.org/10.1083/jcb.200304112. [doi] jcb.200304112 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Banecki B, Wawrzynow A, Puzewicz J, Georgopoulos C, Zylicz M (2001) Structure-function analysis of the zinc-binding region of the Clpx molecular chaperone. J Biol Chem 276:18843–18848. https://doi.org/10.1074/jbc.M007507200. doi] M007507200 [pii

    Article  CAS  PubMed  Google Scholar 

  7. Bernstein SH et al (2012) The mitochondrial ATP-dependent Lon protease: a novel target in lymphoma death mediated by the synthetic triterpenoid CDDO and its derivatives. Blood 119:3321–3329. blood-2011-02-340075 [pii] 10.1182/blood-2011-02-340075

    Article  CAS  Google Scholar 

  8. Bezawork-Geleta A, Brodie EJ, Dougan DA, Truscott KN (2015) LON is the master protease that protects against protein aggregation in human mitochondria through direct degradation of misfolded proteins. Sci Rep 5:17397. srep17397 [pii]. https://doi.org/10.1038/srep17397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bezawork-Geleta A, Saiyed T, Dougan DA, Truscott KN (2014) Mitochondrial matrix proteostasis is linked to hereditary paraganglioma: LON-mediated turnover of the human flavinylation factor SDH5 is regulated by its interaction with SDHA. FASEB J 28:1794–1804. :fj.13-242420 [pii]. https://doi.org/10.1096/fj.13-242420

    Article  CAS  PubMed  Google Scholar 

  10. Bota DA, Davies KJ (2002) Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nat Cell Biol 4:674–680. https://doi.org/10.1038/ncb836. doi] ncb836 [pii

    Article  CAS  PubMed  Google Scholar 

  11. Bottcher T, Sieber SA (2012) β-Lactams and β-lactones as activity-based probes in chemical biology. MedChemComm 3:408–417. https://doi.org/10.1039/c2md00275b

    Article  CAS  Google Scholar 

  12. Bredel M et al (2009) A network model of a cooperative genetic landscape in brain tumors. JAMA 302:261–275. :302/3/261 [pii]. https://doi.org/10.1001/jama.2009.997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bulteau AL et al (2017) Dysfunction of mitochondrial Lon protease and identification of oxidized protein in mouse brain following exposure to MPTP: implications for Parkinson disease free Radic. Biol Med 108:236–246. S0891-5849(17)30188-0 [pii]. https://doi.org/10.1016/j.freeradbiomed.2017.03.036

    Article  CAS  Google Scholar 

  14. Carney DW, Compton CL, Schmitz KR, Stevens JP, Sauer RT, Sello JK (2014) A simple fragment of cyclic acyldepsipeptides is necessary and sufficient for ClpP activation and antibacterial activity. Chembiochem 15:2216–2220. https://doi.org/10.1002/cbic.201402358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cheng CW et al (2013) Overexpression of Lon contributes to survival and aggressive phenotype of cancer cells through mitochondrial complex I-mediated generation of reactive oxygen species. Cell Death Dis 4:e681. cddis2013204 [pii]. https://doi.org/10.1038/cddis.2013.204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cheng KC, Hsueh MC, Chang HC, Lee AY, Wang HM, Chen CY (2010) Antioxidants from the leaves of Cinnamomum kotoense. Nat Prod Commun 5:911–912

    CAS  PubMed  Google Scholar 

  17. Chin MP et al (2014) Risk factors for heart failure in patients with type 2 diabetes mellitus and stage 4 chronic kidney disease treated with bardoxolone methyl. J Card Fail 20:953–958. S1071-9164(14)01224-X [pii]. https://doi.org/10.1016/j.cardfail.2014.10.001

    Article  CAS  PubMed  Google Scholar 

  18. Cleasby A et al (2014) Structure of the BTB domain of Keap1 and its interaction with the triterpenoid antagonist CDDO. PLoS One 9:e98896. https://doi.org/10.1371/journal.pone.0098896. PONE-D-14-06787 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cole A et al (2015) Inhibition of the mitochondrial protease ClpP as a therapeutic strategy for human acute myeloid Leukemia. Cancer Cell 27:864–876. S1535-6108(15)00180-4 [pii]. https://doi.org/10.1016/j.ccell.2015.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cormio A, Musicco C, Gasparre G, Cormio G, Pesce V, Sardanelli AM, Gadaleta MN (2017) Increase in proteins involved in mitochondrial fission, mitophagy, proteolysis and antioxidant response in type I endometrial cancer as an adaptive response to respiratory complex I deficiency. Biochem Biophys Res Commun 491:85–90. S0006-291X(17)31389-X [pii]. https://doi.org/10.1016/j.bbrc.2017.07.047

    Article  CAS  PubMed  Google Scholar 

  21. Creelan BC et al (2017) Safety, pharmacokinetics, and pharmacodynamics of oral omaveloxolone (RTA 408), a synthetic triterpenoid, in a first-in-human trial of patients with advanced solid tumors. Onco Targets Ther 10:4239–4250. https://doi.org/10.2147/OTT.S136992. ott-10-4239 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  22. Crewe C, Schafer C, Lee I, Kinter M, Szweda LI (2017) Regulation of pyruvate dehydrogenase kinase 4 in the heart through degradation by the Lon protease in response to mitochondrial substrate availability. J Biol Chem 292:305–312. M116.754127 [pii]. https://doi.org/10.1074/jbc.M116.754127

    Article  CAS  PubMed  Google Scholar 

  23. de Sagarra MR, Mayo I, Marco S, Rodriguez-Vilarino S, Oliva J, Carrascosa JL, Casta n JG (1999) Mitochondrial localization and oligomeric structure of HClpP, the human homologue of E. coli ClpP. J Mol Biol 292:819–825. https://doi.org/10.1006/jmbi.1999.3121. S0022283699931212 [pii

    Article  PubMed  Google Scholar 

  24. Deepa SS et al (2016) Down-regulation of the mitochondrial matrix peptidase ClpP in muscle cells causes mitochondrial dysfunction and decreases cell proliferation free Radic. Biol Med 91:281–292. S0891-5849(15)01174-0 [pii]. https://doi.org/10.1016/j.freeradbiomed.2015.12.021

    Article  CAS  Google Scholar 

  25. Di Bella D et al (2010) Mutations in the mitochondrial protease gene AFG3L2 cause dominant hereditary ataxia SCA28. Nat Genet 42:313

    Article  Google Scholar 

  26. Di K, Lomeli N, Wood SD, Vanderwal CD, Bota DA (2016) Mitochondrial Lon is over-expressed in high-grade gliomas, and mediates hypoxic adaptation: potential role of Lon as a therapeutic target in glioma. Oncotarget 7:77457–77467. 12681 [pii]. https://doi.org/10.18632/oncotarget.12681

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dikoglu E et al (2015) Mutations in LONP1, a mitochondrial matrix protease, cause CODAS syndrome. Am J Med Genet A 167:1501–1509. https://doi.org/10.1002/ajmg.a.37029

    Article  CAS  PubMed  Google Scholar 

  28. Ekici OD, Paetzel M, Dalbey RE (2008) Unconventional serine proteases: variations on the catalytic Ser/His/Asp triad configuration. Protein Sci 17:2023–2037. ps.035436.108 [pii]. https://doi.org/10.1110/ps.035436.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fiorese CJ, Schulz AM, Lin YF, Rosin N, Pellegrino MW, Haynes CM (2016) The transcription factor ATF5 mediates a mammalian mitochondrial UPR. Curr Biol 26:2037–2043. S0960-9822(16)30614-5 [pii]. https://doi.org/10.1016/j.cub.2016.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fukuda R, Zhang H, Kim JW, Shimoda L, Dang CV, Semenza GL (2007) HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 129:111–122. S0092-8674(07)00307-8 [pii]. https://doi.org/10.1016/j.cell.2007.01.047

    Article  CAS  PubMed  Google Scholar 

  31. Garcia-Nafria J et al (2010) Structure of the catalytic domain of the human mitochondrial Lon protease: proposed relation of oligomer formation and activity. Protein Sci 19:987–999. https://doi.org/10.1002/pro.376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gersch M et al (2015) AAA+ chaperones and acyldepsipeptides activate the ClpP protease via conformational control. Nat Commun 6:6320. doi:ncomms7320 [pii]. https://doi.org/10.1038/ncomms7320

    Article  CAS  PubMed  Google Scholar 

  33. Gibellini L et al (2015) Inhibition of Lon protease by triterpenoids alters mitochondria and is associated to cell death in human cancer cells. Oncotarget 6:25466–25483. 4510 [pii]. https://doi.org/10.18632/oncotarget.4510

    Article  PubMed  PubMed Central  Google Scholar 

  34. Glynn SE (2017) Multifunctional mitochondrial AAA proteases. Front Mol Biosci 4:34. https://doi.org/10.3389/fmolb.2017.00034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Goodreid JD et al (2016) Development and characterization of potent cyclic Acyldepsipeptide analogues with increased antimicrobial activity. J Med Chem 59:624–646. https://doi.org/10.1021/acs.jmedchem.5b01451

    Article  CAS  PubMed  Google Scholar 

  36. Goodreid JD et al (2014) Total synthesis and antibacterial testing of the A54556 cyclic acyldepsipeptides isolated from Streptomyces hawaiiensis. J Nat Prod 77:2170–2181. https://doi.org/10.1021/np500158q

    Article  CAS  PubMed  Google Scholar 

  37. Goto M et al (2014) Adaptation of leukemia cells to hypoxic condition through switching the energy metabolism or avoiding the oxidative stress. BMC Cancer 14:76. 1471-2407-14-76 [pii]. https://doi.org/10.1186/1471-2407-14-76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Granot Z et al (2007) Turnover of mitochondrial steroidogenic acute regulatory (StAR) protein by Lon protease: the unexpected effect of proteasome inhibitors. Mol Endocrinol 21:2164–2177. me.2005-0458 [pii]. https://doi.org/10.1210/me.2005-0458

    Article  CAS  PubMed  Google Scholar 

  39. Greene AW et al (2012) Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Rep 13:378–385embor201214 [pii]. https://doi.org/10.1038/embor.2012.14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Guillon B et al (2009) Frataxin deficiency causes upregulation of mitochondrial Lon and ClpP proteases and severe loss of mitochondrial Fe-S proteins. FEBS J 276:1036–1047. EJB6847 [pii]. https://doi.org/10.1111/j.1742-4658.2008.06847.x

    Article  CAS  PubMed  Google Scholar 

  41. Guo QM et al (2000) Identification of c-myc responsive genes using rat cDNA microarray. Cancer Res 60:5922–5928

    CAS  PubMed  Google Scholar 

  42. Hackl MW et al (2015) Phenyl esters are potent inhibitors of Caseinolytic protease P and reveal a Stereogenic switch for Deoligomerization. J Am Chem Soc 137:8475–8483. https://doi.org/10.1021/jacs.5b03084

    Article  CAS  PubMed  Google Scholar 

  43. Hartmann B et al (2016) Homozygous YME1L1 mutation causes mitochondriopathy with optic atrophy and mitochondrial network fragmentation. Elife:5. https://doi.org/10.7554/eLife.16078

  44. Hong DS et al (2012) A phase I first-in-human trial of bardoxolone methyl in patients with advanced solid tumors and lymphomas. Clin Cancer Res 18:3396–3406. 1078-0432.CCR-11-2703 [pii]. https://doi.org/10.1158/1078-0432.CCR-11-2703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Huang Z et al (2018) Glutathione S-transferase pi-Activatable O(2)-(Sulfonylethyl derived) Diazeniumdiolates potently suppress melanoma in vitro and in vivo. J Med Chem 61:1833–1844. https://doi.org/10.1021/acs.jmedchem.7b01178

    Article  CAS  PubMed  Google Scholar 

  46. Jenkinson EM et al (2013) Perrault syndrome is caused by recessive mutations in CLPP, encoding a mitochondrial ATP-dependent chambered protease. Am J Hum Genet 92:605–613. S0002-9297(13)00108-0 [pii]. https://doi.org/10.1016/j.ajhg.2013.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kang F, Ai Y, Zhang Y, Huang Z (2018) Design and synthesis of new hybrids from 2-cyano-3,12-dioxooleana- 9-dien-28-oic acid and O(2)-(2,4-dinitrophenyl) diazeniumdiolate for intervention of drug-resistant lung cancer. Eur J Med Chem 149:269–280. S0223-5234(18)30199-5 [pii]. https://doi.org/10.1016/j.ejmech.2018.02.062

    Article  CAS  PubMed  Google Scholar 

  48. Kang SG, Maurizi MR, Thompson M, Mueser T, Ahvazi B (2004) Crystallography and mutagenesis point to an essential role for the N-terminus of human mitochondrial ClpP. J Struct Biol 148:338–352. S1047-8477(04)00146-7 [pii]. https://doi.org/10.1016/j.jsb.2004.07.004

    Article  CAS  PubMed  Google Scholar 

  49. Kang SG, Ortega J, Singh SK, Wang N, Huang NN, Steven AC, Maurizi MR (2002) Functional proteolytic complexes of the human mitochondrial ATP-dependent protease, hClpXP. J Biol Chem 277:21095–21102. https://doi.org/10.1074/jbc.M201642200. doi] M201642200 [pii

    Article  CAS  PubMed  Google Scholar 

  50. Kardon JR et al (2015) Mitochondrial ClpX activates a key enzyme for heme biosynthesis and erythropoiesis. Cell 161:858–867. S0092-8674(15)00434-1 [pii]. https://doi.org/10.1016/j.cell.2015.04.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kasashima K, Sumitani M, Endo H (2012) Maintenance of mitochondrial genome distribution by mitochondrial AAA+ protein ClpX. Exp Cell Res 318:2335–2343. S0014-4827(12)00343-6 [pii]. https://doi.org/10.1016/j.yexcr.2012.07.012

    Article  CAS  PubMed  Google Scholar 

  52. Kereiche S et al (2016) The N-terminal domain plays a crucial role in the structure of a full-length human mitochondrial Lon protease. Sci Rep 6:33631. srep33631 [pii]. https://doi.org/10.1038/srep33631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kimber MS, Yu AY, Borg M, Leung E, Chan HS, Houry WA (2010) Structural and theoretical studies indicate that the cylindrical protease ClpP samples extended and compact conformations. Structure 18:798–808. S0969-2126(10)00189-9 [pii]. https://doi.org/10.1016/j.str.2010.04.008

    Article  CAS  PubMed  Google Scholar 

  54. Kirstein J et al (2009) The antibiotic ADEP reprogrammes ClpP, switching it from a regulated to an uncontrolled protease. EMBO Mol Med 1:37–49. https://doi.org/10.1002/emmm.200900002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kita K, Suzuki T, Ochi T (2012) Diphenylarsinic acid promotes degradation of glutaminase C by mitochondrial Lon protease. J Biol Chem 287:18163–18172. M112.362699 [pii]. https://doi.org/10.1074/jbc.M112.362699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kondadi AK et al (2014) Loss of the m-AAA protease subunit AFG(3)L(2) causes mitochondrial transport defects and tau hyperphosphorylation. EMBO J 33:1011–1026. embj.201387009 [pii]. https://doi.org/10.1002/embj.201387009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Konig T et al (2016) The m-AAA protease associated with Neurodegeneration Limits MCU Activity in mitochondria. Mol Cell 64:148–162. S1097-2765(16)30462-2 [pii]. https://doi.org/10.1016/j.molcel.2016.08.020

    Article  CAS  PubMed  Google Scholar 

  58. Koppen M, Metodiev MD, Casari G, Rugarli EI, Langer T (2007) Variable and tissue-specific subunit composition of mitochondrial m-AAA protease complexes linked to hereditary spastic paraplegia. Mol Cell Biol 27:758–767. MCB.01470-06 [pii]. https://doi.org/10.1128/MCB.01470-06

    Article  CAS  PubMed  Google Scholar 

  59. Kotiadis VN, Duchen MR, Osellame LD (2014) Mitochondrial quality control and communications with the nucleus are important in maintaining mitochondrial function and cell health. Biochim Biophys Acta 1840:1254–1265. S0304-4165(13)00481-9 [pii]. https://doi.org/10.1016/j.bbagen.2013.10.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Krysiak J, Stahl M, Vomacka J, Fetzer C, Lakemeyer M, Fux A, Sieber SA (2017) Quantitative map of beta-lactone-induced virulence regulation. J Proteome Res 16:1180–1192. https://doi.org/10.1021/acs.jproteome.6b00705

    Article  CAS  PubMed  Google Scholar 

  61. Kubota Y, Nomura K, Katoh Y, Yamashita R, Kaneko K, Furuyama K (2016) Novel mechanisms for Heme-dependent degradation of ALAS1 protein as a component of negative feedback regulation of Heme biosynthesis. J Biol Chem 291:20516–20529. M116.719161 [pii]. https://doi.org/10.1074/jbc.M116.719161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lee BG et al (2010) Structures of ClpP in complex with acyldepsipeptide antibiotics reveal its activation mechanism. Nat Struct Mol Biol 17:471–478. nsmb.1787 [pii]. https://doi.org/10.1038/nsmb.1787

    Article  CAS  PubMed  Google Scholar 

  63. Lee S, Augustin S, Tatsuta T, Gerdes F, Langer T, Tsai FT (2011) Electron cryomicroscopy structure of a membrane-anchored mitochondrial AAA protease. J Biol Chem 286:4404–4411. M110.158741 [pii]. https://doi.org/10.1074/jbc.M110.158741

    Article  CAS  PubMed  Google Scholar 

  64. Leung E et al (2011) Activators of cylindrical proteases as antimicrobials: identification and development of small molecule activators of ClpP protease. Chem Biol 18:1167–1178. S1074-5521(11)00306-1 [pii]. https://doi.org/10.1016/j.chembiol.2011.07.023

    Article  CAS  PubMed  Google Scholar 

  65. Levytskyy RM, Bohovych I, Khalimonchuk O (2017) Metalloproteases of the inner mitochondrial membrane. Biochemistry 56:4737–4746. https://doi.org/10.1021/acs.biochem.7b00663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Li DH et al (2010) Acyldepsipeptide antibiotics induce the formation of a structured axial channel in ClpP: a model for the ClpX/ClpA-bound state of ClpP. Chem Biol 17:959–969. S1074-5521(10)00286-3 [pii]. https://doi.org/10.1016/j.chembiol.2010.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Liu K, Ologbenla A, Houry WA (2014a) Dynamics of the ClpP serine protease: a model for self-compartmentalized proteases. Crit Rev Biochem Mol Biol 49:400–412. https://doi.org/10.3109/10409238.2014.925421

    Article  CAS  PubMed  Google Scholar 

  68. Liu Y et al (2014b) Inhibition of Lon blocks cell proliferation, enhances chemosensitivity by promoting apoptosis and decreases cellular bioenergetics of bladder cancer: potential roles of Lon as a prognostic marker and therapeutic target in baldder cancer. Oncotarget 5:11209–11224. 2026 [pii]. https://doi.org/10.18632/oncotarget.2026

    Article  PubMed  PubMed Central  Google Scholar 

  69. Lu B et al (2013) Phosphorylation of human TFAM in mitochondria impairs DNA binding and promotes degradation by the AAA+ Lon protease. Mol Cell 49:121–132. S1097-2765(12)00904-5 [pii]. https://doi.org/10.1016/j.molcel.2012.10.023

    Article  CAS  PubMed  Google Scholar 

  70. Martin A, Baker TA, Sauer RT (2008) Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding. Nat Struct Mol Biol 15:1147–1151. nsmb.1503 [pii]. https://doi.org/10.1038/nsmb.1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nie X, Li M, Lu B, Zhang Y, Lan L, Chen L, Lu J (2013) Down-regulating overexpressed human Lon in cervical cancer suppresses cell proliferation and bioenergetics. PLoS One 8:e81084. https://doi.org/10.1371/journal. pone.0081084 [doi] PONE-D-13-29172 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  72. Nishigaki R et al (2005) Proteomic identification of differentially-expressed genes in human gastric carcinomas. Proteomics 5:3205–3213. https://doi.org/10.1002/pmic.200401307

    Article  CAS  PubMed  Google Scholar 

  73. Nunnari J, Suomalainen A (2012) Mitochondria: in sickness and in health. Cell 148:1145–1159. S0092-8674(12)00235-8 [pii]. https://doi.org/10.1016/j.cell.2012.02.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Padrao AI et al (2012) Impaired protein quality control system underlies mitochondrial dysfunction in skeletal muscle of streptozotocin-induced diabetic rats. Biochim Biophys Acta 1822:1189–1197. S0925-4439(12)00096-8 [pii]. https://doi.org/10.1016/j.bbadis.2012.04.009

    Article  CAS  PubMed  Google Scholar 

  75. Pierson TM et al (2011) Whole-exome sequencing identifies homozygous AFG3L2 mutations in a spastic ataxia-neuropathy syndrome linked to mitochondrial m-AAA proteases. PLoS Genet 7:e1002325. https://doi.org/10.1371/journal.pgen.1002325. [doi] PGENETICS-D-11-00928 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Potting C, Tatsuta T, Konig T, Haag M, Wai T, Aaltonen MJ, Langer T (2013) TRIAP1/PRELI complexes prevent apoptosis by mediating intramitochondrial transport of phosphatidic acid. Cell Metab 18:287–295. S1550-4131(13)00297-0 [pii]. https://doi.org/10.1016/j.cmet.2013.07.008

    Article  CAS  PubMed  Google Scholar 

  77. Pryde KR, Taanman JW, Schapira AH (2016) A LON-ClpP proteolytic Axis degrades complex I to extinguish ROS production in depolarized mitochondria. Cell Rep 17:2522–2531. S2211-1247(16)31585-6 [pii]. https://doi.org/10.1016/j.celrep.2016.11.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Qin DJ et al (2015) Hsp90 is a novel target molecule of CDDO-me in inhibiting proliferation of ovarian Cancer cells. PLoS One 10:e0132337. https://doi.org/10.1371/journal. pone.0132337 [doi] PONE-D-15-20212 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  79. Quiros PM et al (2014) ATP-dependent Lon protease controls tumor bioenergetics by reprogramming mitochondrial activity. Cell Rep 8:542–556. S2211-1247(14)00486-0 [pii]. https://doi.org/10.1016/j.celrep.2014.06.018

    Article  CAS  PubMed  Google Scholar 

  80. Rainbolt TK, Lebeau J, Puchades C, Wiseman RL (2016) Reciprocal degradation of YME1L and OMA1 adapts mitochondrial proteolytic activity during stress. Cell Rep 14:2041–2049. S2211-1247(16)30095-X [pii]. https://doi.org/10.1016/j.celrep.2016.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sabharwal SS, Schumacker PT (2014) Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel? Nat Rev Cancer 14:709–721. :nrc3803 [pii]. https://doi.org/10.1038/nrc3803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sass P, Josten M, Famulla K, Schiffer G, Sahl HG, Hamoen L, Brotz-Oesterhelt H (2011) Antibiotic acyldepsipeptides activate ClpP peptidase to degrade the cell division protein FtsZ. Proc Natl Acad Sci U S A 108:17474–17479. 1110385108 [pii]. https://doi.org/10.1073/pnas.1110385108

    Article  PubMed  PubMed Central  Google Scholar 

  83. Seo JH et al (2016) The mitochondrial Unfoldase-peptidase complex ClpXP controls bioenergetics stress and metastasis. PLoS Biol 14:e1002507. https://doi.org/10.1371/journal.pbio.1002507. [doi] PBIOLOGY-D-16-00117 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shi H, Rampello AJ, Glynn SE (2016) Engineered AAA+ proteases reveal principles of proteolysis at the mitochondrial inner membrane. Nat Commun 7:13301. ncomms13301 [pii]. https://doi.org/10.1038/ncomms13301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Snider J, Thibault G, Houry WA (2008) The AAA+ superfamily of functionally diverse proteins. Genome Biol 9:216. gb-2008-9-4-216 [pii]. https://doi.org/10.1186/gb-2008-9-4-216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Speranza G et al (2012) Phase I study of the synthetic triterpenoid, 2-cyano-3, 12-dioxoolean-1, 9-dien-28-oic acid (CDDO), in advanced solid tumors. Cancer Chemother Pharmacol 69:431–438. https://doi.org/10.1007/s00280-011-1712-y

    Article  CAS  PubMed  Google Scholar 

  87. Stiburek L et al (2012) YME1L controls the accumulation of respiratory chain subunits and is required for apoptotic resistance, cristae morphogenesis, and cell proliferation. Mol Biol Cell 23:1010–1023. mbc.E11-08-0674 [pii]. https://doi.org/10.1091/mbc.E11-08-0674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Stinson BM, Nager AR, Glynn SE, Schmitz KR, Baker TA, Sauer RT (2013) Nucleotide binding and conformational switching in the hexameric ring of a AAA+ machine. Cell 153:628–639. S0092-8674(13)00351-6 [pii]. https://doi.org/10.1016/j.cell.2013.03.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Suppanz IE, Wurm CA, Wenzel D, Jakobs S (2009) The m-AAA protease processes cytochrome c peroxidase preferentially at the inner boundary membrane of mitochondria. Mol Biol Cell 20:572–580. E07-11-1112 [pii]. https://doi.org/10.1091/mbc.E07-11-1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Teng H, Wu B, Zhao K, Yang G, Wu L, Wang R (2013) Oxygen-sensitive mitochondrial accumulation of cystathionine beta-synthase mediated by Lon protease. Proc Natl Acad Sci U S A 110:12679–12684. 1308487110 [pii]. https://doi.org/10.1073/pnas.1308487110

    Article  PubMed  PubMed Central  Google Scholar 

  91. Thibault G, Houry WA (2012) Role of the N-terminal domain of the chaperone ClpX in the recognition and degradation of lambda phage protein O. J Phys Chem B 116:6717–6724. https://doi.org/10.1021/jp212024b

    Article  CAS  PubMed  Google Scholar 

  92. Tian Q, Li T, Hou W, Zheng J, Schrum LW, Bonkovsky HL (2011) Lon peptidase 1 (LONP1)-dependent breakdown of mitochondrial 5-aminolevulinic acid synthase protein by heme in human liver cells. J Biol Chem 286:26424–26430. M110.215772 [pii]. https://doi.org/10.1074/jbc.M110.215772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Townsend DM et al (2006) A glutathione S-transferase pi-activated prodrug causes kinase activation concurrent with S-glutathionylation of proteins. Mol Pharmacol 69:501–508. mol.105.018523 [pii]. https://doi.org/10.1124/mol.105.018523

    Article  CAS  PubMed  Google Scholar 

  94. Townsend DM, Findlay VL, Tew KD (2005) Glutathione S-transferases as regulators of kinase pathways and anticancer drug targets. Methods Enzymol 401:287–307. S0076-6879(05)01019-0 [pii]. https://doi.org/10.1016/S0076-6879(05)01019-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tsao T et al (2010) Role of peroxisome proliferator-activated receptor-gamma and its coactivator DRIP205 in cellular responses to CDDO (RTA-401) in acute myelogenous leukemia. Cancer Res 70:4949–4960. 0008-5472.CAN-09-1962 [pii]. https://doi.org/10.1158/0008-5472.CAN-09-1962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Verhagen AM, Kratina TK, Hawkins CJ, Silke J, Ekert PG, Vaux DL (2007) Identification of mammalian mitochondrial proteins that interact with IAPs via N-terminal IAP binding motifs. Cell Death Differ 14:348–357. 4402001 [pii]. https://doi.org/10.1038/sj.cdd.4402001

    Article  CAS  PubMed  Google Scholar 

  97. Wan D et al (2004) Large-scale cDNA transfection screening for genes related to cancer development and progression. Proc Natl Acad Sci U S A 101:15724–15729. 0404089101 [pii]. https://doi.org/10.1073/pnas.0404089101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wang HM et al (2010) Obtusilactone A and (-)-sesamin induce apoptosis in human lung cancer cells by inhibiting mitochondrial Lon protease and activating DNA damage checkpoints. Cancer Sci 101:2612–2620. https://doi.org/10.1111/j.1349-7006.2010.01701.x

    Article  CAS  PubMed  Google Scholar 

  99. Wang N, Maurizi MR, Emmert-Buck L, Gottesman MM (1994) Synthesis, processing, and localization of human Lon protease. J Biol Chem 269:29308–29313

    CAS  PubMed  Google Scholar 

  100. Wong KS et al (2018) Acyldepsipeptide analogs dysregulate human mitochondrial ClpP protease activity and cause apoptotic cell death. Cell Chem Biol 25:1–14. https://doi.org/10.1016/j.chembiol.2018.05.014

    Article  CAS  Google Scholar 

  101. Yien YY et al (2017) Mutation in human CLPX elevates levels of delta-aminolevulinate synthase and protoporphyrin IX to promote erythropoietic protoporphyria. Proc Natl Acad Sci U S A 114:E8045–E8052. 1700632114 [pii]. https://doi.org/10.1073/pnas.1700632114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yonchuk JG et al (2017) Characterization of the potent, selective Nrf2 activator, 3-(Pyridin-3-Ylsulfonyl)-5-(Trifluoromethyl)-2H-Chromen-2-one, in cellular and in vivo models of pulmonary oxidative stress. J Pharmacol Exp Ther 363:114–125. jpet.117.241794 [pii]. https://doi.org/10.1124/jpet.117.241794

    Article  CAS  PubMed  Google Scholar 

  103. Zeiler E, Korotkov VS, Lorenz-Baath K, Bottcher T, Sieber SA (2012) Development and characterization of improved beta-lactone-based anti-virulence drugs targeting ClpP. Bioorg Med Chem 20:583–591. S0968-0896(11)00596-7 [pii]. https://doi.org/10.1016/j.bmc.2011.07.047

    Article  CAS  PubMed  Google Scholar 

  104. Zhao Q, Wang J, Levichkin IV, Stasinopoulos S, Ryan MT, Hoogenraad NJ (2002) A mitochondrial specific stress response in mammalian cells. EMBO J 21:4411–4419

    Article  CAS  Google Scholar 

  105. Zhou M, Zhang RH, Wang M, Xu GB, Liao SG (2017) Prodrugs of triterpenoids and their derivatives. Eur J Med Chem 131:222–236. S0223-5234(17)30154-X [pii]. https://doi.org/10.1016/j.ejmech.2017.03.005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mr. Vaibhav Bhandari and Mr. Kamran Rizzolo of the Houry group for their helpful suggestions in the writing of this article. This was funded by Natural Sciences and Engineering Research Council of Canada grant (RGPIN 2014-05393) to WAH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walid A. Houry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wong, K.S., Houry, W.A. (2019). Recent Advances in Targeting Human Mitochondrial AAA+ Proteases to Develop Novel Cancer Therapeutics. In: Urbani, A., Babu, M. (eds) Mitochondria in Health and in Sickness. Advances in Experimental Medicine and Biology, vol 1158. Springer, Singapore. https://doi.org/10.1007/978-981-13-8367-0_8

Download citation

Publish with us

Policies and ethics