Skip to main content

Oxidant Stress in Atherosclerosis: Oxidatively Modified LDL and LOX-1

  • Chapter
  • First Online:
Oxidative Stress in Heart Diseases

Abstract

Oxidative stress, implying an imbalance between oxidant and anti-oxidant species, is present in the atherosclerotic regions and plays a significant role in the pathogenesis of atherosclerosis and its complications. Recent studies have demonstrated an association between increased oxidative stress and diabetes, hypertension, cigarette smoking and dyslipidemia, which are well known risk factors for atherosclerosis. The endothelial cells, the primary cell line to become dysfunctional early in the course of atherosclerosis internalizes ox-LDL mainly through its receptor LOX-1 which is responsible for many of the downstream effects on smooth muscle cell ans monocyte biology. Inhibition of LOX-1 by gene deletion significantly reduces atherogenesis in animal models. Many of the currently used drugs modulate atherosclerosis by their action on LOX-1 receptor. New molecules that modulate LOX-1 are currently under investigation. sLOX-1 is a potential biomarker in acute coronary injury and further studies needs to be done before it can be put to clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hansson GK, Hermansson A (2011) The immune system in atherosclerosis. Nat Immunol 12(3):204–212

    Article  CAS  PubMed  Google Scholar 

  2. Yoshimoto R, Fujita Y, Kakino A, Iwamoto S, Takaya T, Sawamura T (2011) The discovery of LOX-1, its ligands and clinical significance. Cardiovasc Drugs Ther 25(5):379–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Libby P (2002) Inflammation in atherosclerosis. Nature 420(6917):868–874

    Article  CAS  PubMed  Google Scholar 

  4. Parthasarathy S, Raghavamenon A, Garelnabi MO, Santanam N (2010) Oxidized low-density lipoprotein. Methods Mol Biol (Clifton, N.J.) 610:403

    Article  CAS  Google Scholar 

  5. Sawamura T, Kume N, Aoyama T, Moriwaki H, Hoshikawa H, Aiba Y et al (1997) An endothelial receptor for oxidized low-density lipoprotein. Nature 386(6620):73

    Article  CAS  PubMed  Google Scholar 

  6. Aoyama T, Sawamura T, Furutani Y, Matsuoka R, Yoshida MC, Fujiwara H et al (1999) Structure and chromosomal assignment of the human lectin-like oxidized low-density-lipoprotein receptor-1 (LOX-1) gene. Biochem J 339(Pt 1):177–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kattoor AJ, Kanuri SH, Mehta JL (2018) Role of Ox-LDL and LOX-1 in atherogenesis. Curr Med Chem

    Google Scholar 

  8. Matarazzo S, Quitadamo MC, Mango R, Ciccone S, Novelli G, Biocca S (2012) Cholesterol-lowering drugs inhibit lectin-like oxidized low-density lipoprotein-1 receptor function by membrane raft disruption. Mol Pharmacol 82(2):246–254

    Article  CAS  PubMed  Google Scholar 

  9. Pirillo A, Norata GD, Catapano AL (2013) LOX-1, OxLDL, and atherosclerosis. Mediators Inflamm 2013:152786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xu S, Ogura S, Chen J, Little PJ, Moss J, Liu P (2013) LOX-1 in atherosclerosis: biological functions and pharmacological modifiers. Cell Mol Life Sci 70(16):2859–2872

    Article  CAS  PubMed  Google Scholar 

  11. Li D, Mehta JL (2000) Antisense to LOX-1 inhibits oxidized LDL-mediated upregulation of monocyte chemoattractant protein-1 and monocyte adhesion to human coronary artery endothelial cells. Circulation 101(25):2889–2895

    Article  CAS  PubMed  Google Scholar 

  12. Chen J, Mehta JL, Haider N, Zhang X, Narula J, Li D (2004) Role of caspases in Ox-LDL-induced apoptotic cascade in human coronary artery endothelial cells. Circ Res 94(3):370–376

    Article  CAS  PubMed  Google Scholar 

  13. Salvayre R, Auge N, Benoist H, Negre-Salvayre A (2002) Oxidized low-density lipoprotein-induced apoptosis. Biochim Biophys Acta 1585(2-3):213–221

    Article  CAS  PubMed  Google Scholar 

  14. Pernow J, Shemyakin A, Böhm F (2012) New perspectives on endothelin-1 in atherosclerosis and diabetes mellitus. Life Sci 91(13–14):507–516

    Article  CAS  PubMed  Google Scholar 

  15. Li D, Singh RM, Liu L, Chen H, Singh BM, Kazzaz N et al (2003) Oxidized-LDL through LOX-1 increases the expression of angiotensin converting enzyme in human coronary artery endothelial cells. Cardiovasc Res 57(1):238–243

    Article  CAS  PubMed  Google Scholar 

  16. Morawietz H, Rueckschloss U, Niemann B, Duerrschmidt N, Galle J, Hakim K et al (1999) Angiotensin II induces LOX-1, the human endothelial receptor for oxidized low-density lipoprotein. Circulation 100(9):899–902

    Article  CAS  PubMed  Google Scholar 

  17. Ryoo S, Bhunia A, Chang F, Shoukas A, Berkowitz DE, Romer LH (2011) OxLDL-dependent activation of arginase II is dependent on the LOX-1 receptor and downstream RhoA signaling. Atherosclerosis 214(2):279–287

    Article  CAS  PubMed  Google Scholar 

  18. Rueckschloss U, Galle J, Holtz J, Zerkowski HR, Morawietz H (2001) Induction of NAD(P)H oxidase by oxidized low-density lipoprotein in human endothelial cells: antioxidative potential of hydroxymethylglutaryl coenzyme A reductase inhibitor therapy. Circulation 104(15):1767–1772

    Article  CAS  PubMed  Google Scholar 

  19. Khaidakov M, Wang X, Mehta JL (2011) Potential involvement of LOX-1 in functional consequences of endothelial senescence. PLoS One 6(6):e20964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang H, Bian Y, Zhang H, Gao F, Xiao C, Liang B et al (2015) LOX-1 is implicated in oxidized low-density lipoprotein-induced oxidative stress of macrophages in atherosclerosis. Mol Med Rep 12(4):5335–5341

    Article  CAS  PubMed  Google Scholar 

  21. Wang X, Ding Z, Lin J, Guo Z, Mehta JL (2015) LOX-1 in macrophage migration in response to ox-LDL and the involvement of calpains. Biochem Biophys Res Commun 467(1):135–139

    Article  CAS  PubMed  Google Scholar 

  22. Eto H, Miyata M, Kume N, Minami M, Itabe H, Orihara K et al (2006) Expression of lectin-like oxidized LDL receptor-1 in smooth muscle cells after vascular injury. Biochem Biophys Res Commun 341(2):591–598

    Article  CAS  PubMed  Google Scholar 

  23. Zhang Y, Chen B, Ming L, Qin H, Zheng L, Yue Z et al (2015) MicroRNA-141 inhibits vascular smooth muscle cell proliferation through targeting PAPP-A. Int J Clin Exp Pathol 8(11):14401

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Goyal T, Mitra S, Khaidakov M, Wang X, Singla S, Ding Z et al (2012) Current concepts of the role of oxidized LDL receptors in atherosclerosis. Curr Atheroscler Rep 14(2):150–159

    Article  CAS  Google Scholar 

  25. Kataoka H, Kume N, Miyamoto S, Minami M, Morimoto M, Hayashida K et al (2001 Jun) Oxidized LDL modulates Bax/Bcl-2 through the lectinlike Ox-LDL receptor-1 in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 21(6):955–960

    Article  CAS  PubMed  Google Scholar 

  26. Yang H, Mohamed ASS, Zhou S-H (2012) Oxidized low density lipoprotein, stem cells, and atherosclerosis. Lipids Health Dis 11(1):85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yeung J, Li W, Holinstat M (2018) Platelet signaling and disease: targeted therapy for thrombosis and other related diseases. Pharmacol Rev 70(3):526–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen M, Kakutani M, Naruko T, Ueda M, Narumiya S, Masaki T et al (2001) Activation-dependent surface expression of LOX-1 in human platelets. Biochem Biophys Res Commun 282(1):153–158

    Article  CAS  PubMed  Google Scholar 

  29. Marwali MR, Hu C, Mohandas B, Dandapat A, Deonikar P, Chen J et al (2007) Modulation of ADP-induced platelet activation by aspirin and pravastatin: role of lectin-like oxidized low-density lipoprotein receptor-1, nitric oxide, oxidative stress, and inside-out integrin signaling. J Pharmacol Exp Ther 322(3):1324–1332

    Article  CAS  PubMed  Google Scholar 

  30. Sakurai K, Cominacini L, Garbin U, Fratta Pasini A, Sasaki N, Takuwa Y et al (2004) Induction of endothelin-1 production in endothelial cells via co-operative action between CD40 and lectin-like oxidized LDL receptor (LOX-1). J Cardiovasc Pharmacol 44(Suppl 1):173

    Article  Google Scholar 

  31. Yang S, Li Y, Du D (2013) Oxidized low-density lipoprotein-induced CD147 expression and its inhibition by high-density lipoprotein on platelets in vitro. Thromb Res 132(6):702–711

    Article  CAS  PubMed  Google Scholar 

  32. Yavuzer S, Yavuzer H, Cengiz M, Erman H, Altıparmak MR, Korkmazer B et al (2015) Endothelial damage in white coat hypertension: role of lectin-like oxidized low-density lipoprotein-1. J Hum Hypertens 29(2):92–98

    Article  CAS  PubMed  Google Scholar 

  33. Takanabe-Mori R, Ono K, Wada H, Takaya T, Ura S, Yamakage H et al (2013) Lectin-like oxidized low-density lipoprotein receptor-1 plays an important role in vascular inflammation in current smokers. J Atheroscler Thromb 20(6):585–590

    Article  CAS  PubMed  Google Scholar 

  34. Tan KCB, Shiu SWM, Wong Y, Leng L, Bucala R (2008) Soluble lectin-like oxidized low density lipoprotein receptor-1 in type 2 diabetes mellitus. J Lipid Res 49(7):1438–1444

    Article  CAS  PubMed  Google Scholar 

  35. Civelek S, Kutnu M, Uzun H, Erdenen F, Altunoglu E, Andican G et al (2015) Soluble lectin-like oxidized LDL receptor 1 as a possible mediator of endothelial dysfunction in patients with metabolic syndrome. J Clin Lab Anal 29(3):184–190

    Article  CAS  PubMed  Google Scholar 

  36. Hayashida K, Kume N, Murase T, Minami M, Nakagawa D, Inada T et al (2005) Serum soluble lectin-like oxidized low-density lipoprotein receptor-1 levels are elevated in acute coronary syndrome: a novel marker for early diagnosis. Circulation 112(6):812–818

    Article  CAS  PubMed  Google Scholar 

  37. Misaka T, Suzuki S, Sakamoto N, Yamaki T, Sugimoto K, Kunii H et al (2014) Significance of soluble lectin-like oxidized LDL receptor-1 levels in systemic and coronary circulation in acute coronary syndrome. Biomed Res Int 2014:649185

    Article  PubMed  PubMed Central  Google Scholar 

  38. Balin M, Celik A, Kobat MA, Baydas A (2012) Circulating soluble lectin-like oxidized low-density lipoprotein receptor-1 levels predict percutaneous coronary intervention-related periprocedural myocardial infarction in stable patients undergoing elective native single-vessel PCI. J Thromb Thrombolysis 34(4):483–490

    Article  CAS  PubMed  Google Scholar 

  39. Liu J, Liu Y, Jia K, Huo Z, Huo Q, Liu Z et al (2018) Clinical analysis of lectin-like oxidized low-density lipoprotein receptor-1 in patients with in-stent restenosis after percutaneous coronary intervention. Medicine (Baltimore) 97(17):e0366

    Article  CAS  Google Scholar 

  40. Ou H, Lee W, Lee I-, Chiu T, Tsai K, Lin C, et al. Ginkgo biloba extract attenuates oxLDL-induced oxidative functional damages in endothelial cells. J Appl Physiol 2009;106(5):1674-1685.

    Article  CAS  PubMed  Google Scholar 

  41. Kang B, Khan JA, Ryu S, Shekhar R, Seung K, Mehta JL (2010) Curcumin reduces angiotensin II-mediated cardiomyocyte growth via LOX-1 inhibition. J Cardiovasc Pharmacol 55(2):176–183

    CAS  PubMed  Google Scholar 

  42. Mollace V, Ragusa S, Sacco I, Muscoli C, Sculco F, Visalli V et al (2008) The protective effect of bergamot oil extract on lecitine-like oxyLDL receptor-1 expression in balloon injury-related neointima formation. J Cardiovasc Pharmacol Ther 13(2):120–129

    Article  PubMed  Google Scholar 

  43. Zeya B, Arjuman A, Chandra NC (2016) Lectin-like oxidized low-density lipoprotein (LDL) receptor (LOX-1): a chameleon receptor for oxidized LDL. Biochemistry 55(32):4437–4444

    Article  CAS  PubMed  Google Scholar 

  44. Mehta JL, Chen J, Yu F, Li DY (2004) Aspirin inhibits ox-LDL-mediated LOX-1 expression and metalloproteinase-1 in human coronary endothelial cells. Cardiovasc Res 64(2):243–249

    Article  CAS  PubMed  Google Scholar 

  45. Li D, Chen H, Romeo F, Sawamura T, Saldeen T, Mehta JL (2002) Statins modulate oxidized low-density lipoprotein-mediated adhesion molecule expression in human coronary artery endothelial cells: role of LOX-1. J Pharmacol Exp Ther 302(2):601–605

    Article  CAS  PubMed  Google Scholar 

  46. Falconi M, Ciccone S, D’Arrigo P, Viani F, Sorge R, Novelli G et al (2013) Design of a novel LOX-1 receptor antagonist mimicking the natural substrate. Biochem Biophys Res Commun 438(2):340–345

    Article  CAS  PubMed  Google Scholar 

  47. Thakkar S, Wang X, Khaidakov M, Dai Y, Gokulan K, Mehta JL et al (2015) Structure-based design targeted at LOX-1, a receptor for oxidized low-density lipoprotein. Sci Rep 5:16740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ding Z, Wang X, Khaidakov M, Liu S, Mehta JL (2012) MicroRNA hsa-let-7g targets lectin-like oxidized low-density lipoprotein receptor-1 expression and inhibits apoptosis in human smooth muscle cells. Exp Biol Med (Maywood) 237(9):1093–1100

    Article  CAS  Google Scholar 

  49. Dai Y, Wu X, Dai D, Li J, Mehta JL (2018) MicroRNA-98 regulates foam cell formation and lipid accumulation through repression of LOX-1. Redox Biol 6(16):255–262

    Article  CAS  Google Scholar 

  50. Amati F, Diano L, Vecchione L, Norata GD, Koyama Y, Cutuli L et al (2012) LOX-1 inhibition in ApoE KO mice using a schizophyllan-based antisense oligonucleotide therapy. Mol Ther Nucleic Acids 1:e58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sugimoto K, Ishibashi T, Sawamura T, Inoue N, Kamioka M, Uekita H et al (2009) LOX-1-MT1-MMP axis is crucial for RhoA and Rac1 activation induced by oxidized low-density lipoprotein in endothelial cells. Cardiovasc Res 84(1):127–136

    Article  CAS  PubMed  Google Scholar 

  52. Pothineni NVK, Karathanasis SK, Ding Z, Arulandu A, Varughese KI, Mehta JL (2017) LOX-1 in atherosclerosis and myocardial ischemia: biology, genetics, and modulation. J Am Coll Cardiol 69(22):2759–2768

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of Interest

None

Funding/Declarations

Self/None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jawahar L. Mehta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kattoor, A.J., Mehta, J.L. (2019). Oxidant Stress in Atherosclerosis: Oxidatively Modified LDL and LOX-1. In: Chakraborti, S., Dhalla, N., Ganguly, N., Dikshit, M. (eds) Oxidative Stress in Heart Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-13-8273-4_15

Download citation

Publish with us

Policies and ethics