A Hardware-in-a-Loop Setup for Benchmarking Robot Controllers

  • Shiladitya BiswasEmail author
  • Arun Dayal Udai
  • Gaurav Kumar
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 988)


Modeling robot controllers for simulation poses great difficulty due to its complex electronic structure, embedded systems, associated power systems, actuators and its drives. This restricts testing of such controllers offline using simulation. This paper proposes a Hardware-in-a-Loop simulation technique to test a live robot controller using a virtual model of the robot running on a standard computer. For any given test condition applied on the robot, the virtual robot running on computer computes the instantaneous joint torque using an efficient inverse dynamic algorithm in real time. This load is transferred to the real hardware using a torque emulator coupled to the real test actuators. This paper demonstrates using the proposed method to test a standard robot controller for a two-degree-of-freedom (DoF) robot manipulator, which can be extended to multi-degree-of-freedom robots.


Hardware-in-Loop Robot controllers benchmarking 


  1. 1.
    J.A. Ledin, Hardware-in-the-loop simulation. Embed. Syst. Prog. 12(2), 42–53 (1999)Google Scholar
  2. 2.
    S. Wheelright, K. Clark, Revolutionizing Product Development-Quantum Leaps in Speed, Efficiency and Quality (The Free Press, New York, 1992)Google Scholar
  3. 3.
    P.T. Faithfull, R.J. Ball, R.P. Jones, An investigation into the use of hardware-in-the-loop simulation with a scaled physical prototype as an aid to design, Ph.D. dissertation, 2001Google Scholar
  4. 4.
    K. Ulrich, S. Eppinger, Product Design and Development, 3rd ed. McGraw-HillGoogle Scholar
  5. 5.
    A. Martin, M. Emami, An architecture for robotic hardware-in-the-loop simulation, in IEEE International Conference on Mechatronics and Automation (2006), pp. 2162–2167Google Scholar
  6. 6.
    H. Hanselman, Hardware-in-the-loop simulation testing and its integration into a cacsd toolset. IEEE Int. Symp. Comput.-Aided Control Syst. Des. 4(2), 15–18 (1996)Google Scholar
  7. 7.
    G. Stoeppler, T. Menzel, S. Douglas, Hardware-in-the-loop simulation of machine tools and manufacturing systems. Comput. Control Eng. J. 6(1), 10–15 (2005)CrossRefGoogle Scholar
  8. 8.
    J. Leitner (ed.), Space Technology Transition Using Hardware in the Loop SimulationGoogle Scholar
  9. 9.
    M. Linjama, T. Virvalo, J.Gustafsson, J. Lintula, V. Aaltonen, M. Kivikoski, Hardware-in-the-loop environment for servo system controller design, tuning, and testing. Microprocess. Microsyst. 24(1), 13–21 (2000)CrossRefGoogle Scholar
  10. 10.
    B.L. Ballard, R.E. Elwell Jr., R.C. Gettier, F.P. Horan, A.F. Krummenoehl, D.B. Schepleng, Simulation approaches for supporting tactical system development. John Hopkins APL Tech. Digest (Appl. Phys. Lab.)Google Scholar
  11. 11.
    R. Isermann, J. Schaffnit, S. Sinsel, Hardware-in-the-loop simulation for the design and testing of engine-control systems. Control Eng. Pract. 7, 643–653 (1999)CrossRefGoogle Scholar
  12. 12.
    O. Gietelink, J. Ploeg, B.D. Schutter, M. Verhaegen, Development of advanced driver assistance systems with vehicle hardware-in-the-loop simulations. Veh. Syst. Dyn. 44(7), 569590 (2006)CrossRefGoogle Scholar
  13. 13.
    J.-C. Piedbmuf, Carufel, F. Aghili, and E. Dupuis, Task verification facility for the Canadian special purpose dextrous manipulator, in IEEE International Conference on Robotics & Automation (1999), pp. 1077–1083Google Scholar
  14. 14.
    A. Martin, M.R. Emami, Dynamic load emulation in hardware-in-the-loop simulation of robot manipulatorse. IEEE Transac. Indus. Electron. 58(7), 2980–2987 (2011)CrossRefGoogle Scholar
  15. 15.
    J. Angeles, Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms (Springer-Verlag, New York, 2003)CrossRefGoogle Scholar
  16. 16.
    S.K. Saha, S.V. Shah, P.V. Nandihal, Evolution of the DeNOC-based dynamic modelling for multibody systems. Open Access J. Mech. Sci. 4, 1–20 (2013)Google Scholar
  17. 17.
    A. Agarwal, S.V. Shah, S. Bandyopadhyay, S.K. Saha, Dynamics of serial kinematic chains with large number of degrees-of-freedom. Int. J. Multibody Syst. Dyn. (2013)Google Scholar
  18. 18.
    R. Featherstone, A. Fijany, A technique for analyzing constrained rigid-body systems and its application to the constraint force algorithm. IEEE Trans. Robot. Automat. 15, 1140–1144 (1999)CrossRefGoogle Scholar
  19. 19.
    A.D. Udai, S.K. Saha, "Dynamic simulation of serial robots under force control. Int. J. Intell. Mach. Robot. 1(1), 79–108 (2018)Google Scholar
  20. 20.
    S.K. Saha, Introduction to Robotics, 2nd ed. (Mc-Graw Hill, New Delhi, 2014)Google Scholar
  21. 21.
    J. Angeles, S. Lee, The formulation of dynamical equations of holonomic mechanical systems using a natural orthogonal complement. ASME J. Appl. Mech. 55, 243–244 (1988)CrossRefGoogle Scholar
  22. 22.
    S.K. Saha, Dynamics of serial multibody systems using the decoupled natural orthogonal complement matrices. J. Appl. Mech., ASME 66, 986–996 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Shiladitya Biswas
    • 1
    Email author
  • Arun Dayal Udai
    • 1
  • Gaurav Kumar
    • 1
  1. 1.Birla Institute of TechnologyRanchiIndia

Personalised recommendations