Skip to main content

Advances Towards Therapeutic Approaches for mtDNA Disease

  • Chapter
  • First Online:
Book cover Mitochondria in Health and in Sickness

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1158))

Abstract

Mitochondria maintain and express their own genome, referred to as mtDNA, which is required for proper mitochondrial function. While mutations in mtDNA can cause a heterogeneous array of disease phenotypes, there is currently no cure for this collection of diseases. Here, we will cover characteristics of the mitochondrial genome important for understanding the pathology associated with mtDNA mutations, and review recent approaches that are being developed to treat and prevent mtDNA disease. First, we will discuss mitochondrial replacement therapy (MRT), where mitochondria from a healthy donor replace maternal mitochondria harbouring mutant mtDNA. In addition to ethical concerns surrounding this procedure, MRT is only applicable in cases where the mother is known or suspected to carry mtDNA mutations. Thus, there remains a need for other strategies to treat patients with mtDNA disease. To this end, we will also discuss several alternative means to reduce the amount of mutant mtDNA present in cells. Such methods, referred to as heteroplasmy shifting, have proven successful in animal models. In particular, we will focus on the approach of targeting engineered endonucleases to specifically cleave mutant mtDNA. Together, these approaches offer hope to prevent the transmission of mtDNA disease and potentially reduce the impact of mtDNA mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aanen DK, Spelbrink JN, Beekman M (2014) What cost mitochondria? The maintenance of functional mitochondrial DNA within and across generations. Philos Trans R Soc Lond Ser B Biol Sci 369:20130438

    Article  CAS  Google Scholar 

  2. Ahola-Erkkila S, Carroll CJ, Peltola-Mjosund K, Tulkki V, Mattila I, Seppanen-Laakso T, Oresic M, Tyynismaa H, Suomalainen A (2010) Ketogenic diet slows down mitochondrial myopathy progression in mice. Hum Mol Genet 19:1974–1984

    Article  CAS  PubMed  Google Scholar 

  3. Amato P, Tachibana M, Sparman M, Mitalipov S (2014) Three-parent in vitro fertilization: gene replacement for the prevention of inherited mitochondrial diseases. Fertil Steril 101:31–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Anderson S, Bankier AT, Barrell BG, De Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    Article  CAS  PubMed  Google Scholar 

  5. Austin S, St-Pierre J (2012) PGC1alpha and mitochondrial metabolism – emerging concepts and relevance in ageing and neurodegenerative disorders. J Cell Sci 125:4963–4971

    Article  CAS  PubMed  Google Scholar 

  6. Bacman SR, Kauppila JHK, Pereira CV, Nissanka N, Miranda M, Pinto M, Williams SL, Larsson NG, Stewart JB, Moraes CT (2018) MitoTALEN reduces mutant mtDNA load and restores tRNA(Ala) levels in a mouse model of heteroplasmic mtDNA mutation. Nat Med 24:1696–1700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bacman SR, Williams SL, Hernandez D, Moraes CT (2007) Modulating mtDNA heteroplasmy by mitochondria-targeted restriction endonucleases in a ‘differential multiple cleavage-site’ model. Gene Ther 14:1309–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bacman SR, Williams SL, Moraes CT (2009) Intra- and inter-molecular recombination of mitochondrial DNA after in vivo induction of multiple double-strand breaks. Nucleic Acids Res 37:4218–4226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bacman SR, Williams SL, Pinto M, Moraes CT (2014) The use of mitochondria-targeted endonucleases to manipulate mtDNA. Methods Enzymol 547:373–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bacman SR, Williams SL, Pinto M, Peralta S, Moraes CT (2013) Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat Med 19:1111–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bar-Yaacov D, Blumberg A, Mishmar D (2012) Mitochondrial-nuclear co-evolution and its effects on OXPHOS activity and regulation. Biochim Biophys Acta 1819:1107–1111

    Article  CAS  PubMed  Google Scholar 

  12. Barrera G, Gentile F, Pizzimenti S, Canuto RA, Daga M, Arcaro A, Cetrangolo GP, Lepore A, Ferretti C, Dianzani C, Muzio G (2016) Mitochondrial dysfunction in cancer and neurodegenerative diseases: spotlight on fatty acid oxidation and lipoperoxidation products. Antioxidants (Basel) 5:7

    Article  CAS  Google Scholar 

  13. Bastin J, Aubey F, Rotig A, Munnich A, Djouadi F (2008) Activation of peroxisome proliferator-activated receptor pathway stimulates the mitochondrial respiratory chain and can correct deficiencies in patients’ cells lacking its components. J Clin Endocrinol Metab 93:1433–1441

    Article  CAS  PubMed  Google Scholar 

  14. Battersby BJ, Shoubridge EA (2001) Selection of a mtDNA sequence variant in hepatocytes of heteroplasmic mice is not due to differences in respiratory chain function or efficiency of replication. Hum Mol Genet 10:2469–2479

    Article  CAS  PubMed  Google Scholar 

  15. Bayona-Bafaluy MP, Blits B, Battersby BJ, Shoubridge EA, Moraes CT (2005) Rapid directional shift of mitochondrial DNA heteroplasmy in animal tissues by a mitochondrially targeted restriction endonuclease. Proc Natl Acad Sci USA 102:14392–14397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bibikova M, Beumer K, Trautman JK, Carroll D (2003) Enhancing gene targeting with designed zinc finger nucleases. Science 300:764

    Article  CAS  PubMed  Google Scholar 

  17. Blanc H, Adams CW, Wallace DC (1981) Different nucleotide changes in the large rRNA gene of the mitochondrial DNA confer chloramphenicol resistance on two human cell lines. Nucleic Acids Res 9:5785–5795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bolhuis PA, Bleeker-Wagemakers EM, Ponne NJ, Van Schooneveld MJ, Westerveld A, Van Den Bogert C, Tabak HF (1990) Rapid shift in genotype of human mitochondrial DNA in a family with Leber’s hereditary optic neuropathy. Biochem Biophys Res Commun 170:994–997

    Article  CAS  PubMed  Google Scholar 

  19. Bonawitz ND, Clayton DA, Shadel GS (2006) Initiation and beyond: multiple functions of the human mitochondrial transcription machinery. Mol Cell 24:813–825

    Article  CAS  PubMed  Google Scholar 

  20. Broskey NT, Greggio C, Boss A, Boutant M, Dwyer A, Schlueter L, Hans D, Gremion G, Kreis R, Boesch C, Canto C, Amati F (2014) Skeletal muscle mitochondria in the elderly: effects of physical fitness and exercise training. J Clin Endocrinol Metab 99:1852–1861

    Article  CAS  PubMed  Google Scholar 

  21. Bua E, Johnson J, Herbst A, Delong B, McKenzie D, Salamat S, Aiken JM (2006) Mitochondrial DNA-deletion mutations accumulate intracellularly to detrimental levels in aged human skeletal muscle fibers. Am J Hum Genet 79:469–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Burgstaller JP, Johnston IG, Poulton J (2015) Mitochondrial DNA disease and developmental implications for reproductive strategies. Mol Hum Reprod 21:11–22

    Article  CAS  PubMed  Google Scholar 

  23. Burr SP, Pezet M, Chinnery PF (2018) Mitochondrial DNA Heteroplasmy and purifying selection in the mammalian female germ line. Develop Growth Differ 60:21–32

    Article  Google Scholar 

  24. Busch KB, Kowald A, Spelbrink JN (2014) Quality matters: how does mitochondrial network dynamics and quality control impact on mtDNA integrity? Philos Trans R Soc Lond Ser B Biol Sci 369:20130442

    Article  CAS  Google Scholar 

  25. Calvo S, Jain M, Xie X, Sheth SA, Chang B, Goldberger OA, Spinazzola A, Zeviani M, Carr SA, Mootha VK (2006) Systematic identification of human mitochondrial disease genes through integrative genomics. Nat Genet 38:576–582

    Article  CAS  PubMed  Google Scholar 

  26. Cann RL, Stoneking M, Wilson AC (1987) Mitochondrial DNA and human evolution. Nature 325:31–36

    Article  CAS  PubMed  Google Scholar 

  27. Canugovi C, Shamanna RA, Croteau DL, Bohr VA (2014) Base excision DNA repair levels in mitochondrial lysates of Alzheimer’s disease. Neurobiol Aging 35:1293–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Carelli V, Baracca A, Barogi S, Pallotti F, Valentino ML, Montagna P, Zeviani M, Pini A, Lenaz G, Baruzzi A, Solaini G (2002) Biochemical-clinical correlation in patients with different loads of the mitochondrial DNA T8993G mutation. Arch Neurol 59:264–270

    Article  PubMed  Google Scholar 

  29. Casano RA, Bykhovskaya Y, Johnson DF, Hamon M, Torricelli F, Bigozzi M, Fischel-Ghodsian N (1998) Hearing loss due to the mitochondrial A1555G mutation in Italian families. Am J Med Genet 79:388–391

    Article  CAS  PubMed  Google Scholar 

  30. Catarino CB, Ahting U, Gusic M, Iuso A, Repp B, Peters K, Biskup S, Von Livonius B, Prokisch H, Klopstock T (2017) Characterization of a Leber’s hereditary optic neuropathy (LHON) family harboring two primary LHON mutations m.11778G>A and m.14484T>C of the mitochondrial DNA. Mitochondrion 36:15–20

    Article  CAS  PubMed  Google Scholar 

  31. Chan SS, Copeland WC (2009) DNA polymerase gamma and mitochondrial disease: understanding the consequence of POLG mutations. Biochim Biophys Acta 1787:312–319

    Article  CAS  PubMed  Google Scholar 

  32. Chang DD, Clayton DA (1984) Precise identification of individual promoters for transcription of each strand of human mitochondrial DNA. Cell 36:635–643

    Article  CAS  PubMed  Google Scholar 

  33. Chang DD, Clayton DA (1989) Mouse RNAase MRP RNA is encoded by a nuclear gene and contains a decamer sequence complementary to a conserved region of mitochondrial RNA substrate. Cell 56:131–139

    Article  CAS  PubMed  Google Scholar 

  34. Chang JC, Hoel F, Liu KH, Wei YH, Cheng FC, Kuo SJ, Tronstad KJ, Liu CS (2017) Peptide-mediated delivery of donor mitochondria improves mitochondrial function and cell viability in human cybrid cells with the MELAS A3243G mutation. Sci Rep 7:10710

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Chang JC, Liu KH, Chuang CS, Su HL, Wei YH, Kuo SJ, Liu CS (2013a) Treatment of human cells derived from MERRF syndrome by peptide-mediated mitochondrial delivery. Cytotherapy 15:1580–1596

    Article  CAS  PubMed  Google Scholar 

  36. Chang JC, Liu KH, Li YC, Kou SJ, Wei YH, Chuang CS, Hsieh M, Liu CS (2013b) Functional recovery of human cells harbouring the mitochondrial DNA mutation MERRF A8344G via peptide-mediated mitochondrial delivery. Neurosignals 21:160–173

    Article  CAS  PubMed  Google Scholar 

  37. Cheng Y, Liu P, Zheng Q, Gao G, Yuan J, Wang P, Huang J, Xie L, Lu X, Tong T, Chen J, Lu Z, Guan J, Wang G (2018) Mitochondrial trafficking and processing of telomerase RNA TERC. Cell Rep 24:2589–2595

    Article  CAS  PubMed  Google Scholar 

  38. Chinnery PF (1993) Mitochondrial disorders overview. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A (eds) GeneReviews((R)). University of Washington, Seattle. University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved

    Google Scholar 

  39. Chinnery PF (2015) Mitochondrial disease in adults: what’s old and what’s new? EMBO Mol Med 7:1503–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cho YM, Kim JH, Kim M, Park SJ, Koh SH, Ahn HS, Kang GH, Lee JB, Park KS, Lee HK (2012) Mesenchymal stem cells transfer mitochondria to the cells with virtually no mitochondrial function but not with pathogenic mtDNA mutations. PLoS One 7:e32778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chou HF, Liang WC, Zhang Q, Goto Y, Jong YJ (2008) Clinical and genetic features in a MELAS child with a 3271T>C mutation. Pediatr Neurol 38:143–146

    Article  PubMed  Google Scholar 

  42. Ciesielski GL, Bermek O, Rosado-Ruiz FA, Hovde SL, Neitzke OJ, Griffith JD, Kaguni LS (2015) Mitochondrial single-stranded DNA-binding proteins stimulate the activity of DNA polymerase gamma by organization of the Template DNA. J Biol Chem 290:28697–28707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cock HR, Cooper JM, Schapira AH (1999) Functional consequences of the 3460-bp mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. J Neurol Sci 165:10–17

    Article  CAS  PubMed  Google Scholar 

  44. Copeland WC (2012) Defects in mitochondrial DNA replication and human disease. Crit Rev Biochem Mol Biol 47:64–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cortopassi GA, Shibata D, Soong NW, Arnheim N (1992) A pattern of accumulation of a somatic deletion of mitochondrial DNA in aging human tissues. Proc Natl Acad Sci USA 89:7370–7374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Craigen WJ (2012) Mitochondrial DNA mutations: an overview of clinical and molecular aspects. Methods Mol Biol 837:3–15

    Article  CAS  PubMed  Google Scholar 

  47. Craven L, Tuppen HA, Greggains GD, Harbottle SJ, Murphy JL, Cree LM, Murdoch AP, Chinnery PF, Taylor RW, Lightowlers RN, Herbert M, Turnbull DM (2010) Pronuclear transfer in human embryos to prevent transmission of mitochondrial DNA disease. Nature 465:82–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dai Y, Zheng K, Clark J, Swerdlow RH, Pulst SM, Sutton JP, Shinobu LA, Simon DK (2014) Rapamycin drives selection against a pathogenic heteroplasmic mitochondrial DNA mutation. Hum Mol Genet 23:637–647

    Article  CAS  PubMed  Google Scholar 

  49. Davidson MM, Walker WF, Hernandez-Rosa E, Nesti C (2009) Evidence for nuclear modifier gene in mitochondrial cardiomyopathy. J Mol Cell Cardiol 46:936–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. De Moura MB, Dos Santos LS, Van Houten B (2010) Mitochondrial dysfunction in neurodegenerative diseases and cancer. Environ Mol Mutagen 51:391–405

    CAS  PubMed  Google Scholar 

  51. De Praeter C, Vanlander A, Vanhaesebrouck P, Smet J, Seneca S, De Sutter P, Van Coster R (2015) Extremely high mutation load of the mitochondrial 8993 T>G mutation in a newborn: implications for prognosis and family planning decisions. Eur J Pediatr 174:267–270

    Article  CAS  PubMed  Google Scholar 

  52. Dillon LM, Williams SL, Hida A, Peacock JD, Prolla TA, Lincoln J, Moraes CT (2012) Increased mitochondrial biogenesis in muscle improves aging phenotypes in the mtDNA mutator mouse. Hum Mol Genet 21:2288–2297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dimauro S, Hirano M (1993) Mitochondrial DNA deletion syndromes. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A (eds) GeneReviews((R)). University of Washington, Seattle, Seattle. University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved

    Google Scholar 

  54. Dimauro S, Schon EA (2001) Mitochondrial DNA mutations in human disease. Am J Med Genet 106:18–26

    Article  CAS  PubMed  Google Scholar 

  55. Dorner M, Altmann M, Paabo S, Morl M (2001) Evidence for import of a lysyl-tRNA into marsupial mitochondria. Mol Biol Cell 12:2688–2698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dovydenko I, Heckel AM, Tonin Y, Gowher A, Venyaminova A, Tarassov I, Entelis N (2015) Mitochondrial targeting of recombinant RNA. Methods Mol Biol 1265:209–225

    Article  CAS  PubMed  Google Scholar 

  57. Elliott HR, Samuels DC, Eden JA, Relton CL, Chinnery PF (2008) Pathogenic mitochondrial DNA mutations are common in the general population. Am J Hum Genet 83:254–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Entelis NS, Kolesnikova OA, Dogan S, Martin RP, Tarassov IA (2001) 5 S rRNA and tRNA import into human mitochondria. Comparison of in vitro requirements. J Biol Chem 276:45642–45653

    Article  CAS  PubMed  Google Scholar 

  59. Fan W, Waymire KG, Narula N, Li P, Rocher C, Coskun PE, Vannan MA, Narula J, Macgregor GR, Wallace DC (2008) A mouse model of mitochondrial disease reveals germline selection against severe mtDNA mutations. Science 319:958–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Farruggia P, Di Marco F, Dufour C (2018) Pearson syndrome. Expert Rev Hematol 11:239–246

    Article  CAS  PubMed  Google Scholar 

  61. Ferrari M, Jain IH, Goldberger O, Rezoagli E, Thoonen R, Cheng KH, Sosnovik DE, Scherrer-Crosbie M, Mootha VK, Zapol WM (2017) Hypoxia treatment reverses neurodegenerative disease in a mouse model of Leigh syndrome. Proc Natl Acad Sci USA 114:E4241–e4250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Floros VI, Pyle A, Dietmann S, Wei W, Tang WCW, Irie N, Payne B, Capalbo A, Noli L, Coxhead J, Hudson G, Crosier M, Strahl H, Khalaf Y, Saitou M, Ilic D, Surani MA, Chinnery PF (2018) Segregation of mitochondrial DNA heteroplasmy through a developmental genetic bottleneck in human embryos. Nat Cell Biol 20:144–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gaj T, Gersbach CA, Barbas CF, 3RD (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gammage PA, Gaude E, Van Haute L, Rebelo-Guiomar P, Jackson CB, Rorbach J, Pekalski ML, Robinson AJ, Charpentier M, Concordet JP, Frezza C, Minczuk M (2016) Near-complete elimination of mutant mtDNA by iterative or dynamic dose-controlled treatment with mtZFNs. Nucleic Acids Res 44:7804–7816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gammage PA, Moraes CT Minczuk M (2017) Mitochondrial genome engineering: the revolution may not be CRISPR-Ized. Trends Genet

    Google Scholar 

  66. Gammage PA, Rorbach J, Vincent AI, Rebar EJ, Minczuk M (2014) Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations. EMBO Mol Med 6:458–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gammage PA, Viscomi C, Simard ML, Costa ASH, Gaude E, Powell CA, Van Haute L, McCann BJ, Rebelo-Guiomar P, Cerutti R, Zhang L, Rebar EJ, Zeviani M, Frezza C, Stewart JB, Minczuk M (2018) Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo. Nat Med 24:1691–1695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Garcia S, Nissanka N, Mareco EA, Rossi S, Peralta S, Diaz F, Rotundo RL, Carvalho RF Moraes CT (2018) Overexpression of PGC-1alpha in aging muscle enhances a subset of young-like molecular patterns. Aging Cell 17

    Article  PubMed Central  CAS  Google Scholar 

  69. Giles RE, Blanc H, Cann HM, Wallace DC (1980) Maternal inheritance of human mitochondrial DNA. Proc Natl Acad Sci USA 77:6715–6719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gilkerson RW, De Vries RL, Lebot P, Wikstrom JD, Torgyekes E, Shirihai OS, Przedborski S, Schon EA (2012) Mitochondrial autophagy in cells with mtDNA mutations results from synergistic loss of transmembrane potential and mTORC1 inhibition. Hum Mol Genet 21:978–990

    Article  CAS  PubMed  Google Scholar 

  71. Gorman GS, Chinnery PF, Dimauro S, Hirano M, Koga Y, McFarland R, Suomalainen A, Thorburn DR, Zeviani M, Turnbull DM (2016) Mitochondrial diseases. Nat Rev Dis Primers 2:16080

    Article  PubMed  Google Scholar 

  72. Gorman GS, Schaefer AM, NG Y, Gomez N, Blakely EL, Alston CL, Feeney C, Horvath R, Yu-Wai-Man P, Chinnery PF, Taylor RW, Turnbull DM, McFarland R (2015) Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann Neurol 77:753–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Greaves LC, Reeve AK, Taylor RW, Turnbull DM (2012) Mitochondrial DNA and disease. J Pathol 226:274–286

    Article  CAS  PubMed  Google Scholar 

  74. Gredilla R, Stevnsner T (2012) Mitochondrial base excision repair assays. Methods Mol Biol 920:289–304

    Article  CAS  PubMed  Google Scholar 

  75. Guo W, Yang D, Xu H, Zhang Y, Huang J, Yang Z, Chen X, Huang Z (2013) Mutations in the D-loop region and increased copy number of mitochondrial DNA in human laryngeal squamous cell carcinoma. Mol Biol Rep 40:13–20

    Article  CAS  PubMed  Google Scholar 

  76. Guy J, Qi X, Pallotti F, Schon EA, Manfredi G, Carelli V, Martinuzzi A, Hauswirth WW, Lewin AS (2002) Rescue of a mitochondrial deficiency causing Leber hereditary optic neuropathy. Ann Neurol 52:534–542

    Article  CAS  PubMed  Google Scholar 

  77. Hashimoto M, Bacman SR, Peralta S, Falk MJ, Chomyn A, Chan DC, Williams SL, Moraes CT (2015) MitoTALEN: a general approach to reduce mutant mtDNA loads and restore oxidative phosphorylation function in mitochondrial diseases. Mol Ther 23:1592–1599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hirano M, Emmanuele V, Quinzii CM (2018) Emerging therapies for mitochondrial diseases. Essays Biochem 62:467–481

    Article  PubMed  PubMed Central  Google Scholar 

  79. Holt IJ, Harding AE, Morgan-Hughes JA (1988) Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 331:717–719

    Article  CAS  PubMed  Google Scholar 

  80. Hudson G, Carelli V, Spruijt L, Gerards M, Mowbray C, Achilli A, Pyle A, Elson J, Howell N, La Morgia C, Valentino ML, Huoponen K, Savontaus ML, Nikoskelainen E, Sadun AA, Salomao SR, Belfort R Jr, Griffiths P, Yu-Wai-Man P, De Coo RF, Horvath R, Zeviani M, Smeets HJ, Torroni A, Chinnery PF (2007) Clinical expression of Leber hereditary optic neuropathy is affected by the mitochondrial DNA-haplogroup background. Am J Hum Genet 81:228–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hyslop LA, Blakeley P, Craven L, Richardson J, Fogarty NM, Fragouli E, Lamb M, Wamaitha SE, Prathalingam N, Zhang Q, O’Keefe H, Takeda Y, Arizzi L, Alfarawati S, Tuppen HA, Irving L, Kalleas D, Choudhary M, Wells D, Murdoch AP, Turnbull DM, Niakan KK, Herbert M (2016) Towards clinical application of pronuclear transfer to prevent mitochondrial DNA disease. Nature 534:383–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Iborra FJ, Kimura H, Cook PR (2004) The functional organization of mitochondrial genomes in human cells. BMC Biol 2:9

    Article  PubMed  PubMed Central  Google Scholar 

  83. Inoue K, Nakada K, Ogura A, Isobe K, Goto Y, Nonaka I, Hayashi JI (2000) Generation of mice with mitochondrial dysfunction by introducing mouse mtDNA carrying a deletion into zygotes. Nat Genet 26:176–181

    Article  CAS  PubMed  Google Scholar 

  84. Isaac RS, McShane E, Churchman LS (2018) The multiple levels of Mitonuclear Coregulation. Annu Rev Genet 52:511–533

    Article  CAS  PubMed  Google Scholar 

  85. Ishii T, Hibino Y (2018) Mitochondrial manipulation in fertility clinics: regulation and responsibility. Reprod Biomed Soc Online 5:93–109

    Article  PubMed  PubMed Central  Google Scholar 

  86. Jain IH, Zazzeron L, Goli R, Alexa K, Schatzman-Bone S, Dhillon H, Goldberger O, Peng J, Shalem O, Sanjana NE, Zhang F, Goessling W, Zapol WM, Mootha VK (2016) Hypoxia as a therapy for mitochondrial disease. Science 352:54–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jang Y, Kwon I, Song W, Cosio-Lima LM, Taylor S, Lee Y (2018) Modulation of mitochondrial phenotypes by endurance exercise contributes to neuroprotection against a MPTP-induced animal model of PD. Life Sci 209:455–465

    Article  CAS  PubMed  Google Scholar 

  88. Jankele R, Svoboda P (2014) TAL effectors: tools for DNA targeting. Brief Funct Genomics 13:409–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Jenuth JP, Peterson AC, Shoubridge EA (1997) Tissue-specific selection for different mtDNA genotypes in heteroplasmic mice. Nat Genet 16:93–95

    Article  CAS  PubMed  Google Scholar 

  90. Jiang D, Gao F, Zhang Y, Wong DS, Li Q, Tse HF, Xu G, Yu Z, Lian Q (2016) Mitochondrial transfer of mesenchymal stem cells effectively protects corneal epithelial cells from mitochondrial damage. Cell Death Dis 7:e2467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jo A, Ham S, Lee GH, Lee YI, Kim S, Lee YS, Shin JH, Lee Y (2015) Efficient mitochondrial genome editing by CRISPR/Cas9. Biomed Res Int 2015:305716

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Johnson SC, Yanos ME, Kayser EB, Quintana A, Sangesland M, Castanza A, Uhde L, Hui J, Wall VZ, Gagnidze A, Oh K, Wasko BM, Ramos FJ, Palmiter RD, Rabinovitch PS, Morgan PG, Sedensky MM, Kaeberlein M (2013) mTOR inhibition alleviates mitochondrial disease in a mouse model of Leigh syndrome. Science 342:1524–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jun AS, Trounce IA, Brown MD, Shoffner JM, Wallace DC (1996) Use of transmitochondrial cybrids to assign a complex I defect to the mitochondrial DNA-encoded NADH dehydrogenase subunit 6 gene mutation at nucleotide pair 14459 that causes Leber hereditary optic neuropathy and dystonia. Mol Cell Biol 16:771–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kabekkodu SP, Bhat S, Mascarenhas R, Mallya S, Bhat M, Pandey D, Kushtagi P, Thangaraj K, Gopinath PM, Satyamoorthy K (2014) Mitochondrial DNA variation analysis in cervical cancer. Mitochondrion 16:73–82

    Article  CAS  PubMed  Google Scholar 

  95. Kaguni LS (2004) DNA polymerase gamma, the mitochondrial replicase. Annu Rev Biochem 73:293–320

    Article  CAS  PubMed  Google Scholar 

  96. Kaneda Y, Nakajima T, Nishikawa T, Yamamoto S, Ikegami H, Suzuki N, Nakamura H, Morishita R, Kotani H (2002) Hemagglutinating virus of Japan (HVJ) envelope vector as a versatile gene delivery system. Mol Ther 6:219–226

    Article  CAS  PubMed  Google Scholar 

  97. Kang E, Wu J, Gutierrez NM, Koski A, Tippner-Hedges R, Agaronyan K, Platero-Luengo A, Martinez-Redondo P, Ma H, Lee Y, Hayama T, Van Dyken C, Wang X, Luo S, Ahmed R, Li Y, Ji D, Kayali R, Cinnioglu C, Olson S, Jensen J, Battaglia D, Lee D, WU D, Huang T, Wolf DP, Temiakov D, Belmonte JC, Amato P, Mitalipov S (2016) Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations. Nature 540:270–275

    Article  CAS  PubMed  Google Scholar 

  98. Kang HC, Lee YM, Kim HD, Lee JS, Slama A (2007) Safe and effective use of the ketogenic diet in children with epilepsy and mitochondrial respiratory chain complex defects. Epilepsia 48:82–88

    CAS  PubMed  Google Scholar 

  99. Kara B, Arikan M, Maras H, Abaci N, Cakiris A, Ustek D (2012) Whole mitochondrial genome analysis of a family with NARP/MILS caused by m.8993T>C mutation in the MT-ATP6 gene. Mol Genet Metab 107:389–393

    Article  CAS  PubMed  Google Scholar 

  100. Kauppila JHK, Baines HL, Bratic A, Simard ML, Freyer C, Mourier A, Stamp C, Filograna R, Larsson NG, Greaves LC, Stewart JB (2016) A phenotype-driven approach to generate mouse models with pathogenic mtDNA mutations causing mitochondrial disease. Cell Rep 16:2980–2990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kim I, Rodriguez-Enriquez S, Lemasters JJ (2007) Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 462:245–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. King MP, Attardi G (1989) Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science 246:500–503

    Article  CAS  PubMed  Google Scholar 

  103. Kolesnikova OA, Entelis NS, Mireau H, Fox TD, Martin RP, Tarassov IA (2000) Suppression of mutations in mitochondrial DNA by tRNAs imported from the cytoplasm. Science 289:1931–1933

    Article  CAS  PubMed  Google Scholar 

  104. Komen JC, Thorburn DR (2014) Turn up the power – pharmacological activation of mitochondrial biogenesis in mouse models. Br J Pharmacol 171:1818–1836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Koopman WJ, Beyrath J, Fung CW, Koene S, Rodenburg RJ, Willems PH, Smeitink JA (2016) Mitochondrial disorders in children: toward development of small-molecule treatment strategies. EMBO Mol Med 8:311–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kowald A, Kirkwood TB (2014) Transcription could be the key to the selection advantage of mitochondrial deletion mutants in aging. Proc Natl Acad Sci USA 111:2972–2977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Krishnan KJ, Reeve AK, Samuels DC, Chinnery PF, Blackwood JK, Taylor RW, Wanrooij S, Spelbrink JN, Lightowlers RN, Turnbull DM (2008) What causes mitochondrial DNA deletions in human cells? Nat Genet 40:275–279

    Article  CAS  PubMed  Google Scholar 

  108. Kubli DA, Gustafsson AB (2012) Mitochondria and mitophagy: the yin and yang of cell death control. Circ Res 111:1208–1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE, Hofer T, Seo AY, Sullivan R, Jobling WA, Morrow JD, Van Remmen H, Sedivy JM, Yamasoba T, Tanokura M, Weindruch R, Leeuwenburgh C, Prolla TA (2005) Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309:481–484

    Article  CAS  PubMed  Google Scholar 

  110. Kukat C, Wurm CA, Spahr H, Falkenberg M, Larsson NG, Jakobs S (2011) Super-resolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtDNA. Proc Natl Acad Sci USA 108:13534–13539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kyriakouli DS, Boesch P, Taylor RW, Lightowlers RN (2008) Progress and prospects: gene therapy for mitochondrial DNA disease. Gene Ther 15:1017–1023

    Article  CAS  PubMed  Google Scholar 

  112. Leandro GS, Sykora P, Bohr VA (2015) The impact of base excision DNA repair in age-related neurodegenerative diseases. Mutat Res 776:31–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lee SR, Han J (2017) Mitochondrial nucleoid: shield and switch of the mitochondrial genome. Oxidative Med Cell Longev 2017:8060949

    Google Scholar 

  114. Levy SE, Waymire KG, Kim YL, MacGregor GR, Wallace DC (1999) Transfer of chloramphenicol-resistant mitochondrial DNA into the chimeric mouse. Transgenic Res 8:137–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lewis SC, Uchiyama LF, Nunnari J (2016) ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells. Science 353:aaf5549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Li M, Rothwell R, Vermaat M, Wachsmuth M, Schroder R, Laros JF, Van Oven M, De Bakker PI, Bovenberg JA, Van Duijn CM, Van Ommen GJ, Slagboom PE, Swertz MA, Wijmenga C, Kayser M, Boomsma DI, Zollner S, De Knijff P, Stoneking M (2016) Transmission of human mtDNA heteroplasmy in the genome of the Netherlands families: support for a variable-size bottleneck. Genome Res 26:417–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Li X, Michaeloudes C, Zhang Y, Wiegman CH, Adcock IM, Lian Q, Mak JCW, Bhavsar PK, Chung KF (2018) Mesenchymal stem cells alleviate oxidative stress-induced mitochondrial dysfunction in the airways. J Allergy Clin Immunol 141:1634–1645.e5

    Article  CAS  PubMed  Google Scholar 

  118. Liu CS, Chang JC, Kuo SJ, Liu KH, Lin TT, Cheng WL, Chuang SF (2014) Delivering healthy mitochondria for the therapy of mitochondrial diseases and beyond. Int J Biochem Cell Biol 53:141–146

    Article  CAS  PubMed  Google Scholar 

  119. Longley MJ, Clark S, Yu Wai Man C, Hudson G, Durham SE, Taylor RW, Nightingale S, Turnbull DM, Copeland WC, Chinnery PF (2006) Mutant POLG2 disrupts DNA polymerase gamma subunits and causes progressive external ophthalmoplegia. Am J Hum Genet 78:1026–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lott MT, Leipzig JN, Derbeneva O, Xie HM, Chalkia D, Sarmady M, Procaccio V, Wallace DC (2013) mtDNA variation and analysis using Mitomap and Mitomaster. Curr Protoc Bioinformatics 44:1.23.1–1.2326

    Google Scholar 

  121. Loutre R, Heckel AM, Smirnova A, Entelis N, Tarassov I (2018) Can mitochondrial DNA be CRISPRized: pro and contra. IUBMB Life 70:1233–1239

    Article  CAS  PubMed  Google Scholar 

  122. Low RL, Orton S, Friedman DB (2003) A truncated form of DNA topoisomerase IIbeta associates with the mtDNA genome in mammalian mitochondria. Eur J Biochem 270:4173–4186

    Article  CAS  PubMed  Google Scholar 

  123. Ma YY, Wu TF, Liu YP, Wang Q, Li XY, Song JQ, Shi XY, Zhang WN, Zhao M, Hu LY, Yang YL, Zou LP (2013) Heterogeneity of six children and their mothers with mitochondrial DNA 3243 A>G mutation. Mitochondrial DNA 24:297–302

    Article  CAS  PubMed  Google Scholar 

  124. Magalhaes PJ, Andreu AL, Schon EA (1998) Evidence for the presence of 5S rRNA in mammalian mitochondria. Mol Biol Cell 9:2375–2382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Mak SC, Chi CS, Liu CY, Pang CY, Wei YH (1996) Leigh syndrome associated with mitochondrial DNA 8993 T–>G mutation and ragged-red fibers. Pediatr Neurol 15:72–75

    Article  CAS  PubMed  Google Scholar 

  126. Mancuso M, Orsucci D, Angelini C, Bertini E, Carelli V, Comi GP, Donati A, Minetti C, Moggio M, Mongini T, Servidei S, Tonin P, Toscano A, Uziel G, Bruno C, Ienco EC, Filosto M, Lamperti C, Catteruccia M, Moroni I, Musumeci O, Pegoraro E, Ronchi D, Santorelli FM, Sauchelli D, Scarpelli M, Sciacco M, Valentino ML, Vercelli L, Zeviani M, Siciliano G (2014) The m.3243A>G mitochondrial DNA mutation and related phenotypes. A matter of gender? J Neurol 261:504–510

    Article  CAS  PubMed  Google Scholar 

  127. Mancuso M, Orsucci D, Angelini C, Bertini E, Carelli V, Comi GP, Minetti C, Moggio M, Mongini T, Servidei S, Tonin P, Toscano A, Uziel G, Bruno C, Caldarazzo Ienco E, Filosto M, Lamperti C, Martinelli D, Moroni I, Musumeci O, Pegoraro E, Ronchi D, Santorelli FM, Sauchelli D, Scarpelli M, Sciacco M, Spinazzi M, Valentino ML, Vercelli L, Zeviani M, Siciliano G (2013) Phenotypic heterogeneity of the 8344A>G mtDNA “MERRF” mutation. Neurology 80:2049–2054

    Article  CAS  PubMed  Google Scholar 

  128. Manfredi G, Fu J, Ojaimi J, Sadlock JE, Kwong JQ, Guy J, Schon EA (2002) Rescue of a deficiency in ATP synthesis by transfer of MTATP6, a mitochondrial DNA-encoded gene, to the nucleus. Nat Genet 30:394–399

    Article  CAS  PubMed  Google Scholar 

  129. Manfredi G, Gupta N, Vazquez-Memije ME, Sadlock JE, Spinazzola A, De Vivo DC, Schon EA (1999) Oligomycin induces a decrease in the cellular content of a pathogenic mutation in the human mitochondrial ATPase 6 gene. J Biol Chem 274:9386–9391

    Article  CAS  PubMed  Google Scholar 

  130. Manipalviratn S, Decherney A, Segars J (2009) Imprinting disorders and assisted reproductive technology. Fertil Steril 91:305–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Marchington DR, Barlow D, Poulton J (1999) Transmitochondrial mice carrying resistance to chloramphenicol on mitochondrial DNA: developing the first mouse model of mitochondrial DNA disease. Nat Med 5:957–960

    Article  CAS  PubMed  Google Scholar 

  132. Marian AJ (2002) Modifier genes for hypertrophic cardiomyopathy. Curr Opin Cardiol 17:242–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. McCann BJ, Cox A, Gammage PA, Stewart JB, Zernicka-Goetz M, Minczuk M (2018) Delivery of mtZFNs into early mouse embryos. Methods Mol Biol 1867:215–228

    Article  PubMed  Google Scholar 

  134. McFarland R, Taylor RW, Turnbull DM (2002) The neurology of mitochondrial DNA disease. Lancet Neurol 1:343–351

    Article  PubMed  Google Scholar 

  135. McGrath J, Solter D (1983) Nuclear transplantation in the mouse embryo by microsurgery and cell fusion. Science 220:1300–1302

    Article  CAS  PubMed  Google Scholar 

  136. Milenkovic D, Matic S, Kuhl I, Ruzzenente B, Freyer C, Jemt E, Park CB, Falkenberg M, Larsson NG (2013) TWINKLE is an essential mitochondrial helicase required for synthesis of nascent D-loop strands and complete mtDNA replication. Hum Mol Genet 22:1983–1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Minczuk M, Papworth MA, Kolasinska P, Murphy MP, Klug A (2006) Sequence-specific modification of mitochondrial DNA using a chimeric zinc finger methylase. Proc Natl Acad Sci USA 103:19689–19694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Minczuk M, Papworth MA, Miller JC, Murphy MP, Klug A (2008) Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA. Nucleic Acids Res 36:3926–3938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Mootha VK, Chinnery PF (2018) Oxygen in mitochondrial disease: can there be too much of a good thing? J Inherit Metab Dis 41:761–763

    Article  CAS  PubMed  Google Scholar 

  140. Moretton A, Morel F, Macao B, Lachaume P, Ishak L, Lefebvre M, Garreau-Balandier I, Vernet P, Falkenberg M, Farge G (2017) Selective mitochondrial DNA degradation following double-strand breaks. PLoS One 12:e0176795

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Nakada K, Sato A, Sone H, Kasahara A, Ikeda K, Kagawa Y, Yonekawa H, Hayashi J (2004) Accumulation of pathogenic DeltamtDNA induced deafness but not diabetic phenotypes in mito-mice. Biochem Biophys Res Commun 323:175–184

    Article  CAS  PubMed  Google Scholar 

  142. Nicholls TJ, Minczuk M (2014) In D-loop: 40 years of mitochondrial 7S DNA. Exp Gerontol 56:175–181

    Article  CAS  PubMed  Google Scholar 

  143. Nicolson GL (2007) Metabolic syndrome and mitochondrial function: molecular replacement and antioxidant supplements to prevent membrane peroxidation and restore mitochondrial function. J Cell Biochem 100:1352–1369

    Article  CAS  PubMed  Google Scholar 

  144. Nightingale H, Pfeffer G, Bargiela D, Horvath R, Chinnery PF (2016) Emerging therapies for mitochondrial disorders. Brain 139:1633–1648

    Article  PubMed  PubMed Central  Google Scholar 

  145. Nunnari J, Suomalainen A (2012) Mitochondria: in sickness and in health. Cell 148:1145–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Pabo CO, Peisach E, Grant RA (2001) Design and selection of novel Cys2His2 zinc finger proteins. Annu Rev Biochem 70:313–340

    Article  CAS  PubMed  Google Scholar 

  147. Park CB, Larsson NG (2011) Mitochondrial DNA mutations in disease and aging. J Cell Biol 193:809–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Patananan AN, Wu TH, Chiou PY, Teitell MA (2016) Modifying the mitochondrial genome. Cell Metab 23:785–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Peeva V, Blei D, Trombly G, Corsi S, Szukszto MJ, Rebelo-Guiomar P, Gammage PA, Kudin AP, Becker C, Altmuller J, Minczuk M, Zsurka G, Kunz WS (2018) Linear mitochondrial DNA is rapidly degraded by components of the replication machinery. Nat Commun 9:1727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Pereira CV, Bacman SR, Arguello T, Zekonyte U, Williams SL, Edgell DR Moraes CT (2018) mitoTev-TALE: a monomeric DNA editing enzyme to reduce mutant mitochondrial DNA levels. EMBO Mol Med 10

    Google Scholar 

  151. Pereira CV, Moraes CT (2017) Current strategies towards therapeutic manipulation of mtDNA heteroplasmy. Front Biosci (Landmark Ed) 22:991–1010

    Article  CAS  Google Scholar 

  152. Phillips AF, Millet AR, Tigano M, Dubois SM, Crimmins H, Babin L, Charpentier M, Piganeau M, Brunet E, Sfeir A (2017) Single-molecule analysis of mtDNA replication uncovers the basis of the common deletion. Mol Cell 65:527–538.e6

    Article  CAS  PubMed  Google Scholar 

  153. Picard M, Zhang J, Hancock S, Derbeneva O, Golhar R, Golik P, O’Hearn S, Levy S, Potluri P, Lvova M, Davila A, Lin CS, Perin JC, Rappaport EF, Hakonarson H, Trounce IA, Procaccio V, Wallace DC (2014) Progressive increase in mtDNA 3243A>G heteroplasmy causes abrupt transcriptional reprogramming. Proc Natl Acad Sci USA 111:E4033–E4042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Pichaud N, Ballard JW, Tanguay RM, Blier PU (2012) Naturally occurring mitochondrial DNA haplotypes exhibit metabolic differences: insight into functional properties of mitochondria. Evolution 66:3189–3197

    Article  CAS  PubMed  Google Scholar 

  155. Pickett SJ, Grady JP, Ng YS, Gorman GS, Schaefer AM, Wilson IJ, Cordell HJ, Turnbull DM, Taylor RW, McFarland R (2018) Phenotypic heterogeneity in m.3243A>G mitochondrial disease: the role of nuclear factors. Ann Clin Transl Neurol 5:333–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Porteus MH, Carroll D (2005) Gene targeting using zinc finger nucleases. Nat Biotechnol 23:967–973

    Article  CAS  PubMed  Google Scholar 

  157. Poulton J, Deadman ME, Ramacharan S, Gardiner RM (1991) Germ-line deletions of mtDNA in mitochondrial myopathy. Am J Hum Genet 48:649–653

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Prakash A, Doublie S (2015) Base excision repair in the mitochondria. J Cell Biochem 116:1490–1499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Puranam RS, Attardi G (2001) The RNase P associated with HeLa cell mitochondria contains an essential RNA component identical in sequence to that of the nuclear RNase P. Mol Cell Biol 21:548–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Qiao L, Ru G, Mao Z, Wang C, Nie Z, Li Q, Huang-Yang Y, Zhu L, Liang X, Yu J, Jiang P (2017) Mitochondrial DNA depletion, mitochondrial mutations and high TFAM expression in hepatocellular carcinoma. Oncotarget 8:84373–84383

    PubMed  PubMed Central  Google Scholar 

  161. Rahman S, Blok RB, Dahl HH, Danks DM, Kirby DM, Chow CW, Christodoulou J, Thorburn DR (1996) Leigh syndrome: clinical features and biochemical and DNA abnormalities. Ann Neurol 39:343–351

    Article  CAS  PubMed  Google Scholar 

  162. Rai PK, Craven L, Hoogewijs K, Russell OM, Lightowlers RN (2018) Advances in methods for reducing mitochondrial DNA disease by replacing or manipulating the mitochondrial genome. Essays Biochem 62:455–465

    Article  PubMed  PubMed Central  Google Scholar 

  163. Reddy P, Ocampo A, Suzuki K, Luo J, Bacman SR, Williams SL, Sugawara A, Okamura D, Tsunekawa Y, Wu J, Lam D, Xiong X, Montserrat N, Esteban CR, Liu GH, Sancho-Martinez I, Manau D, Civico S, Cardellach F, Del Mar O’Callaghan M, Campistol J, Zhao H, Campistol JM, Moraes CT, Izpisua Belmonte JC (2015) Selective elimination of mitochondrial mutations in the germline by genome editing. Cell 161:459–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Reinhardt K, Dowling DK, Morrow EH (2013) Medicine. Mitochondrial replacement, evolution, and the clinic. Science 341:1345–1346

    Article  PubMed  Google Scholar 

  165. Richardson J, Irving L, Hyslop LA, Choudhary M, Murdoch A, Turnbull DM, Herbert M (2015) Concise reviews: assisted reproductive technologies to prevent transmission of mitochondrial DNA disease. Stem Cells 33:639–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Rojo A, Campos Y, Sanchez JM, Bonaventura I, Aguilar M, Garcia A, Gonzalez L, Rey MJ, Arenas J, Olive M, Ferrer I (2006) NARP-MILS syndrome caused by 8993 T>G mitochondrial DNA mutation: a clinical, genetic and neuropathological study. Acta Neuropathol 111:610–616

    Article  CAS  PubMed  Google Scholar 

  167. Ross JM, Stewart JB, Hagstrom E, Brene S, Mourier A, Coppotelli G, Freyer C, Lagouge M, Hoffer BJ, Olson L, Larsson NG (2013) Germline mitochondrial DNA mutations aggravate ageing and can impair brain development. Nature 501:412–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Russell OM, Fruh I, Rai PK, Marcellin D, Doll T, Reeve A, Germain M, Bastien J, Rygiel KA, Cerino R, Sailer AW, Lako M, Taylor RW, Mueller M, Lightowlers RN, Turnbull DM, Helliwell SB (2018) Preferential amplification of a human mitochondrial DNA deletion in vitro and in vivo. Sci Rep 8:1799

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Sallevelt SC, Dreesen JC, Drusedau M, Hellebrekers DM, Paulussen AD, Coonen E, Van Golde RJ, Geraedts JP, Gianaroli L, Magli MC, Zeviani M, Smeets HJ, De Die-Smulders CE (2017) PGD for the m.14487 T>C mitochondrial DNA mutation resulted in the birth of a healthy boy. Hum Reprod 32:698–703

    CAS  PubMed  Google Scholar 

  170. Samuels DC, Schon EA, Chinnery PF (2004) Two direct repeats cause most human mtDNA deletions. Trends Genet 20:393–398

    Article  CAS  PubMed  Google Scholar 

  171. Sanchis-Gomar F, Garcia-Gimenez JL, Gomez-Cabrera MC, Pallardo FV (2014) Mitochondrial biogenesis in health and disease. Molecular and therapeutic approaches. Curr Pharm Des 20:5619–5633

    Article  CAS  PubMed  Google Scholar 

  172. Santorelli FM, Mak SC, Vazquez-Memije ME, Shanske S, Kranz-Eble P, Jain KD, Bluestone DL, De Vivo DC, Dimauro S (1996) Clinical heterogeneity associated with the mitochondrial DNA T8993C point mutation. Pediatr Res 39:914–917

    Article  CAS  PubMed  Google Scholar 

  173. Santra S, Gilkerson RW, Davidson M, Schon EA (2004) Ketogenic treatment reduces deleted mitochondrial DNAs in cultured human cells. Ann Neurol 56:662–669

    Article  CAS  PubMed  Google Scholar 

  174. Sato A, Kono T, Nakada K, Ishikawa K, Inoue S, Yonekawa H, Hayashi J (2005) Gene therapy for progeny of Mito-mice carrying pathogenic mtDNA by nuclear transplantation. Proc Natl Acad Sci USA 102:16765–16770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Sawano T, Tanaka M, Ohno K, Yoneda M, Ota Y, Terasaki H, Awaya S, Ozawa T (1996) Mitochondrial DNA mutations associated with the 11778 mutation in Leber’s disease. Biochem Mol Biol Int 38:693–700

    CAS  PubMed  Google Scholar 

  176. Schaefer AM, Taylor RW, Turnbull DM, Chinnery PF (2004) The epidemiology of mitochondrial disorders – past, present and future. Biochim Biophys Acta 1659:115–120

    Article  CAS  PubMed  Google Scholar 

  177. Schon EA, Rizzuto R, Moraes CT, Nakase H, Zeviani M, Dimauro S (1989) A direct repeat is a hotspot for large-scale deletion of human mitochondrial DNA. Science 244:346–349

    Article  CAS  PubMed  Google Scholar 

  178. Scott TL, Rangaswamy S, Wicker CA, Izumi T (2014) Repair of oxidative DNA damage and cancer: recent progress in DNA base excision repair. Antioxid Redox Signal 20:708–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Seibel P, Trappe J, Villani G, Klopstock T, Papa S, Reichmann H (1995) Transfection of mitochondria: strategy towards a gene therapy of mitochondrial DNA diseases. Nucleic Acids Res 23:10–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Sgarbi G, Baracca A, Lenaz G, Valentino LM, Carelli V, Solaini G (2006) Inefficient coupling between proton transport and ATP synthesis may be the pathogenic mechanism for NARP and Leigh syndrome resulting from the T8993G mutation in mtDNA. Biochem J 395:493–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Shadel GS, Clayton DA (1997) Mitochondrial DNA maintenance in vertebrates. Annu Rev Biochem 66:409–435

    Article  CAS  PubMed  Google Scholar 

  182. Shanske S, Tang Y, Hirano M, Nishigaki Y, Tanji K, Bonilla E, Sue C, Krishna S, Carlo JR, Willner J, Schon EA, Dimauro S (2002) Identical mitochondrial DNA deletion in a woman with ocular myopathy and in her son with Pearson syndrome. Am J Hum Genet 71:679–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Shimizu A, Mito T, Hashizume O, Yonekawa H, Ishikawa K, Nakada K, Hayashi J (2015) G7731A mutation in mouse mitochondrial tRNALys regulates late-onset disorders in transmitochondrial mice. Biochem Biophys Res Commun 459:66–70

    Article  CAS  PubMed  Google Scholar 

  184. Shimizu A, Mito T, Hayashi C, Ogasawara E, Koba R, Negishi I, Takenaga K, Nakada K, Hayashi J (2014) Transmitochondrial mice as models for primary prevention of diseases caused by mutation in the tRNA(Lys) gene. Proc Natl Acad Sci USA 111:3104–3109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Shoffner JM, Lott MT, Voljavec AS, Soueidan SA, Costigan DA, Wallace DC (1989) Spontaneous Kearns-Sayre/chronic external ophthalmoplegia plus syndrome associated with a mitochondrial DNA deletion: a slip-replication model and metabolic therapy. Proc Natl Acad Sci USA 86:7952–7956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Shokolenko IN, Wilson GL, Alexeyev MF (2013) Persistent damage induces mitochondrial DNA degradation. DNA Repair (Amst) 12:488–499

    Article  CAS  Google Scholar 

  187. Shtilbans A, Shanske S, Goodman S, Sue CM, Bruno C, Johnson TL, Lava NS, Waheed N, Dimauro S (2000) G8363A mutation in the mitochondrial DNA transfer ribonucleic acidLys gene: another cause of Leigh syndrome. J Child Neurol 15:759–761

    Article  CAS  PubMed  Google Scholar 

  188. Shutt TE, Bestwick M, Shadel GS (2011) The core human mitochondrial transcription initiation complex: it only takes two to tango. Transcription 2:55–59

    Article  PubMed  PubMed Central  Google Scholar 

  189. Shutt TE, Gray MW (2006) Twinkle, the mitochondrial replicative DNA helicase, is widespread in the eukaryotic radiation and may also be the mitochondrial DNA primase in most eukaryotes. J Mol Evol 62:588–599

    Article  CAS  PubMed  Google Scholar 

  190. Shutt TE, Lodeiro MF, Cotney J, Cameron CE, Shadel GS (2010) Core human mitochondrial transcription apparatus is a regulated two-component system in vitro. Proc Natl Acad Sci USA 107:12133–12138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Shutt TE, Shadel GS (2010) A compendium of human mitochondrial gene expression machinery with links to disease. Environ Mol Mutagen 51:360–379

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Siegmund SE, Yang H, Sharma R, Javors M, Skinner O, Mootha V, Hirano M, Schon EA (2017) Low-dose rapamycin extends lifespan in a mouse model of mtDNA depletion syndrome. Hum Mol Genet 26:4588–4605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Silvestri G, Moraes CT, Shanske S, Oh SJ, Dimauro S (1992) A new mtDNA mutation in the tRNA(Lys) gene associated with myoclonic epilepsy and ragged-red fibers (MERRF). Am J Hum Genet 51:1213–1217

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Sligh JE, Levy SE, Waymire KG, Allard P, Dillehay DL, Nusinowitz S, Heckenlively JR, MacGregor GR, Wallace DC (2000) Maternal germ-line transmission of mutant mtDNAs from embryonic stem cell-derived chimeric mice. Proc Natl Acad Sci USA 97:14461–14466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Smeets HJ, Sallevelt SC, Dreesen JC, De Die-Smulders CE, De Coo IF (2015) Preventing the transmission of mitochondrial DNA disorders using prenatal or preimplantation genetic diagnosis. Ann N Y Acad Sci 1350:29–36

    Article  CAS  PubMed  Google Scholar 

  196. Spees JL, Olson SD, Whitney MJ, Prockop DJ (2006) Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci USA 103:1283–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Spiegelman BM (2007) Transcriptional control of mitochondrial energy metabolism through the PGC1 coactivators. Novartis Found Symp 287:60–63. discussion 63-9

    CAS  PubMed  Google Scholar 

  198. Srivastava S, Diaz F, Iommarini L, Aure K, Lombes A, Moraes CT (2009) PGC-1alpha/beta induced expression partially compensates for respiratory chain defects in cells from patients with mitochondrial disorders. Hum Mol Genet 18:1805–1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Srivastava S, Moraes CT (2001) Manipulating mitochondrial DNA heteroplasmy by a mitochondrially targeted restriction endonuclease. Hum Mol Genet 10:3093–3099

    Article  CAS  PubMed  Google Scholar 

  200. Stewart JB, Freyer C, Elson JL, Larsson NG (2008) Purifying selection of mtDNA and its implications for understanding evolution and mitochondrial disease. Nat Rev Genet 9:657–662

    Article  CAS  PubMed  Google Scholar 

  201. Stewart JB, Larsson NG (2014) Keeping mtDNA in shape between generations. PLoS Genet 10:e1004670

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Suen DF, Narendra DP, Tanaka A, Manfredi G, Youle RJ (2010) Parkin overexpression selects against a deleterious mtDNA mutation in heteroplasmic cybrid cells. Proc Natl Acad Sci USA 107:11835–11840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Suzuki Y, Wada T, Sakai T, Ishikawa Y, Minami R, Tachi N, Saitoh S (1998) Phenotypic variability in a family with a mitochondrial DNA T8993C mutation. Pediatr Neurol 19:283–286

    Article  CAS  PubMed  Google Scholar 

  204. Swerdlow RH (2007) Mitochondria in cybrids containing mtDNA from persons with mitochondriopathies. J Neurosci Res 85:3416–3428

    Article  CAS  PubMed  Google Scholar 

  205. Taanman JW (1999) The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta 1410:103–123

    Article  CAS  PubMed  Google Scholar 

  206. Tachibana M, Amato P, Sparman M, Woodward J, Sanchis DM, Ma H, Gutierrez NM, Tippner-Hedges R, Kang E, Lee HS, Ramsey C, Masterson K, Battaglia D, Lee D, Wu D, Jensen J, Patton P, Gokhale S, Stouffer R, Mitalipov S (2013) Towards germline gene therapy of inherited mitochondrial diseases. Nature 493:627–631

    Article  CAS  PubMed  Google Scholar 

  207. Tachibana M, Sparman M, Sritanaudomchai H, Ma H, Clepper L, Woodward J, Li Y, Ramsey C, Kolotushkina O, Mitalipov S (2009) Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature 461:367–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Tadi SK, Sebastian R, Dahal S, Babu RK, Choudhary B, Raghavan SC (2016) Microhomology-mediated end joining is the principal mediator of double-strand break repair during mitochondrial DNA lesions. Mol Biol Cell 27:223–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Tanaka M, Borgeld HJ, Zhang J, Muramatsu S, Gong JS, Yoneda M, Maruyama W, Naoi M, Ibi T, Sahashi K, Shamoto M, Fuku N, Kurata M, Yamada Y, Nishizawa K, Akao Y, Ohishi N, Miyabayashi S, Umemoto H, Muramatsu T, Furukawa K, Kikuchi A, Nakano I, Ozawa K, Yagi K (2002) Gene therapy for mitochondrial disease by delivering restriction endonuclease SmaI into mitochondria. J Biomed Sci 9:534–541

    CAS  PubMed  Google Scholar 

  210. Tarassov IA, Martin RP (1996) Mechanisms of tRNA import into yeast mitochondria: an overview. Biochimie 78:502–510

    Article  CAS  PubMed  Google Scholar 

  211. Taylor RW, Turnbull DM (2005) Mitochondrial DNA mutations in human disease. Nat Rev Genet 6:389–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Torchilin VP, Khaw BA, Weissig V (2002) Intracellular targets for DNA delivery: nuclei and mitochondria. Somat Cell Mol Genet 27:49–64

    Article  CAS  PubMed  Google Scholar 

  213. Treff NR, Campos J, Tao X, Levy B, Ferry KM, Scott RT Jr (2012) Blastocyst preimplantation genetic diagnosis (PGD) of a mitochondrial DNA disorder. Fertil Steril 98:1236–1240

    Article  CAS  PubMed  Google Scholar 

  214. Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, Bohlooly YM, Gidlof S, Oldfors A, Wibom R, Tornell J, Jacobs HT, Larsson NG (2004) Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429:417–423

    Article  CAS  PubMed  Google Scholar 

  215. Tuppen HA, Blakely EL, Turnbull DM, Taylor RW (2010) Mitochondrial DNA mutations and human disease. Biochim Biophys Acta 1797:113–128

    Article  CAS  PubMed  Google Scholar 

  216. Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G, Alroy J, WU M, Py BF, Yuan J, Deeney JT, Corkey BE, Shirihai OS (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27:433–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Tyynismaa H, Mjosund KP, Wanrooij S, Lappalainen I, Ylikallio E, Jalanko A, Spelbrink JN, Paetau A, Suomalainen A (2005) Mutant mitochondrial helicase Twinkle causes multiple mtDNA deletions and a late-onset mitochondrial disease in mice. Proc Natl Acad Sci USA 102:17687–17692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Usami S, Abe S, Kasai M, Shinkawa H, Moeller B, Kenyon JB, Kimberling WJ (1997) Genetic and clinical features of sensorineural hearing loss associated with the 1555 mitochondrial mutation. Laryngoscope 107:483–490

    Article  CAS  PubMed  Google Scholar 

  219. Valenci I, Yonai L, Bar-Yaacov D, Mishmar D, Ben-Zvi A (2015) Parkin modulates heteroplasmy of truncated mtDNA in Caenorhabditis elegans. Mitochondrion 20:64–70

    Article  CAS  PubMed  Google Scholar 

  220. Verechshagina NA, Konstantinov YM, Kamenski PA, Mazunin IO (2018) Import of proteins and nucleic acids into mitochondria. Biochemistry (Mosc) 83:643–661

    Article  CAS  Google Scholar 

  221. Verlinsky Y, Cieslak J, Ivakhnenko V, Evsikov S, Wolf G, White M, Lifchez A, Kaplan B, Moise J, Valle J, Ginsberg N, Strom C, Kuliev A (1997) Prepregnancy genetic testing for age-related aneuploidies by polar body analysis. Genet Test 1:231–235

    Article  PubMed  Google Scholar 

  222. Viscomi C, Zeviani M (2017) MtDNA-maintenance defects: syndromes and genes. J Inherit Metab Dis 40:587–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Wai T, Ao A, Zhang X, Cyr D, Dufort D, Shoubridge EA (2010) The role of mitochondrial DNA copy number in mammalian fertility. Biol Reprod 83:52–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Wallace DC (2015) Mitochondrial DNA variation in human radiation and disease. Cell 163:33–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Wallace DC, Bunn CL, Eisenstadt JM (1975) Cytoplasmic transfer of chloramphenicol resistance in human tissue culture cells. J Cell Biol 67:174–188

    Article  CAS  PubMed  Google Scholar 

  226. Wallace DC, Chalkia D (2013) Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harb Perspect Biol 5:a021220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  227. Wallace DC, Singh G, Lott MT, Hodge JA, Schurr TG, Lezza AM, Elsas LJ 2nd, Nikoskelainen EK (1988) Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 242:1427–1430

    Article  CAS  PubMed  Google Scholar 

  228. Wang G, Shimada E, Zhang J, Hong JS, Smith GM, Teitell MA, Koehler CM (2012) Correcting human mitochondrial mutations with targeted RNA import. Proc Natl Acad Sci USA 109:4840–4845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Wang Y, Lyu YL, Wang JC (2002) Dual localization of human DNA topoisomerase IIIalpha to mitochondria and nucleus. Proc Natl Acad Sci USA 99:12114–12119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Wanrooij S, Luoma P, Van Goethem G, Van Broeckhoven C, Suomalainen A, Spelbrink JN (2004) Twinkle and POLG defects enhance age-dependent accumulation of mutations in the control region of mtDNA. Nucleic Acids Res 32:3053–3064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Warowicka A, Kwasniewska A, Gozdzicka-Jozefiak A (2013) Alterations in mtDNA: a qualitative and quantitative study associated with cervical cancer development. Gynecol Oncol 129:193–198

    Article  CAS  PubMed  Google Scholar 

  232. Wrigley A, Wilkinson S, Appleby JB (2015) Mitochondrial replacement: ethics and identity. Bioethics 29:631–638

    Article  PubMed  PubMed Central  Google Scholar 

  233. Yoshionari S, Koike T, Yokogawa T, Nishikawa K, Ueda T, Miura K, Watanabe K (1994) Existence of nuclear-encoded 5S-rRNA in bovine mitochondria. FEBS Lett 338:137–142

    Article  CAS  PubMed  Google Scholar 

  234. Youle RJ, Van Der Bliek AM (2012) Mitochondrial fission, fusion, and stress. Science 337:1062–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Young MJ, Copeland WC (2016) Human mitochondrial DNA replication machinery and disease. Curr Opin Genet Dev 38:52–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Zelenka J, Jezek P (2016) Import of fluorescent RNA into mitochondria of living cells. Methods Mol Biol 1351:175–181

    Article  CAS  PubMed  Google Scholar 

  237. Zghaib T, Nazarian S (2018) 100 – arrhythmia in neurological disease. In: Zipes DP, Jalife J, Stevenson WG (eds) Cardiac electrophysiology: from cell to bedside, 7th edn. Elsevier, Amsterdam

    Google Scholar 

  238. Zhang H, Barcelo JM, Lee B, Kohlhagen G, Zimonjic DB, Popescu NC, Pommier Y (2001) Human mitochondrial topoisomerase I. Proc Natl Acad Sci USA 98:10608–10613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Zhang J, Liu H, Luo S, Lu Z, Chavez-Badiola A, Liu Z, Yang M, Merhi Z, Silber SJ, Munne S, Konstantinidis M, Wells D, Tang JJ, Huang T (2017) Live birth derived from oocyte spindle transfer to prevent mitochondrial disease. Reprod Biomed Online 34:361–368

    Article  PubMed  Google Scholar 

  240. Zhang X, Zuo X, Yang B, Li Z, Xue Y, Zhou Y, Huang J, Zhao X, Zhou J, Yan Y, Zhang H, Guo P, Sun H, Guo L, Zhang Y, Fu XD (2014) MicroRNA directly enhances mitochondrial translation during muscle differentiation. Cell 158:607–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Zhao H, Li R, Wang Q, Yan Q, Deng JH, Han D, Bai Y, Young WY, Guan MX (2004) Maternally inherited aminoglycoside-induced and nonsyndromic deafness is associated with the novel C1494T mutation in the mitochondrial 12S rRNA gene in a large Chinese family. Am J Hum Genet 74:139–152

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy E. Shutt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Al Khatib, I., Shutt, T.E. (2019). Advances Towards Therapeutic Approaches for mtDNA Disease. In: Urbani, A., Babu, M. (eds) Mitochondria in Health and in Sickness. Advances in Experimental Medicine and Biology, vol 1158. Springer, Singapore. https://doi.org/10.1007/978-981-13-8367-0_12

Download citation

Publish with us

Policies and ethics