Skip to main content

Application of Wavelet Analysis for Crack Localization and Quantification in Beams Using Static Deflections

  • Conference paper
  • First Online:
  • 1824 Accesses

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

Wavelet analysis has been proven to be an efficient tool for identifying singularities in signals, such as the effect of damage in structural deflections. This paper establishes a new approach applying this technique to identify cracks in beams using static measurements. The deflection difference of the beam before and after damage is a piecewise polynomial with discontinuities at crack locations. The crack positions can be identified at apexes of the continuous wavelet transform coefficients. At damage locations, a damage index can be defined from the y-intercept of the linear regression between the logarithms of wavelet coefficients and their corresponding scales. By normalizing itself to the internal bending moment at the damage location, the damage index becomes damage location independent. Through a numerical model, a reference map between the crack depth and the damage index can be established and further used for damage severity assessment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Surace, C., Ruotolo, R.: Crack detection of a beam using the wavelet transform. In: Proceedings of the 12th International Modal Analysis Conference, pp. 1141–1167 (1994)

    Google Scholar 

  2. Messina, A.: Detecting damage in beams through digital differentiator filters and continuous wavelet transforms. J. Sound Vib. 272(1–2), 385–412 (2004). https://doi.org/10.1016/j.jsv.2003.03.009

    Article  Google Scholar 

  3. Liew, K.M., Wang, Q.: Application of wavelet theory for crack identification in structures. J. Eng. Mech. 124(2), 152–157 (1998)

    Article  Google Scholar 

  4. Wang, Q., Deng, X.: Damage detection with spatial wavelets. Int. J. Solids Struct. 36(23), 3443–3468 (1999). https://doi.org/10.1016/S0020-7683(98)00152-8

    Article  MATH  Google Scholar 

  5. Quek, S.T., Wang, Q., Zhang, L., Ang, K.K.: Sensitivity analysis of crack detection in beams by wavelet technique. Int. J. Mech. Sci. 43(12), 2899–2910 (2001). https://doi.org/10.1016/S0020-7403(01)00064-9

    Article  MATH  Google Scholar 

  6. Rucka, M., Wilde, K.: Crack identification using wavelets on experimental static deflection profiles. Eng. Struct. 28, 279–288 (2006). https://doi.org/10.1016/j.engstruct.2005.07.009

    Article  Google Scholar 

  7. Spanos, P.D., Failla, G., Santini, A., Pappatico, M.: Damage detection in Euler-Bernoulli beams via spatial wavelet analysis. Struct. Control Monit. 13(1), 472–487 (2006). https://doi.org/10.1002/stc.118

    Article  Google Scholar 

  8. Umesha, P., Ravichandran, R., Sivasubramanian, K.: Crack detection and quantification in beams using wavelets. Comput. Aided Civ. Infrastruct. Eng. 24(8), 593–607 (2009). https://doi.org/10.1111/j.1467-8667.2009.00618.x

    Article  Google Scholar 

  9. Wu, N., Wang, Q.: Experimental studies on damage detection of beam structures with wavelet transform. Int. J. Eng. Sci. 49(3), 253–261 (2011). https://doi.org/10.1016/j.ijengsci.2010.12.004

    Article  Google Scholar 

  10. Andreaus, U., Casini, P.: Identification of multiple open and fatigue cracks in beam-like structures using wavelets on deflection signals. Contin. Mech. Thermodyn. 28(1–2), 361–378 (2016). https://doi.org/10.1007/s00161-015-0435-4

    Article  MathSciNet  MATH  Google Scholar 

  11. Andreaus, U., Baragatti, P., Casini, P., Iacoviello, D.: Experimental damage evaluation of open and fatigue cracks of multi-cracked beams by using wavelet transform of static response via image analysis. Struct. Control Health Monit. 24(4), 1–16 (2017). https://doi.org/10.1002/stc.1902

    Article  Google Scholar 

  12. Chang, C.C., Chen, L.W.: Detection of the location and size of cracks in the multiple cracked beam by spatial wavelet based approach. Mech. Syst. Signal Process. 19(1), 139–155 (2005). https://doi.org/10.1016/j.ymssp.2003.11.001

    Article  Google Scholar 

  13. Rucka, M., Wilde, K.: Application of continuous wavelet transform in vibration based damage detection method for beams and plates. J. Sound Vib. 297, 536–550 (2006). https://doi.org/10.1016/j.jsv.2006.04.015

    Article  Google Scholar 

  14. Castro, E., García-Hernandez, M.T., Gallego, A.: Damage detection in rods by means of the wavelet analysis of vibrations: influence of the mode order. J. Sound Vib. 296(4–5), 1028–1038 (2006). https://doi.org/10.1016/j.jsv.2006.02.026

    Article  Google Scholar 

  15. Zhong, S., Oyadiji, S.O.: Detection of cracks in simply-supported beams by continuous wavelet transform of reconstructed modal data. Comput. Struct. 89(1–2), 127–148 (2011). https://doi.org/10.1016/j.compstruc.2010.08.008

    Article  Google Scholar 

  16. Jiang, X., Ma, Z.J., Ren, W.X.: Crack detection from the slope of the mode shape using complex continuous wavelet transform. Comput. Civ. Infrastruct. Eng. 27(3), 187–201 (2012). https://doi.org/10.1111/j.1467-8667.2011.00734.x

    Article  Google Scholar 

  17. Solís, M., Algaba, M., Galvín, P.: Continuous wavelet analysis of mode shapes differences for damage detection. Mech. Syst. Signal Process. 40(2), 645–666 (2013). https://doi.org/10.1016/j.ymssp.2013.06.006

    Article  Google Scholar 

  18. Xu, Y.F., Zhu, W.D., Liu, J., Shao, Y.M.: Identification of embedded horizontal cracks in beams using measured mode shapes. J. Sound. Vib. 333(23), 6273–6294 (2014). https://doi.org/10.1016/j.jsv.2014.04.046

    Article  Google Scholar 

  19. Cao, M.S., Xu, W., Ren, W.X., Ostachowicz, W., Sha, G.G., Pan, L.X.: A concept of complex-wavelet modal curvature for detecting multiple cracks in beams under noisy conditions. Mech. Syst. Signal Process. 76–77, 555–575 (2016). https://doi.org/10.1016/j.ymssp.2016.01.012

    Article  Google Scholar 

  20. Janeliukstis, R., Rucevskis, S., Wesolowski, M., Chate, A.: Multiple damage identification in beam structure based on wavelet transform. Procedia Eng. 172, 426–432 (2017). https://doi.org/10.1016/j.proeng.2017.02.023

    Article  Google Scholar 

  21. Ghanbari Mardasi, A., Wu, N., Wu, C.: Experimental study on the crack detection with optimized spatial wavelet analysis and windowing. Mech. Syst. Signal Process. 104, 619–630 (2018). https://doi.org/10.1016/j.ymssp.2017.11.039

    Article  Google Scholar 

  22. Zhu, X.Q., Law, S.S.: Wavelet-based crack identification of bridge beam from operational deflection time history. Int. J. Solids Struct. 43(7–8), 2299–2317 (2006). https://doi.org/10.1016/j.ijsolstr.2005.07.024

    Article  MATH  Google Scholar 

  23. Quek, S.T., Wang, Q., Zhang, L., Ong, K.H.: Practical issues in the detection of damage in beams using wavelet. Smart Mater. Struct. 10, 1009–1017 (2001)

    Article  Google Scholar 

  24. Gentile, A., Messina, A.: On the continuous wavelet transforms applied to discrete vibrational data for detecting open cracks in damaged beams. Int. J. Solids Struct. 40(2), 295–315 (2003). https://doi.org/10.1016/S0020-7683(02)00548-6

    Article  MATH  Google Scholar 

  25. Messina, A.: Refinements of damage detection methods based on wavelet analysis of dynamical shapes. Int. J. Solids Struct. 45(14–15), 4068–4097 (2008). https://doi.org/10.1016/j.ijsolstr.2008.02.015

    Article  MATH  Google Scholar 

  26. Montanari, L., Basu, B., Spagnoli, A., Broderick, B.M.: A padding method to reduce edge effects for enhanced damage identification using wavelet analysis. Mech. Syst. Signal Process. 52–53(1), 264–277 (2015). https://doi.org/10.1016/j.ymssp.2014.06.014

    Article  Google Scholar 

  27. Swamy, S., Reddy, D.M., Prakash, G.J.: Damage detection and identification in beam structure using modal data and wavelets. World J. Model. Simul. 13(1), 52–65 (2017)

    Google Scholar 

  28. Janeliukstis, R., Rucevskis, S., Wesolowski, M., Chate, A.: Experimental structural damage localization in beam structure using spatial continuous wavelet transform and mode shape curvature methods. Meas.: J. Int. Meas. Confed. 102, 253–270 (2017). https://doi.org/10.1016/j.measurement.2017.02.005

    Article  Google Scholar 

  29. Solís, M., Ma, Q., Galvín, P.: Damage detection in beams from modal and wavelet analysis using a stationary roving mass and noise estimation. Strain 54, e12266 (2018). https://doi.org/10.1111/str.12266

    Article  Google Scholar 

  30. Cao, M., Radzieński, M., Xu, W., Ostachowicz, W.: Identification of multiple damage in beams based on robust curvature mode shapes. Mech. Syst. Signal Process. 46(2), 468–480 (2014). https://doi.org/10.1016/j.ymssp.2014.01.004

    Article  Google Scholar 

  31. Pakrashi, V., O’Connor, A., Basu, B.: A study on the effects of damage models and wavelet bases for damage identification and calibration in beams. Comput. Civ. Infrastruct. Eng. 22(8), 555–569 (2007). https://doi.org/10.1111/j.1467-8667.2007.00510.x

    Article  Google Scholar 

  32. Pakrashi, V., Basu, B., O’Connor, A.: Structural damage detection and calibration using a wavelet-Kurtosis technique. Eng. Struct. 29(9), 2097–2108 (2007). https://doi.org/10.1016/j.engstruct.2006.10.013

    Article  Google Scholar 

  33. Mallat, S., Hwang, W.L.: Singularity detection and processing with wavelets. IEEE Trans. Inf. Theory 38(2), 617–643 (1992). https://doi.org/10.1109/18.119727

    Article  MathSciNet  MATH  Google Scholar 

  34. Hong, J.C., Kim, Y.Y., Lee, H.C., Lee, Y.W.: Damage detection using the Lipschitz exponent estimated by the wavelet transform: applications to vibration modes of a beam. Int. J. Solids Struct. 39(7), 1803–1816 (2002). https://doi.org/10.1016/S0020-7683(01)00279-7

    Article  MATH  Google Scholar 

  35. Douka, E., Loutridis, S., Trochidis, A.: Crack identification in beams using wavelet analysis. Int. J. Solids Struct. 40(13–14), 3557–3569 (2003). https://doi.org/10.1016/S0020-7683(03)00147-1

    Article  MATH  Google Scholar 

  36. Loutridis, S., Douka, E., Trochidis, A.: Crack identification in double-cracked beams using wavelet analysis. J. Sound Vib. 277(4–5), 1025–1039 (2004). https://doi.org/10.1016/j.jsv.2003.09.035

    Article  MATH  Google Scholar 

  37. Zhu, L.F., Ke, L.L., Zhu, X.Q., Xiang, Y., Wang, Y.S.: Crack identification of functionally graded beams using continuous wavelet transform. Compos. Struct. 210, 473–485 (2018)

    Article  Google Scholar 

  38. Gudmundson, P.: The dynamic behaviour of slender structures with cross-sectional cracks. J. Mech. Phys. Solids 31(4), 329–345 (1983). https://doi.org/10.1016/0022-5096(83)90003-0

    Article  MATH  Google Scholar 

  39. Ma, Q., Solís, M.: Damage localization and quantification in beams from slope discontinuities in static deflections. Smart Struct. Syst. 22(3), 291–302 (2018)

    Google Scholar 

  40. Ostachowicz, W.M., Krawczuk, M.: Analysis of the effect of cracks on the natural frequencies of a cantilever beam. J. Sound Vib. 150(2), 191–201 (1991). https://doi.org/10.1016/0022-460X(91)90615-Q

    Article  Google Scholar 

  41. Kim, S.J., Koh, K., Boyd, S., Gorinevsky, D.: \(l_1\) trend filtering. SIAM Rev. 51(2), 339–360 (2009). https://doi.org/10.1137/070690274

    Article  MathSciNet  MATH  Google Scholar 

  42. Ma, Q., Solís, M.: Damage localization and quantification in simply supported beams using static test data. J. Phys.: Conf. Ser. 842, 012007 (2017). https://doi.org/10.1088/1742-6596/842/1/012007

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Consejería de Economía, Innovación, Ciencia y Empleo of Andalucía (Spain) under project P12-TEP-2546 and the Spanish Ministry of Economy and Competitiveness (Ministerio de Economía y Competitividad, Secretaría de Estado de Investigación, Desarrollo e Innovación) through research project BIA2016-43085-P. The financial support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Solís .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, Q., Solís, M. (2020). Application of Wavelet Analysis for Crack Localization and Quantification in Beams Using Static Deflections. In: Wahab, M. (eds) Proceedings of the 13th International Conference on Damage Assessment of Structures. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-8331-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8331-1_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8330-4

  • Online ISBN: 978-981-13-8331-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics