Skip to main content

Introduction

  • Chapter
  • First Online:
  • 569 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Plasma turbulence is ubiquitous in space and astrophysical flows. For example, the solar wind emitting from the sun into interplanetary space, one of the most studied natural plasmas, is in a turbulent state.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alexakis A, Bigot B, Politano H, Galtier S (2007) Anisotropic fluxes and nonlocal interactions in magnetohydrodynamic turbulence. Phys Rev E 76:056,313

    Google Scholar 

  2. Alexakis A, Mininni PD, Pouquet A (2005) Shell-to-shell energy transfer in magnetohydrodynamics. I. Steady state turbulence. Phys Rev E 72:046,301

    Google Scholar 

  3. Alexakis A, Mininni PD, Pouquet A (2007) Turbulent cascades, transfer, and scale interactions in magnetohydrodynamics. New J Phys 9:298

    Article  Google Scholar 

  4. Alexandrova O, Lacombe C, Mangeney A, Grappin R, Maksimovic M (2012) Solar wind turbulent spectrum at plasma kinetic scales. Astrophys J 760(2):121

    Article  ADS  Google Scholar 

  5. Alexandrova O, Saur J, Lacombe C, Mangeney A, Mitchell J, Schwartz SJ, Robert P (2009) University of solar wind turbulent spectrum from MHD to electron scales. Phys Rev Lett 103:165,003

    Google Scholar 

  6. Aluie H (2011) Compressible turbulence: the cascade and its locality. Phys Rev Lett 106:174,502

    Google Scholar 

  7. Aluie H, Eyink GL (2009) Localness of energy cascade in hydrodynamic turbulence. II. Sharp-spectral filter. Phys Fluids 21:115,108

    Article  ADS  MATH  Google Scholar 

  8. Aluie H, Eyink GL (2010) Scale locality of magnetohydrodynamic turbulence. Phys Rev Lett 104:081,101

    Google Scholar 

  9. Anselmet F, Gagne Y, Hopfinger E, Antonia R (1984) High-order velocity structure functions in turbulent shear flows. J Fluid Mech 140:63–89

    Article  ADS  Google Scholar 

  10. Axford W (1969) Acceleration of cosmic rays by shock waves. In: Invited Papers. Springer, pp 155–203

    Google Scholar 

  11. Balsara DS (2009) Divergence-free reconstruction of magnetic fields and WENO schemes for magnetohydrodynamics. J Comput Phys 228:5040–5056

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Balsara DS, Kim J (2004) A comparison between divergence-cleaning and staggered-mesh formulations for numerical magnetohydrodynamics. Astrophys J 602:1079–1090

    Article  ADS  Google Scholar 

  13. Balsara DS, Meyer C, Dumbser M, Du H, Xu Z (2013) Efficient implementation of ADER schemes for Euler and magnetohydrodynamical flows on structured meshes—speed comparisons with runge-kutta methods. J Comput Phys 235:934–969

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Balsara DS, Rumpf T, Dumbser M, Munz CD (2009) Efficient, high accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics. J Comput Phys 228:2480–2516

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Balsara DS, Shu CW (2000) Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J Comput Phys 169:405–452

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Balsara DS, Spicer DS (1999) A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations. J Comput Phys 149:270–292

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Bandyopadhyay R, Chasapis A, Chhiber R, Parashar T, Maruca B, Matthaeus W, Schwartz S, Eriksson S, Le Contel O, Breuillard H et al (2018) Solar wind turbulence studies using mms fast plasma investigation data. Astrophys J 866(2):81

    Article  ADS  Google Scholar 

  18. Bell A (1978) The acceleration of cosmic rays in shock fronts-i. Month Not Royal Astron Soc 182(2):147–156

    Article  ADS  Google Scholar 

  19. Birdsall CK, Langdon AB (2004) Plasma physics via computer simulation. CRC Press

    Google Scholar 

  20. Biskamp D (2003) Magnetohydrodynamic turbulence. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  21. Boldyrev S (2005) On the spectrum of magnetohydrodynamic turbulence. Astrophys J Lett 626(1):L37

    Article  ADS  Google Scholar 

  22. Brackbill JU, Barnes DC (1980) The effect of nonzero \(\nabla \cdot \mathbf{B}\) on the numerical solution of the magnetohydrodynamic equations. J Comput Phys 35:426–430

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Brio M, Wu CC (1988) An upwind differencing scheme for the equations of ideal magnetohydrodynamics. J Comput Phys 75:400–422

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Carati D, Debliquy O, Knaepen B, Teaca B, Verma M (2006) Energy transfers in forced MHD turbulence. J Turbul 7:51

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Chasapis A, Matthaeus W, Parashar T, Wan M, Haggerty C, Pollock C, Giles B, Paterson W, Dorelli J, Gershman D et al (2018) In situ observation of intermittent dissipation at kinetic scales in the earth’s magnetosheath. Astrophys J Lett 856(1):L19

    Article  ADS  Google Scholar 

  26. Cho J (2010) Non-locality of hydrodynamic and magnetohydrodynamic turbulence. Astrophys J 725:1786–1791

    Article  ADS  Google Scholar 

  27. Cho J, Vishniac ET (2000) The anisotropy of magnetohydrodynamic Alfvénic turbulence. Astrophys J 539:273–282

    Article  ADS  Google Scholar 

  28. Christlieb AJ, Rossmanith JA, Tang Q (2014) Finite difference weighted essentially non-oscillatory schemes with constrained transport for ideal magnetohydrodynamics. J Comput Phys 268:302–325

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Coburn JT, Forman MA, Smith CW, Vasquez BJ, Stawarz JE (2015) Third-moment descriptions of the interplanetary turbulent cascade, intermittency and back transfer. Phil Trans R Soc A 373:20140,150

    Article  ADS  Google Scholar 

  30. Coleman PJ Jr (1968) Turbulence, viscosity, and dissipation in the solar-wind plasma. Astrophys J 153:371–388

    Article  ADS  Google Scholar 

  31. Cook AW, Cabot WH (2004) A high-wavenumber viscosity for high-resolution numerical methods. J Comput Phys 195:594–601

    Article  ADS  MATH  Google Scholar 

  32. Cook AW, Cabot WH (2005) Hyperviscosity for shock-turbulence interactions. J Comput Phys 203:379–385

    Article  ADS  MATH  Google Scholar 

  33. Dai W, Woodward PR (1994) Extension of the piecewise parabolic method to multidimensional ideal magnetohydrodynamics. J Comput Phys 115:485–514

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Dar G, Verma MK, Eswaran V (2001) Energy transfer in two-dimensional magnetohydrodynamic turbulence: formalism and numerical results. Phys D 157:207–225

    Article  MATH  Google Scholar 

  35. Debliquy O, Verma MK, Carati D (2005) Energy fluxes and shell-to-shell transfers in three-dimensional decaying magnetohydrodynamics turbulence. Phys Plasmas 12:042,309

    Article  ADS  Google Scholar 

  36. Dedner A, Kemm E, Kröner D, Munz CD, Schnitzer T, Wesenberg M (2002) Hyperbolic divergence cleaning for the MHD equations. J Comput Phys 175:645–673

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Devore CR (1991) Flux-corrected transport techniques for multidimensional compressible magnetohydrodynamics. J Comput Phys 92:142–160

    Article  ADS  MATH  Google Scholar 

  38. Dmitruk P, Matthaeus WH, Seenu N (2004) Test particle energization by current sheets and nonuniform fields in magnetohydrodynamic turbulence. Astrophys J 617:667–679

    Article  ADS  Google Scholar 

  39. Domaradzki JA (1988) Analysis of energy transfer in direct numerical simulations of isotropic turbulence. Phys Fluids 31:2747

    Article  ADS  MATH  Google Scholar 

  40. Domaradzki JA, Carati D (2007) An analysis of the energy transfer and the locality of nonlinear interactions in turbulence. Phys Fluids 19:085,112

    Article  ADS  MATH  Google Scholar 

  41. Domaradzki JA, Carati D (2007) A comparison of spectral sharp and smooth filters in the analysis of nonlinear interactions and energy transfer in turbulence. Phys Fluids 19:085,111

    Article  ADS  MATH  Google Scholar 

  42. Domaradzki JA, Rogallo RS (1990) Local energy transfer and nonlocal interactions in homogeneous, isotropic turbulence. Phys Fluids A 2:413

    Article  ADS  Google Scholar 

  43. Domaradzki JA, Teaca B, Carati D (2010) Locality properties of the energy flux in magnetohydrodynamic turbulence. Phys Fluids 22:051,702

    Article  ADS  MATH  Google Scholar 

  44. Drury LO (1983) An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas. Reports Progress Phys 46(8):973

    Article  ADS  Google Scholar 

  45. Ergun R, Goodrich K, Wilder F, Ahmadi N, Holmes J, Eriksson S, Stawarz J, Nakamura R, Genestreti K, Hesse M et al (2018) Magnetic reconnection, turbulence, and particle acceleration: Observations in the earth’s magnetotail. Geophys Res Lett 45(8):3338–3347

    Article  ADS  Google Scholar 

  46. Evans CR, Hawley JF (1988) Simulation of magnetohydrodynamic flows: a constrained transport method. Astrophys J 332:659–677

    Article  ADS  Google Scholar 

  47. Eyink GL (1994) Energy dissipation without viscosity in ideal hydrodynamics I. Fourier analysis and local energy transfer. Phys D 78:222–240

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Eyink GL (2005) Locality of turbulent cascades. Phys D 207:91–116

    Article  MathSciNet  MATH  Google Scholar 

  49. Eyink GL, Aluie H (2009) Localness of energy cascade in hydrodynamic turbulence. I. Smooth coarse graining. Phys Fluids 21:115,107

    Article  ADS  MATH  Google Scholar 

  50. Fisk LA, Gloeckler G (2012) Particle acceleration in the heliosphere: implications for astrophysics. Space Sci Rev 173:433–458

    Article  ADS  Google Scholar 

  51. Frisch U (1995) Turbulence. The legacy of A. N, Kolmogorov

    Google Scholar 

  52. Frisch U, Sulem PL, Nelkin M (1978) A simple dynamical model of intermittent fully developed turbulence. J Fluid Mech 87(4):719–736

    Article  ADS  MATH  Google Scholar 

  53. Fu H, Vaivads A, Khotyaintsev YV, André M, Cao J, Olshevsky V, Eastwood J, Retino A (2017) Intermittent energy dissipation by turbulent reconnection. Geophys Res Lett 44(1):37–43

    Article  ADS  Google Scholar 

  54. Gaitonde DV (2001) Higher-order solution procedure for three-dimensional nonideal magnetogasdynamics. AIAA J 39:2111–2120

    Article  ADS  Google Scholar 

  55. Gaitonde DV, Visbal MR (1998) High-order schemes for Navier-Stokes equations: algorithm and implementation into FDL3DI. Technical Report AFRL-VA-WP-TR-1998-3060, US Air Force Research Laboratory, Wright-Patterson AFB

    Google Scholar 

  56. Gary SP, Saito S (2003) Particle-in-cell simulations of alfvén-cyclotron wave scattering: proton velocity distributions. J Geophys Res 108:1194

    Google Scholar 

  57. Gary SP, Saito S, Li H (2008) Cascade of whistler turbulence: particle-in-cell simulations. Geophys Res Lett 35:L02,104

    Google Scholar 

  58. Giacalone J, Jokipii JR (2007) Magnetic field amplification by shocks in turbulent fluids. Astrophys J 663:L41–L44

    Article  ADS  Google Scholar 

  59. Goldreich P, Sridhar S (1995) Toward a theory of interstellar turbulence. 2: Strong alfvenic turbulence. Astrophys J 438:763–775

    Article  ADS  Google Scholar 

  60. Goldstein ML, Roberts DA, Matthaeus W (1995) Magnetohydrodynamic turbulence in the solar wind. Ann Rev Astron Astrophys 33(1):283–325

    Article  ADS  Google Scholar 

  61. Grauer R, Krug J, Marliani C (1994) Scaling of high-order structure functions in magnetohydrodynamic turbulence. Phys Lett A 195(5–6):335–338

    Article  ADS  Google Scholar 

  62. He J, Tu C, Marsch E, Chen CH, Wang L, Pei Z, Zhang L, Salem CS, Bale SD (2015) Proton heating in solar wind compressible turbulence with collisions between counter-propagating waves. Astrophys J Lett 813(2):L30

    Article  ADS  Google Scholar 

  63. He J, Wang L, Tu C, Marsch E, Zong Q (2015) Evidence of landau and cyclotron resonance between protons and kinetic waves in solar wind turbulence. Astrophys J Lett 800(2):L31

    Article  ADS  Google Scholar 

  64. He J, Zhu X, Chen Y, Salem C, Stevens M, Li H, Ruan W, Zhang L, Tu C (2018) Plasma heating and alfvénic turbulence enhancement during two steps of energy conversion in magnetic reconnection exhaust region of solar wind. Astrophys J 856(2):148

    Article  ADS  Google Scholar 

  65. Hollweg JV (1986) Transition region, corona, and solar wind in coronal holes. J Geophys Res 91:4111–4125

    Article  ADS  Google Scholar 

  66. Hollweg JV, Isenberg PA (2002) Generation of the fast solar wind: a review with emphasis on the resonant cyclotron interaction. J Geophys Res 107:1147

    Article  Google Scholar 

  67. Horbury T, Balogh A (1997) Structure function measurements of the intermittent mhd turbulent cascade. Nonlinear Process Geophys 4(3):185–199

    Article  ADS  Google Scholar 

  68. Howes G, Dorland W, Cowley S, Hammett G, Quataert E, Schekochihin A, Tatsuno T (2008) Kinetic simulations of magnetized turbulence in astrophysical plasmas. Phys Rev Lett 100(6):065,004

    Google Scholar 

  69. Howes GG, McCubbin AJ, Klein KG (2018) Spatially localized particle energization by landau damping in current sheets produced by strong alfvén wave collisions. J Plasma Phys 84(1)

    Google Scholar 

  70. Iroshnikov P (1964) Turbulence of a conducting fluid in a strong magnetic field. Sov Astron 7:566

    ADS  MathSciNet  Google Scholar 

  71. Jeffrey A, Taniuti T (1964) Nonlinear wave propagation. ACADEMIC PR, New York

    MATH  Google Scholar 

  72. Jiang GS, Shu CW (1996) Efficient implementation of weighted ENO schemes. J Comput Phys 126:202–228

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. Jiang GS, Wu CC (1999) A high-order WENO finite difference scheme for the equations of ideal magnetohydrodynamics. J Comput Phys 150:561–594

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. Jokipii JR, Lee MA (2010) Compression acceleration in astrophysical plasmas and the production of \(f(v) \propto v^{-5}\) spectra in the heliosphere. Astrophys J 713:475–483

    Article  ADS  Google Scholar 

  75. Kawai S (2013) Divergence-free-preserving high-order schemes for magnetohydrodynamics: an artificial magnetic resistivity method. J Comput Phys 251:292–318

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. Kim JW (2010) High-order compact filters with variable cut-off wavenumber and stable boundary treatment. Comput Fluids 39:1168–1182

    Article  MATH  Google Scholar 

  77. Kishida K, Araki K, Kishiba S, Suzuki K (1999) Local or nonlocal? Orthonormal divergence-free wavelet analysis of nonlinear interactions in turbulence. Phys Rev Lett 83:5487

    Article  ADS  Google Scholar 

  78. Kolmogorov AN (1941) Dissipation of energy in locally isotropic turbulence. Dokl Akad Nauk SSSR 32:16–18

    ADS  MathSciNet  MATH  Google Scholar 

  79. Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluid for very large reynolds numbers. Dokl Akad Nauk SSSR 30:299–303

    ADS  MathSciNet  Google Scholar 

  80. Kolmogorov AN (1962) A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high reynolds number. J Fluid Mech 13(1):82–85

    Article  ADS  MathSciNet  MATH  Google Scholar 

  81. Kraichnan RH (1965) Inertial-range spectrum of hydromagnetic turbulence. Phys Fluids 8(7):1385–1387

    Article  ADS  Google Scholar 

  82. Kraichnan RH (1967) Inertial ranges in two-dimensional turbulence. Phys Fluids 10(7):1417–1423

    Article  ADS  MathSciNet  Google Scholar 

  83. Kraichnan RH (1971) Inertial-range transfer in two- and three-dimensional turbulence. J Fluid Mech 47(3):525–535

    Article  ADS  MATH  Google Scholar 

  84. Larsson J, Cook A, Lele SK, Moin P, Cabot B, Sjögreen B, Yee H, Zhong X (2007) Computational issues and algorithm assessment for shock/turbulence interaction problems. J Phys Conf Ser 78:012,014

    Google Scholar 

  85. Lele SK (1992) Compact finite difference schemes with spectral-like resolution. J Comput Phys 103:16–42

    Article  ADS  MathSciNet  MATH  Google Scholar 

  86. MacBride BT, Smith CW (2008) The turbulent cascade at 1 AU: energy transfer and the third-order scaling for MHD. Astrophys J 679:1644–1660

    Article  ADS  Google Scholar 

  87. Marino R, Sorrisovalvo L, Carbone V, Noullez A, Bruno R, Bavassano B (2008) Heating the solar wind by a magnetohydrodynamic turbulent energy cascade. Astrophys J 677(1):L71

    Article  ADS  Google Scholar 

  88. Markovskii SA, Vasquez BJ, Smith CW, Hollweg JV (2006) Dissipation of th perpendicular turbulent cascade in the solar wind. Astrophys J 639:1177–1185

    Article  ADS  Google Scholar 

  89. Matsumoto Y, Amano T, Kato TN, Hoshino M (2015) Stochastic electron acceleration during spontaneous turbulent reconnection in a strong shock wave. Science 347:974–978

    Article  ADS  Google Scholar 

  90. Matthaeus WH, Goldstein ML (1982) Measurement of the rugged invariants of magnetohydrodynamic turbulence in the solar wind. J Geophys Res Space Phys 87(A8):6011–6028

    Article  ADS  Google Scholar 

  91. Matthaeus WH, Zhou Y (1989) Extended inertial range phenomenology of magnetohydrodynamic turbulence. Phys Fluids B: Plasma Phys 1(9):1929–1931

    Article  Google Scholar 

  92. Milano LJ, Matthaeus WH, Dmitruk P, Montgomery DC (2001) Local anisotropy in incompressible magnetohydrodynamic turbulence. Phys Plasmas 8:2673–2681

    Article  ADS  Google Scholar 

  93. Monin AS, Yaglom AM (1975) Statistical fluid mechanics: machanics of turbulence, vol 2. MIT Press, Cambridge, MA

    Google Scholar 

  94. Montgomery D, Matthaeus WH (1995) Anisotropic modal energy transfer in interstellar turbulence. Astrophys J 447:706

    Article  ADS  Google Scholar 

  95. Müller WC, Biskamp D (2000) Scaling properties of three-dimensional magnetohydrodynmaic turbulence. Phys Rev Lett 84:475

    Article  ADS  Google Scholar 

  96. Müller WC, Grappin R (2005) Spectral energy dynamics in magnetohydrodynamic turbulence. Phys Rev Lett 95(11):114,502

    Google Scholar 

  97. Myong RS, Roe PL (1997) Shock waves and rarefaction waves in magnetohydrodynamics. Part 2. The MHD system. J Plasmas Phys 58:521–552

    Article  ADS  Google Scholar 

  98. Obukhov A (1962) Some specific features of atmospheric tubulence. J Fluid Mech 13(1):77–81

    Article  ADS  MathSciNet  Google Scholar 

  99. Ohkitani K, Kida S (1992) Triad interactions in a forced turbulence. Phys Fluids A 4:794

    Article  ADS  MATH  Google Scholar 

  100. Osman K, Kiyani K, Matthaeus W, Hnat B, Chapman S, Khotyaintsev YV (2015) Multi-spacecraft measurement of turbulence within a magnetic reconnection jet. Astrophys J Lett 815(2):L24

    Article  ADS  Google Scholar 

  101. Parashar TN, Servidio S, Shay MA, Breech B, Matthaeus WH (2011) Effect of driving frequency on excitation of turbulence in a kinetic plasma. Phys Plasmas 18:092,302

    Article  ADS  Google Scholar 

  102. Perri S, Goldstein ML, Dorelli JC, Sahraoui F (2012) Detection of small-scale structures in the dissipation regime of solar-wind turbulence. Phys Rev Lett 109:191,101

    Google Scholar 

  103. Pirozzoli S (2002) Conservative hybrid compact-WENO schemes for shock-turbulence interaction. J Comput Phys 178:81–117

    Article  ADS  MathSciNet  MATH  Google Scholar 

  104. Politano H, Pouquet A (1995) Model of intermittency in magnetohydrodynamic turbulence. Phys Rev E 52(1):636

    Article  ADS  Google Scholar 

  105. Politano H, Pouquet A (1998) Dynamical length scales for turbulent magnetized flow. Geophys Res Lett 25:273–276

    Article  ADS  Google Scholar 

  106. Politano H, Pouquet A (1998) Von Kármán-Howarth equation for magnetohydrodynamics and its consequences on third-order longitudinal structure and correlation functions. Phys Rev E 57:R21–R24

    Article  ADS  Google Scholar 

  107. Powell K, Roe PL, Linde TJ, Gombosi TI, Zeeuw DLD (1999) A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J Comput Phys 154:284–309

    Article  ADS  MathSciNet  MATH  Google Scholar 

  108. Powell K, Roe PL, Myong RS (1995) An upwind scheme for magnetohydrodynamics. AIAA Paper 95–1704

    Google Scholar 

  109. Ren YX, Liu M, Zhang H (2003) A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws. J Comput Phys 192:365–386

    Article  ADS  MathSciNet  MATH  Google Scholar 

  110. Retinò A, Sundkvist D, Vaivads A, Mozer F, André M, Owen CJ (2007) In situ evidence of magnetic reconnection in turbulent plasma. Nature Phys 3:235–238

    Article  ADS  Google Scholar 

  111. Richardson JD, Paularena KI, Lazarus AJ, Belcher JW (1995) Radial evolution of the solar wind from imp 8 to voyager 2. Geophys Res Lett 22(4):325–328

    Article  ADS  Google Scholar 

  112. Richardson LF (1922) Weather prediction by numerical process. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  113. Sahraoui F, Goldstein ML, Belmont G, Canu P, Rezeau L (2010) Three dimensional anisotropic k spectra of turbulence at subproton scales in the solar wind. Phys Rev Lett 105(13):131,101

    Google Scholar 

  114. Sahraoui F, Goldstein ML, Robert P, Khotyaintsev YV (2009) Evidence of a cascade and dissipation of solar-wind turbulence at the electron gyroscale. Phys Rev Lett 102:231,102

    Google Scholar 

  115. Schekochihin AA, Cowley SC, Taylor SF, Maron JL, McWilliams JC (2004) Simulations of the small-scale turbulent dynamo. Astrophys J 612:276–307

    Article  ADS  Google Scholar 

  116. Schilling O, Zhou Y (2002) Triadic energy transfers in non-helical magnetohydrodynamic turbulence. J Plasma Phys 68:389–406

    Article  ADS  Google Scholar 

  117. She ZS, Lévêque E (1994) Universal scaling laws in fully developed turbulence. Phys Rev Lett 72:336

    Article  ADS  Google Scholar 

  118. Shebalin JV, Matthaeus WH, Montgomery D (1983) Anisotropy in mhd turbulence due to a mean magnetic field. J Plasma Phys 29:525–547

    Article  ADS  Google Scholar 

  119. Shen Y, Zha G, Huerta MA (2012) E-CUSP scheme for the equations of ideal magnetohydrodynamics with high order WENO scheme. J Comput Phys 231:6233–6247

    Article  ADS  MathSciNet  Google Scholar 

  120. Shu CW (2009) High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev 51:82–126

    Article  ADS  MathSciNet  MATH  Google Scholar 

  121. Sjögreen B, Yee HC (2004) Multiresolution wavelet based adaptive numerical dissipation control for high order methods. J Sci Comput 20:211–255

    Article  MathSciNet  MATH  Google Scholar 

  122. Sorriso-Valvo L, Carbone V, Noullez A, Politano H, Pouquet A, Veltri P (2002) Analysis of cancellation in two-dimensional magnetohydrodynamic turbulence. Phys Plasmas 9:89–95

    Article  ADS  MathSciNet  Google Scholar 

  123. Sorriso-Valvo L, Marino R, Carbone V, Noullez A, Lepreti F, Veltri P, Bruno R, Bavassano B, Pietropaolo E (2007) Observation of inertial energy cascade in interplanetary space plasma. Phys Rev Lett 99:115,001

    Google Scholar 

  124. Stawarz JE, Smith CW, Vasquez BJ, Forman MA, MacBride BT (2009) The turbulent cascade and proton heating in the solar wind at 1 AU. Astrophys J 697:1119–1127

    Article  ADS  Google Scholar 

  125. Sundkvist D, Retinò A, Vaivads A, Bale SD (2007) Dissipation in turbulent plasma due to reconnection in thin current sheets. Phys Rev Lett 99:025,004

    Google Scholar 

  126. Teaca B, Carati D, Domaradzki JA (2011) On the locality of magnetohydrodynamic turbulence scale fluxes. Phys Plasmas 18:112,307

    Article  ADS  Google Scholar 

  127. TenBarge JM, Howes GG (2013) Current sheets and collisionless damping in kinetic plasma turbulence. Astrophys J Lett 771:L27

    Article  ADS  Google Scholar 

  128. Tóth G (2000) The \(\nabla \cdot \mathbf{B}=0\) constraint in shock-capturing magnetohydrodynamics codes. J Comput Phys 161:605–652

    Article  ADS  MathSciNet  MATH  Google Scholar 

  129. Tu CY, Marsch E (1995) Mhd structures, waves and turbulence in the solar wind: observations and theories. Space Sci Rev 73:1–210

    Article  ADS  Google Scholar 

  130. Verma MK (2004) Statistical theory of magnetohydrodynamic turbulence: recent results. Phys Rep 401:229–380

    Article  ADS  MathSciNet  Google Scholar 

  131. Verma MK, Ayyer A, Chandra AV (2005) Energy transfers and locality in magnetohydrodynamic turbulence. Phys Plasmas 12:082,307

    Article  ADS  Google Scholar 

  132. Von Kármán T, Howarth L (1938) On the statistical theory of isotropic turbulence. Proc Roy Soc London Ser A 164:192

    Article  ADS  MATH  Google Scholar 

  133. Wan M, Matthaeus WH, Karimabadi H, Roytershteyn V, Shay M, Wu P, Daughton W, Loring B, Chapman SC (2012) Intermittent dissipation at kinetic scales in collisionless plasma turbulence. Phys Rev Lett 109:195,001

    Google Scholar 

  134. Wan M, Matthaeus WH, Roytershteyn V, Karimabadi H, Parashar T, Wu P, Shay M (2015) Intermittent dissipation and heating in 3d kinetic plasma turbulence. Phys Rev Lett 114:175,002

    Google Scholar 

  135. Wang J, Shi Y, Wang LP, Xiao Z, He XT, Chen S (2012) Scaling and statistics in three-dimensional compressible turbulence. Phys Rev Lett 108:214,505

    Google Scholar 

  136. Wang J, Wang LP, Xiao Z, Shi Y, Chen S (2010) A hybrid numerical simulation of isotropic compressible turbulence. J Comput Phys 229:5257–5279

    Article  ADS  MATH  Google Scholar 

  137. Wang J, Yang Y, Shi Y, Xiao Z, He XT, Chen S (2013) Cascade of kinetic energy in three-dimensional compressible turbulence. Phys Rev Lett 110:214,505

    Google Scholar 

  138. Warburton TC, Karniadakis GE (1999) A discontinuous Galerkin method for the viscous MHD equations. J Comput Phys 152:608–641

    Article  ADS  MathSciNet  MATH  Google Scholar 

  139. Whitham GB (2011) Linear and nonlinear waves, vol 42. John Wiley & Sons

    Google Scholar 

  140. Yaglom A (1949) On the local structure of a temperature field in a turbulent flow. Dokl Akad Nauk SSSR 69:743–746

    MATH  Google Scholar 

  141. Yao Z, Rae I, Guo R, Fazakerley A, Owen C, Nakamura R, Baumjohann W, Watt CE, Hwang K, Giles B et al (2017) A direct examination of the dynamics of dipolarization fronts using mms. J Geophys Res Space Phys 122(4):4335–4347

    Article  ADS  Google Scholar 

  142. Yee HC, Sandham ND, Djomehri MJ (1999) Low-dissipative high-order shock-capturing methods using characteristic-based filters. J Comput Phys 150:199–238

    Article  ADS  MathSciNet  MATH  Google Scholar 

  143. Yee HC, Sjögreen B (2005) Efficient low dissipative high order schemes for multiscale MHD flows, II: minimization of \(\nabla \cdot \mathbf{B}\) numerical error. J Sci Comput 29:115–164

    Article  MathSciNet  MATH  Google Scholar 

  144. Yousef TA, Rincon F, Schekochihin AA (2007) Exact scaling laws and the local structure of isotropic magnetohydrodynamic turbulence. J Fluid Mech 575:111–120

    Article  ADS  MathSciNet  MATH  Google Scholar 

  145. Zhou Y (1993) Degrees of locality of energy transfer in the inertial range. Phys Fluids A 5:1092

    Article  ADS  Google Scholar 

  146. Zhou Y (1993) Interacting scales and energy transfer in isotropic turbulence. Phys Fluids A 5:2511

    Article  ADS  MATH  Google Scholar 

  147. Zhou Y, Matthaeus WH (1990) Models of inertial range spectra of interplanetary magnetohydrodynamic turbulence. J Geophys Res Space Phys 95(A9):14881–14892

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Yang .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, Y. (2019). Introduction. In: Energy Transfer and Dissipation in Plasma Turbulence . Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-8149-2_1

Download citation

Publish with us

Policies and ethics