Skip to main content

Radioiodine Releases in Nuclear Emergency Scenarios

  • Chapter
  • First Online:

Abstract

This document provides a comprehensive overview study on the physico-chemical speciation of radioiodine observed in the atmosphere after various emissions related to nuclear activities: nuclear weapon tests, accident and incident releases, and routine discharges. The study covers different types of nuclear facilities including medical isotope production facilities (MIPFs), reprocessing plants (RPs), and nuclear power plants (NPPs). Most attention is paid to 131I which has a major human health impact in the early stages of a nuclear emergency situation with regard to inhalation. Iodine-131 combines a high yield by neutron-induced nuclear fission of 235U (2.87%) or 239Pu (3.8%), high dose coefficients, and a radioactive half-life long enough to allow for spreading at global scales and entering the food chain but sufficiently short to produce a significant dose commitment when inhaled or ingested. Reliable dose assessment requires both detailed and valid information on the physico-chemical composition of 131I present in the air. Apart from reactor explosions and fires, which produce large amounts of particles and may therefore favor the presence of iodine in particulate form at short distance, other nuclear accident scenarios will lead fairly rapidly to a dominant gaseous radioiodine proportion in the atmosphere.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Incident releases can be integrated in these categories.

References

  1. Saiz-Lopez A, Fernandez RP, Ordóñez C, Kinnison DE, Martín JCG, Lamarque JF, et al. Iodine chemistry in the troposphere and its effect on ozone. Atmos Chem Phys. 2014;14:13119–43.

    Article  CAS  Google Scholar 

  2. Hou X, Hansen V, Aldahan A, Possnert G, Lind OC, Lujaniene G. A review on speciation of iodine-129 in the environmental and biological samples. Anal Chim Acta. 2009;632:181–96.

    Article  CAS  PubMed  Google Scholar 

  3. Trincal J. Modélisation du comportement de l’iode dans l’atmosphère. PhD thesis, Université de Lille, France. 2015.

    Google Scholar 

  4. Landis JD, Hamm NT, Renshaw CE, Dade WB, Magilligan FJ, Gartner JD. Surficial redistribution of fallout 131iodine in a small temperate catchment. Proc Natl Acad Sci U S A. 2012;109:4064–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kulyukhin SA, Kulemin VV, Rumer IA, Konovalova NA. Gas-phase UV photolysis of CH3 131I. Radiochemistry. 2005;47:296–300.

    Article  CAS  Google Scholar 

  6. Filistovic V, Nedveckaite T. Photochemical aspects of the behavior of the atmospheric radioiodine after the Chernobyl accident. J Radioanal Nucl Chem. 1999;242:75–80.

    Article  CAS  Google Scholar 

  7. Saiz-Lopez A, Plane JMC, Cuevas CA, Mahajan AS, Lamarque JF, Kinnison DE. Nighttime atmospheric chemistry of iodine. Atmos Chem Phys. 2016;16:15593–604.

    Article  CAS  Google Scholar 

  8. Jenkin ME, Cox RA, Candeland DE. Photochemical aspects of tropospheric iodine behaviour. J Atmos Chem. 1985;2:359–75.

    Article  CAS  Google Scholar 

  9. Trincal J, Cantrel L, Cousin F, Fevre-Nollet V, Lebegue P. Impact of atmospheric species reactivity on radioactive gaseous iodine transport in severe accident conditions. WIT Trans Ecol Environ. 2015;198:77–86.

    Article  CAS  Google Scholar 

  10. Chameides WC, Davis DD. Iodine: its possible role in tropospheric chemistry. J Geophys Res Atmos. 1980;85:7383–98.

    Article  CAS  Google Scholar 

  11. Brookhaven National Laboratory. Interactive chart of nuclides, NuDat 2.7. 2019. https://www.nndc.bnl.gov/nudat2/. Accessed Jan 2019.

  12. Chu SYF, Ekström LP, Firestone RB. Table of radioactive isotopes. 2019. http://nucleardata.nuclear.lu.se/toi/nucSearch.asp. Accessed Jan 2019.

  13. ICRP 38. Radionuclides transformations, energy and intensity of emissions. ICRP Publication 38; 1983.

    Google Scholar 

  14. Laraweb. Library for gamma and alpha emissions. 2019. http://www.nucleide.org/Laraweb/index.php. Accessed Jan 2019.

  15. OECD. JEFF-3.3. 2017. http://www.oecd-nea.org/dbdata/jeff/jeff33/index.html. Accessed Jan 2019.

  16. Fan Y, Hou X, Zhou W. Progress on 129I analysis and its application in environmental and geological researches. Desalination. 2013;321:32–46.

    Article  CAS  Google Scholar 

  17. Shirakami Y. Radioactive Iodine. In: Kaiho T, editor. Iodine chemistry and applications. Hoboken: Wiley; 2015. p. 605–23.

    Google Scholar 

  18. Haapanen A. Results of monitoring at Olkiluoto in 2008 – environment: Posiva Working Report 2009-45. 2009.

    Google Scholar 

  19. UNSCEAR. Sources and effects of ionising radiation (Report to the General Assembly). New York: United Nations; 2000.

    Google Scholar 

  20. Veiga LHS, Holmberg E, Anderson H, Pottern L, Sadetzki S, Adams MJ, et al. Thyroid cancer after childhood exposure to external radiation: an updated pooled analysis of 12 studies. Radiat Res. 2016;185:473–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ivanov V, Kashcheev V, Chekin S, Maksioutov M, Tumanov K, Menyajlo A, et al. Results of the thyroid cancer epidemiological survey in Russia following the Chernobyl accident. In: Thyroid cancer and nuclear accidents: long-term aftereffects of Chernobyl and Fukushima. Amsterdam: Academic Press; 2017. p. 88–95.

    Google Scholar 

  22. Ivanov VK, Kashcheev VV, Chekin SY, Maksioutov MA, Tumanov KA, Vlasov OK, et al. Radiation-epidemiological studies of thyroid cancer incidence in Russia after the Chernobyl accident (estimation of radiation risks, 1991-2008 follow-up period). Radiat Prot Dosim. 2012;151:489–99.

    Article  CAS  Google Scholar 

  23. Tronko M, Brenner AV, Bogdanova T, Shpak V, Oliynyk V, Cahoon EK, et al. Thyroid neoplasia risk is increased nearly 30 years after the Chernobyl accident. Int J Cancer. 2017;141:1585–8.

    Article  CAS  PubMed  Google Scholar 

  24. Kesminiene A, Evrard AS, Ivanov VK, Malakhova IV, Kurtinaitise J, Stengrevics A, et al. Risk of thyroid cancer among Chernobyl liquidators. Radiat Res. 2012;178:425–36.

    Article  CAS  PubMed  Google Scholar 

  25. ICRP 71. Age-dependent doses to members of the public from intake of radionuclides. Part 4. Inhalation dose coefficients. ICRP Publication 71; 1995.

    Google Scholar 

  26. ICRP 68. Dose coefficients for intakes of radionuclides by workers. ICRP Publication 68; 1994.

    Google Scholar 

  27. Morgan A, Morgan DJ, Evans JC, Lister BAJ. Studies on the retention and metabolism of inhaled methyl iodide-II: metabolism of methyl iodide. Health Phys. 1967;13:1067–74.

    Article  CAS  PubMed  Google Scholar 

  28. ICRP 137. Occupational intakes of radionuclides. ICRP Publication 137; 2017.

    Google Scholar 

  29. ICRP 66. Human respiratory tract model for radiological protection. ICRP Publication 66; 1994.

    Google Scholar 

  30. ICRP 72. Age-dependent doses to the members of the public from intake of radionuclides - part 5 compilation of ingestion and inhalation coefficients. ICRP Publication 72; 1996.

    Google Scholar 

  31. EUR-lex. Council Directive 96/29/Euratom of 13 May 1996 laying down basic safety standards for the protection of the health of workers and the general public against the dangers arising from ionizing radiation. 1996. https://eur-lex.europa.eu/eli/dir/1996/29/oj. Accessed Jan 2019.

  32. Ogorodnikov BI, Budyka AK, Pazukhin ÉM, Krasnov VA. Aerosol emissions from the destroyed power-generating unit of the Chernobyl nuclear power plant in 1986 and 2003-2005. Atomic Energy. 2006;100:264–70.

    Article  CAS  Google Scholar 

  33. ICRP. ANNEX B: deposition, characterisation, and sampling of radioactive aerosols. Ann ICRP. 2002;32:139–306.

    Article  Google Scholar 

  34. Shinkarev SM, Kotenko KV, Granovskaya EO, Yatsenko VN, Imanaka T, Hoshi M. Estimation of the contribution of short-lived radioiodines to the thyroid dose for the public in case of inhalation intake following the Fukushima accident. Radiat Prot Dosim. 2015;164:51–6.

    Article  CAS  Google Scholar 

  35. Balonov M, Kaidanovsky G, Zvonova I, Kovtun A, Bouville A, Luckyanov N, et al. Contributions of short-lived radioiodines to thyroid doses received by evacuees from the Chernobyl area estimated using early in vivo activity measurements. Radiat Prot Dosim. 2003;105:593–9.

    Article  CAS  Google Scholar 

  36. Tokonami S, Hosoda M. Thyroid equivalent doses for evacuees and radiological impact from the Fukushima nuclear accident. Radiat Meas. 2018;119:74–9.

    Article  CAS  Google Scholar 

  37. European Commission. Radiation Protection No. 165; Medical effectiveness of iodine prophylaxis in a nuclear reactor emergency situation and overview of European practices. 2010. https://ec.europa.eu/energy/sites/ener/files/documents/165.pdf.

  38. HERCA. New European approach for cross-border emergency preparedness. 2014. http://www.herca.org/herca_news.asp?newsID=41. Accessed Jan 2019.

  39. Reiners C, Schneider R. Potassium iodide (KI) to block the thyroid from exposure to I-131: current questions and answers to be discussed. Radiat Environ Biophys. 2013;52:189–93.

    Article  CAS  PubMed  Google Scholar 

  40. Ministry of Health and Long-Term Care (Canada). Potassium Iodide (KI) Guidelines. 2014. http://www.health.gov.on.ca/en/pro/programs/emb/rhrp/docs/ki_guidelines.pdf. Accessed Jan 2019.

  41. Kramer GH, Hauck BM, Chamberlain MJ. Biological half-life of iodine in adults with intact thyroid function and in athyreotic persons. Radiat Prot Dosim. 2002;102:129–35.

    Article  CAS  Google Scholar 

  42. WHO. Use of potassium iodide for thyroid protection during nuclear or radiological emergencies. Geneva: WHO; 2011. https://www.who.int/ionizing_radiation/pub_meet/tech_briefings/potassium_iodide/en/.

    Google Scholar 

  43. Petrova K, Jankovec M, Fojtíkova I, Hůlka J. New challenges in crisis communication − the results of sociological survey in the Czech Republic. In: Proceedings of the RICOMET 2017 conference: social and ethical aspects of decision-making in radiological risk situations. IAEA: Vienna, Austria. 27−29th June 2017.

    Google Scholar 

  44. Izrael YA. Radioactivity in the environment, vol. 3. New York: Elsevier; 2002.

    Google Scholar 

  45. Hu Q, Moran JE. Iodine. In: Atwood DA, editor. Radionuclides in the environment. Chichester: Wiley; 2010. p. 165–78.

    Google Scholar 

  46. NCRP. 129I: evaluation releases from nuclear power generation. Report NCRP no. 75. Bethesda: National Council on Radiation Protection and Measurements; 1983.

    Google Scholar 

  47. Prăvălie R. Nuclear weapons tests and environmental consequences: a global perspective. Ambio. 2014;43:729–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. UNSCEAR. United Nations Scientific Committee on the Effects of Atomic Radiation. Reports to the General Assembly of the United Nations. New York: United Nations; 1982.

    Google Scholar 

  49. Gilbert ES, Huang L, Bouville A, Berg CD, Ron E. Thyroid cancer rates and 131I doses from Nevada atmospheric nuclear bomb tests: an update. Radiat Res. 2010;173:659–64.

    Article  CAS  PubMed  Google Scholar 

  50. UNSCEAR. Report to the general assembly (Annex B—Exposures from man-made sources of radiation). 1993. http://www.unscear.org/docs/reports/1993/1993c_pages%2091-120.pdf. Accessed Jan 2019.

  51. Steinhauser G, Chávez-Ortega M, Vahlbruch J-W. Japanese food data challenge the claimed link between Fukushima’s releases and recently observed thyroid cancer increase in Japan. Sci Rep. 2017;7:10722.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Colombani J, Gregoire AC, Morin S. Main findings of the IRSN experimental programs performed on iodine chemistry in severe accident conditions. In: Proceedings of the International OECD/NEA-NUGENIA/SARNET Workshop April 1, 2015. Marseille (France). 2015.

    Google Scholar 

  53. Nikipelov BV, Romanov GN, Buldakov LA, Babaev NS, Kholina YB, Mikerin EI. Accident in the southern Urals on 29 September 1957. International Atomic Energy Agency Report INFCIRC-368, Vienna; 1989.

    Google Scholar 

  54. Wakeford R. A double diamond anniversary - Kyshtym and Windscale: the nuclear accidents of 1957. J Radiol Prot. 2017;37:E7–E13.

    Article  PubMed  Google Scholar 

  55. Garland JA, Wakeford R. Atmospheric emissions from the Windscale accident of October 1957. Atmos Environ. 2007;41:3904–20.

    Article  CAS  Google Scholar 

  56. McNally RJQ, Wakeford R, James PW, Basta NO, Alston RD, Pearce MS, et al. A geographical study of thyroid cancer incidence in north-west England following the Windscale nuclear reactor fire of 1957. J Radiol Prot. 2016;36:934–52.

    Article  CAS  PubMed  Google Scholar 

  57. Levin RJ, De Simone NF, Slotkin JF, Henson BL. Incidence of thyroid cancer surrounding three mile island nuclear facility: the 30-year follow-up. Laryngoscope. 2013;123:2064–71.

    Article  PubMed  Google Scholar 

  58. Rogovin M, Frampton GT, Cornell EK, DeYoung RC, Budnitz R, Norry P. Three Mile Island: a report to the commission and the public. NUREG/CR 1250 volume 1. Washington: US NRC; 1980. 184 pp

    Google Scholar 

  59. UNSCEAR. Exposures and effects of the Chernobyl accident (Annex J). New York: United Nations; 2000.

    Google Scholar 

  60. IAEA. The Fukushima Daiichi accident. Technical volume 1/5. Description and context of the accident. Vienna: IAEA STI/PUB/1710. 2015.

    Google Scholar 

  61. IRSN. Information report, 22 March 2011. 2011. www.irsn.fr/EN/news/Documents/IRSN_fukushima-radioactivityreleased-assessment-EN.pdf. Accessed Jan 2019.

  62. Mathieu A, Korsakissok I, Quélo D, Groëll J, Tombette M, Didier D, et al. Atmospheric dispersion and deposition of radionuclides from the Fukushima Daiichi nuclear power plant accident. Elements. 2012;8:195–200.

    Article  CAS  Google Scholar 

  63. MEXT. Radioactive substance emission data, press release, October 20, 2011. 2011. www.meti.go.jp/press/2011/10/20111020001/20111020001.pdf. (in Japanese). Accessed Jan 2019.

  64. NISA. Evaluation of the status of reactor cores in units 1–3 of the Fukushima Daiichi nuclear power plant. 2011. http://www.meti.go.jp/press/2011/06/20110606008/20110606008-2.pdf. (in Japanese). Accessed Jan 2019.

  65. Povinec PP, Gera M, Holý K, Hirose K, Lujaniené G, Nakano M, et al. Dispersion of Fukushima radionuclides in the global atmosphere and the ocean. Appl Radiat Isot. 2013;81:383–92.

    Article  CAS  PubMed  Google Scholar 

  66. Saunier O, Mathieu A, Didier D, Tombette M, Quélo D, Winiarek V, et al. An inverse modeling method to assess the source term of the Fukushima nuclear power plant accident using gamma dose rate observations. Atmos Chem Phys. 2013;13:11403–21.

    Article  CAS  Google Scholar 

  67. Steinhauser G, Brandl A, Johnson TE. Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts. Sci Total Environ. 2014;470–471:800–17.

    Article  CAS  PubMed  Google Scholar 

  68. UNSCEAR. Sources, effects and risks of ionizing radiation. UNSCEAR 2013 Report, Volume I, Scientific Annex A. Levels and Effects of Radiation Exposure due to the Nuclear Accident after the 2011 Great East-Japan Earthquake and Tsunami New York. 2014.

    Google Scholar 

  69. Yamada M. A brief review of environmental impacts and health effects from the accidents at the three Mile Island, Chernobyl and Fukushima Daiichi nuclear power plants. Radiat. Emerg. Med. 2012;1:33–9.

    Google Scholar 

  70. Gallagher D, McGee EJ, Mitchell PI, Alfimov V, Aldahan A, Possnert G. Retrospective search for evidence of the 1957 Windscale fire in NE Ireland using 129I and other long-lived nuclides. Environ Sci Technol. 2005;39:2927–35.

    Article  CAS  PubMed  Google Scholar 

  71. Steinhauser G. Fukushima’s forgotten radionuclides: a review of the understudied radioactive emissions. Environ Sci Technol. 2014;48:4649–63.

    Article  CAS  PubMed  Google Scholar 

  72. Lozano RL, Hernandez-Ceballos MA, Adame JA, Casas-Ruiz M, Sorribas M, San Miguel EG, et al. Radioactive impact of Fukushima accident on the Iberian Peninsula: evolution and plume previous pathway. Environ Int. 2011;37:1259–64.

    Article  CAS  PubMed  Google Scholar 

  73. Knetsch GJ. Environmental radioactivity in the Netherlands. Results in 2011. RIVM report 610891004/2013. 2013.

    Google Scholar 

  74. De Vismes OA, Gurriaran R, Cagnat X, Masson O. Fission product activity ratios measured at trace level over France during the Fukushima accident. J Environ Radioact. 2013;125:6–16.

    Article  CAS  Google Scholar 

  75. Gudelis A, Druteikiene R, Lujaniene G, Maceika E, Plukis A, Remeikis V. Radionuclides in the ground-level atmosphere in Vilnius, Lithuania, in March 2011, detected by gamma-ray spectrometry. J Environ Radioact. 2012;109:13–8.

    Article  CAS  PubMed  Google Scholar 

  76. Lujanienė G, Byčenkienė S, Povinec PP, Gera M. Radionuclides from the Fukushima accident in the air over Lithuania: measurement and modelling approaches. J Environ Radioact. 2012;114:71–80.

    Article  PubMed  CAS  Google Scholar 

  77. Doizi D, Reymond la Ruinaz S, Haykal I, Manceron L, Perrin A, Boudon V, et al. Analytical measurements of fission products during a severe nuclear accident. EPJ Web Conf. 2018;170:08005.

    Article  CAS  Google Scholar 

  78. Xu S, Zhang L, Freeman SPHT, Hou X, Shibata Y, Sanderson D, et al. Speciation of radiocesium and radioiodine in aerosols from Tsukuba after the Fukushima nuclear accident. Environ Sci Technol. 2015;49:1017–24.

    Article  CAS  PubMed  Google Scholar 

  79. Muramatsu Y, Matsuzaki H, Toyama C, Ohno T. Analysis of 129I in the soils of Fukushima prefecture: preliminary reconstruction of 131I deposition related to the accident at Fukushima Daiichi nuclear power plant (FDNPP). J Environ Radioact. 2015;139:344–50.

    Article  CAS  PubMed  Google Scholar 

  80. Pietrzak-Flis Z, Krajewski P, Radwan I, Muramatsu Y. Retrospective evaluation of 131I deposition density and thyroid dose in Poland after Chernobyl accident. Health Phys. 2003;84:698–708.

    Article  CAS  PubMed  Google Scholar 

  81. Yang G, Tazoe H, Yamada M. Can 129I track 135Cs, 236U, 239Pu, and 240Pu apart from 131I in soil samples from Fukushima prefecture, Japan? Sci Rep. 2017;7:15369.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Miyake Y, Matsuzaki H, Fujiwara T, Saito T, Yamagata T, Honda M, et al. Isotopic ratio of radioactive iodine (129I/131I) released from Fukushima Daiichi NPP accident. Geochem J. 2012;46:327–33.

    Article  CAS  Google Scholar 

  83. Kim E, Kurihara O, Tani K, Ohmachi Y, Fukutsu K, Sakai K, et al. Intake ratio of 131I to 137CS derived from thyroid and whole-body doses to Fukushima residents. Radiat Prot Dosim. 2015;168:408–18.

    Google Scholar 

  84. Steinhauser G, Merz S, Kübber-Heiss A, Katzlberger C. Using animal thyroids as ultra-sensitive biomonitors for environmental radioiodine. Environ Sci Technol. 2012;46:12890–4.

    Article  CAS  PubMed  Google Scholar 

  85. Doll CG, Sorensen CM, Bowyer TW, Friese JI, Hayes JC, Hoffmann E, et al. Abatement of xenon and iodine emissions from medical isotope production facilities. J Environ Radioact. 2014;130:33–43.

    Article  CAS  PubMed  Google Scholar 

  86. Karpov Institute of Physical Chemistry. Activity report. 2017. http://www.rosatom.ru/upload/iblock/334/334f8a20cd4f2b02cb25e58b48190bd8.pdf. (in Russian). Accessed Jan 2019.

  87. Ageevа NV, Kim VM, Vasilieva KI, Katkova MN, Volokitin AA, Polyanskaya ON. Long-term monitoring airborne I-131 in the surface layer in Obninsk city. Radiation & Risk. 2015;24:96–107.

    Google Scholar 

  88. Masson O, Steinhauser G, Wershofen H, Mietelski JW, Fischer HW, Pourcelot L, et al. Potential source apportionment and meteorological conditions involved in airborne 131I detections in January/February 2017 in Europe. Environ Sci Technol. 2018;52:8488–500.

    Article  CAS  PubMed  Google Scholar 

  89. Schomäcker K, Sudbrock F, Fischer T, Dietlein M, Kobe C, Gaidouk M, et al. Exhalation of 131I after radioiodine therapy: measurements in exhaled air. Eur J Nucl Med Mol Imaging. 2011;38:2165–72.

    Article  PubMed  CAS  Google Scholar 

  90. Sudbrock F, Fischer T, Zimmermanns B, Drzezga A, Schomäcker K. Exhalation of 131I after radioiodine therapy: Dosimetric considerations based on measurements in exhaled air. J Environ Radioact. 2017;166:162–5.

    Article  CAS  PubMed  Google Scholar 

  91. Ravichandran R, Binukumar JP, Al Saadi A. Estimation of effective half life of clearance of radioactive iodine (131I) in patients treated for hyperthyroidism and carcinoma thyroid. Indian Journal of Nuclear Medicine. 2010;25:49–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Willegaignon J, Malvestiti LF, Guimarães MI, Sapienza MT, Endo IS, Neto GC, et al. 131I effective half-life (Teff) for patients with thyroid cancer. Health Phys. 2006;91:119–22.

    Article  CAS  PubMed  Google Scholar 

  93. Yeager CM, Amachi S, Grandbois R, Kaplan DI, Xu C, Schwehr KA, et al. Microbial transformation of iodine: from radioisotopes to iodine deficiency. Adv Appl Microbiol. 2017;101:83–136.

    Article  PubMed  Google Scholar 

  94. Kitto ME, Fielman EM, Fielman SE, Gillen EA. Airborne 131I at a background monitoring site. J Environ Radioact. 2005;83:129–36.

    Article  CAS  PubMed  Google Scholar 

  95. Hormann V, Fischer HW. The physicochemical distribution of 131I in a municipal wastewater treatment plant. Internal report, University of Bremen; 2017. pp. 1–17.

    Article  CAS  PubMed  Google Scholar 

  96. Hormann V, Fischer HW. A simple compartment model for the dynamical behavior of medically derived 131I in a municipal wastewater treatment plant. Environ Sci Technol. 2018;52:9235–42.

    Article  CAS  PubMed  Google Scholar 

  97. Fenner FD, Martin JE. Behavior of Na131I and Meta (131I) Iodobenzylguanidine (MIBG) in municipal sewerage. Health Phys. 1997;73:333–9.

    Article  CAS  PubMed  Google Scholar 

  98. Titley JG, Carey A, Crockett GM, Ham GJ, Harvey MP, Mobbs SF, et al. Investigation of the sources and fate of radioactive discharges to public sewers, environment agency R&D technical report P288. Bristol: Environment Agency; 2000.

    Google Scholar 

  99. Masson O, Baeza A, Bieringer J, Brudecki K, Bucci S, Cappai M, et al. Tracking of airborne radionuclides from the damaged Fukushima Dai-ichi nuclear reactors by European networks. Environ Sci Technol. 2011;45:7670–7.

    Article  CAS  PubMed  Google Scholar 

  100. Kitto ME, Fielman EM, Hartt GM, Gillen EA, Semkow TM, Parekh PP, et al. Long-term monitoring of radioactivity in surface air and deposition in New York state. Health Phys. 2006;90:31–7.

    Article  CAS  PubMed  Google Scholar 

  101. Japan Nuclear Fuel Limited. Reprocessing. 2019. https://www.jnfl.co.jp/en/business/reprocessing/. Accessed Jan 2019.

  102. Reithmeier H, Lazarev V, Rühm W, Nolte E. Anthropogenic 129I in the atmosphere: overview over major sources, transport processes and deposition pattern. Sci Total Environ. 2010;408:5052–64.

    Article  CAS  PubMed  Google Scholar 

  103. Eslinger PW, Napier BA, Anspaugh LR. Representative doses to members of the public from atmospheric releases of 131I at the Mayak production association facilities from 1948 through 1972. J Environ Radioact. 2014;135:44–53.

    Article  CAS  PubMed  Google Scholar 

  104. Xing S, Hou X, Aldahan A, Possnert G, Shi K, Yi P, et al. Iodine-129 in snow and seawater in the Antarctic: level and source. Environ Sci Technol. 2015;49:6691–700.

    Article  CAS  PubMed  Google Scholar 

  105. Orano. Rapport d’information sur la sûreté nucléaire et la radioprotection du site AREVA la Hague (in French). 2014.

    Google Scholar 

  106. Sellafield Ltd. (2015) Monitoring our Environment. Discharges and environmental monitoring. Annual report.

    Google Scholar 

  107. Zhang L, Hou X, Xu S. Speciation of 127I and 129I in atmospheric aerosols at Risø, Denmark: insight into sources of iodine isotopes and their species transformations. Atmos Chem Phys. 2016;16:1971–85.

    Article  CAS  Google Scholar 

  108. Daraoui A, Riebe B, Walther C, Wershofen H, Schlosser C, Vockenhuber C, et al. Concentrations of iodine isotopes (129I and 127I) and their isotopic ratios in aerosol samples from northern Germany. J Environ Radioact. 2016;154:101–8.

    Article  CAS  PubMed  Google Scholar 

  109. Xu S, Freeman SPHT, Hou X, Watanabe A, Yamaguchi K, Zhang L. Iodine isotopes in precipitation: temporal responses to 129I emissions from the Fukushima nuclear accident. Environ Sci Technol. 2013;47:10851–9.

    Article  CAS  PubMed  Google Scholar 

  110. Fuge R. Iodine deficiency: an ancient problem in a modern world. Ambio. 2007;36:70–2.

    Article  CAS  PubMed  Google Scholar 

  111. Hou XL, Dahlgaard H, Nielsen SP, Kucera J. Level and origin of Iodine-129 in the Baltic Sea. J Environ Radioact. 2002;61:331–43.

    Article  CAS  PubMed  Google Scholar 

  112. Nedveckaite T, Motiejunas S, Kucinskas V, Mazeika J, Filistovic V, Jusciene D, et al. Environmental releases of radioactivity and the incidence of thyroid disease at the Ignalina nuclear power plant. Health Phys. 2000;79:666–74.

    Article  CAS  PubMed  Google Scholar 

  113. Borisov NB, Budyka AK, Verbov VV, Ogorodnikov BI. Monitoring of radioiodine in air. J Aerosol Sci. 1994;25:271–2.

    Article  Google Scholar 

  114. Vandecasteele CM, Sonck M, Degueldre D. Rejet accidentel d’iode-131 par l’IRE sur le site de Fleurus: retour d’expérience de l’autorité de sûreté belge. Radioprotection. 2011;46:159–73. (in French)

    Article  CAS  Google Scholar 

  115. European Commission. Technical Report HU-12/01. 2012. https://ec.europa.eu/energy/sites/ener/files/documents/tech_report_hungary_2012_en.pdf. Accessed Jan 2012.

  116. Garland JA. The adsorption of iodine by atmospheric particles. Journal of Nuclear Energy. 1967;21:687–700.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Masson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Masson, O. et al. (2019). Radioiodine Releases in Nuclear Emergency Scenarios. In: Steinhauser, G., Koizumi, A., Shozugawa, K. (eds) Nuclear Emergencies. Current Topics in Environmental Health and Preventive Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-13-8327-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8327-4_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8326-7

  • Online ISBN: 978-981-13-8327-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics