Skip to main content

Recognition of Daily Human Activities Using Accelerometer and sEMG Signals

  • Conference paper
  • First Online:
Intelligent Decision Technologies 2019

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 143))

Abstract

Human activity recognition (HAR) is an important technology for ambient-assisted living, sport and fitness activities, and health care of elderly people. HAR is usually achieved in two steps: acquisition of body signals and classification of performed activities. This paper presents an investigation on the optimal setup for recognizing daily activities using a wearable system designed to acquire surface electromyography (sEMG) and accelerometer signals through wireless sensor nodes placed on the upper limbs of the human body. To evaluate the optimal number of accelerometer and sEMG signals for detecting the user’s activities, data recorded from a few subjects were used to train and test an automatic classifier for recognizing the type of exercise being performed. In this evaluation, that was performed on eight different exercises executed by four subjects, the automatic classifier achieved an overall accuracy ranging from 10.6% to 93.0% according to different selections and combinations of the signals acquired from the sensing nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. United Nations: world population prospects – population division. [Online]. Available: http://esa.un.org/unpd/wpp/. Accessed: 04 Feb 2019

  2. McKhann, G.M., Knopman, D.S., Chertkow, H., Hyman, B.T., Jack, C.R., Kawas, C.H., Klunk, W.E., Koroshetz, W.J., Manly, J.J., Mayeux, R., Mohs, R.C., Morris, J.C., Rossor, M.N., Scheltens, P., Carrillo, M.C., Thies, B., Weintraub, S., Phelps, C.H.: The diagnosis of dementia due to Alzheimer’s disease: recommendations from the national institute on Aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 7(3), 263–269 (2011)

    Article  Google Scholar 

  3. Hazzan, A.A., Ploeg, J., Shannon, H., Raina, P., Oremus, M.: Association between caregiver quality of life and the care provided to persons with Alzheimer’s disease: protocol for a systematic review. Syst. Rev. 2(1), 17 (2013)

    Google Scholar 

  4. Vuong, N.K., Chan, S., Lau, C.T., Chan, S.Y.W., Yap, P.L.K., Chen, A.S.H.: Preliminary results of using inertial sensors to detect dementia-related wandering patterns. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3703–3706. Milan, Italy (2015)

    Google Scholar 

  5. Sánchez, D., Tentori, M., Favela, J.: Activity recognition for the smart hospital. IEEE Intell. Syst. 23(2), 50–57 (2008)

    Article  Google Scholar 

  6. Biagetti, G., Crippa, P., Falaschetti, L., Orcioni, S., Turchetti, C.: Human activity recognition using accelerometer and photoplethysmographic signals. Smart Innov., Syst. Technol. 73, 53–62 (2018)

    Article  Google Scholar 

  7. Mukhopadhyay, S.C.: Wearable sensors for human activity monitoring: a review. IEEE Sens. J. 15(3), 1321–1330 (2015)

    Article  Google Scholar 

  8. Crippa, P., Curzi, A., Falaschetti, L., Turchetti, C.: Multi-class ECG beat classification based on a Gaussian mixture model of Karhunen-Loève transform. Int. J. Simul. Syst., Sci. Technol. 16(1) (2015)

    Google Scholar 

  9. Brunelli, D., Tadesse, A.M., Vodermayer, B., Nowak, M., Castellini, C.: Low-cost wearable multichannel surface EMG acquisition for prosthetic hand control. In: 6th International Workshop on Advances in Sensors and Interfaces, pp. 94–99 (2015)

    Google Scholar 

  10. Biagetti, G., Crippa, P., Curzi, A., Orcioni, S., Turchetti, C.: A multi-class ECG beat classifier based on the truncated KLT representation. In: 2014 European Modelling Symposium, pp. 93–98 (2014)

    Google Scholar 

  11. Biagetti, G., Crippa, P., Falaschetti, L., Turchetti, C.: Classifier level fusion of accelerometer and sEMG signals for automatic fitness activity diarization. Sensors 18(9), 2850 (2018)

    Article  Google Scholar 

  12. Biagetti, G., Crippa, P., Falaschetti, L., Orcioni, S., Turchetti, C.: A portable wireless sEMG and inertial acquisition system for human activity monitoring. Lecture Notes in Computer Science 10209 LNCS, 608–620 (2017)

    Google Scholar 

  13. De Vita, A., Licciardo, G.D., Benedetto, L.D., Pau, D., Plebani, E., Bosco, A.: Low-power design of a gravity rotation module for HAR systems based on inertial sensors. In: IEEE 29th IEEE International Conference on Application-specific Systems, Architectures and Processors, pp. 1–4 (2018)

    Google Scholar 

  14. Yu, H., Cang, S., Wang, Y.: A review of sensor selection, sensor devices and sensor deployment for wearable sensor-based human activity recognition systems. In: 2016 10th International Conference on Software, Knowledge, Information Management Applications, pp. 250–257 (2016)

    Google Scholar 

  15. Bacà, A., Biagetti, G., Camilletti, M., Crippa, P., Falaschetti, L., Orcioni, S., Rossini, L., Tonelli, D., Turchetti, C.: CARMA: A robust motion artifact reduction algorithm for heart rate monitoring from PPG signals. In: 23rd European Signal Processing Conference, pp. 2696–2700 (2015)

    Google Scholar 

  16. Biagetti, G., Crippa, P., Curzi, A., Orcioni, S., Turchetti, C.: Analysis of the EMG signal during cyclic movements using multicomponent AM-FM decomposition. IEEE J. Biomed. Health Inform. 19(5), 1672–1681 (2015)

    Article  Google Scholar 

  17. Naranjo-Hernández, D., Roa, L.M., Reina-Tosina, J., Estudillo-Valderrama, M.A.: SoM: a smart sensor for human activity monitoring and assisted healthy ageing. IEEE Trans. Biomed. Eng. 59(11), 3177–3184 (2012)

    Article  Google Scholar 

  18. Rodriguez-Martin, D., Samà, A., Perez-Lopez, C., Català, A., Cabestany, J., Rodriguez-Molinero, A.: SVM-based posture identification with a single waist-located triaxial accelerometer. Expert. Syst. Appl. 40(18), 7203–7211 (2013)

    Article  Google Scholar 

  19. Mannini, A., Intille, S.S., Rosenberger, M., Sabatini, A.M., Haskell, W.: Activity recognition using a single accelerometer placed at the wrist or ankle. Med. Sci. Sport. Exerc. 45(11), 2193–2203 (2013)

    Article  Google Scholar 

  20. Torres-Huitzil, C., Nuno-Maganda, M.: Robust smartphone-based human activity recognition using a tri-axial accelerometer. In: 2015 IEEE 6th Latin American Symposium on Circuits Systems, pp. 1–4 (2015)

    Google Scholar 

  21. Miao, F., He, Y., Liu, J., Li, Y., Ayoola, I.: Identifying typical physical activity on smartphone with varying positions and orientations. BioMedical Eng. Online 14(1) (2015)

    Google Scholar 

  22. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: Energy efficient smartphone-based activity recognition using fixed-point arithmetic. J. Univers. Comput. Sci. 19(9), 1295–1314 (2013)

    Google Scholar 

  23. Dernbach, S., Das, B., Krishnan, N.C., Thomas, B.L., Cook, D.J.: Simple and complex activity recognition through smart phones. In: 8th International Conference on Intelligent Environments, pp. 214–221 (2012)

    Google Scholar 

  24. Khan, A.M., Lee, Y.K., Lee, S.Y., Kim, T.S.: Human activity recognition via an accelerometer-enabled-smartphone using kernel discriminant analysis. In: 2010 5th International Conference on Future Information Technology, pp. 1–6 (2010)

    Google Scholar 

  25. Biagetti, G., Crippa, P., Falaschetti, L., Orcioni, S., Turchetti, C.: An efficient technique for real-time human activity classification using accelerometer data. In: Intelligent Decision Technologies, pp. 425–434. Springer International Publishing, Cham, Switzerland (2016)

    Chapter  Google Scholar 

  26. Mannini, A., Sabatini, A.M.: Machine learning methods for classifying human physical activity from on-body accelerometers. Sensors 10(2), 1154–1175 (2010)

    Article  Google Scholar 

  27. Catal, C., Tufekci, S., Pirmit, E., Kocabag, G.: On the use of ensemble of classifiers for accelerometer-based activity recognition. Appl. Soft Comput. 37, 1018–1022 (2015)

    Article  Google Scholar 

  28. Biagetti, G., Crippa, P., Falaschetti, L., Orcioni, S., Turchetti, C.: A rule based framework for smart training using sEMG signal. In: Intelligent Decision Technologies. Smart Innovation, Systems and Technologies, vol. 39, pp. 89–99. Springer International Publishing, Cham, Switzerland (2015)

    Chapter  Google Scholar 

  29. Lee, S.Y., Koo, K.H., Lee, Y., Lee, J.H., Kim, J.H.: Spatiotemporal analysis of EMG signals for muscle rehabilitation monitoring system. In: 2013 IEEE 2nd Global Conference on Consumer Electronics, pp. 1–2 (2013)

    Google Scholar 

  30. Chang, K.M., Liu, S.H., Wu, X.H.: A wireless sEMG recording system and its application to muscle fatigue detection. Sensors 12(1), 489–499 (2012)

    Article  Google Scholar 

  31. Fukuda, T.Y., Echeimberg, J.O., Pompeu, J.E., Lucareli, P.R.G., Garbelotti, S., Gimenes, R., Apolinário, A.: Root mean square value of the electromyographic signal in the isometric torque of the quadriceps, hamstrings and brachial biceps muscles in female subjects. J. Appl. Res. 10(1), 32–39 (2010)

    Google Scholar 

  32. Pantelopoulos, A., Bourbakis, N.: A survey on wearable biosensor systems for health monitoring. In: 30th Annual International Conference on IEEE Engineering in Medicine and Biology Society. pp. 4887–4890 (2008)

    Google Scholar 

  33. Biagetti, G., Crippa, P., Orcioni, S., Turchetti, C.: Homomorphic deconvolution for MUAP estimation from surface EMG signals. IEEE J. Biomed. Health Inform. 21(2), 328–338 (2017)

    Article  Google Scholar 

  34. Biagetti, G., Crippa, P., Orcioni, S., Turchetti, C.: Surface EMG fatigue analysis by means of homomorphic deconvolution. In: Mobile Networks for Biometric Data Analysis, pp. 173–188. Springer International Publishing, Cham, Switzerland (2016)

    Chapter  Google Scholar 

  35. Biagetti, G., Crippa, P., Falaschetti, L., Orcioni, S., Turchetti, C.: Wireless surface electromyograph and electrocardiograph system on 802.15.4. IEEE Trans. Consum. Electron. 62(3), 258–266 (2016)

    Article  Google Scholar 

  36. Biagetti, G., Crippa, P., Falaschetti, L., Orcioni, S., Turchetti, C.: Human activity monitoring system based on wearable sEMG and accelerometer wireless sensor nodes. BioMedical Eng. Online 17(1), 132 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a Università Politecnica delle Marche Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Crippa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Biagetti, G., Crippa, P., Falaschetti, L., Luzzi, S., Turchetti, C. (2019). Recognition of Daily Human Activities Using Accelerometer and sEMG Signals. In: Czarnowski, I., Howlett, R., Jain, L. (eds) Intelligent Decision Technologies 2019. Smart Innovation, Systems and Technologies, vol 143. Springer, Singapore. https://doi.org/10.1007/978-981-13-8303-8_4

Download citation

Publish with us

Policies and ethics