Examining Risk–Return Relationship

  • M. V. ShivaaniEmail author
  • P. K. Jain
  • Surendra S. Yadav
Part of the India Studies in Business and Economics book series (ISBE)


This chapter aims to explore the relationship between (accounting based) risk index developed in the study and accounting returns. In view of the possible endogeneity problem, diff-GMM regression has been used. The results contradict the widely accepted hypothesis of ‘higher the risk, higher the return’; and lend credence to the fact that by following the normative risk index developed in Chap.  3, and by keeping lower risk levels, firms may generate higher returns.


Risk–return Risk index ROA ROE Endogeneity Diff-GMM 


  1. Andersen, T. J., Denrell, J., & Bettis, R. A. (2007). Strategic responsiveness and Bowman’s risk-return paradox. Strategic Management Journal, 28(1), 407–429.CrossRefGoogle Scholar
  2. Arellano, M., & Bond, S. (1991). Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. The Review of Economic Studies, 58(1), 277–297.CrossRefGoogle Scholar
  3. Arellano, M., & Bover, O. (1995). Another look at the instrumental variable estimation of error components models. Journal of Econometrics, 68(1), 29–51.CrossRefGoogle Scholar
  4. Armour, H. O., & Teece, D. J. (1978). Organizational structure and economic performance: a test of the multidivisional hypothesis. The Bell Journal of Economics, 9(1), 106–122.CrossRefGoogle Scholar
  5. Arrow, K. (1962). Economic welfare and the allocation of resources to invention. In The Universities—National Bureau Committee for Economic Research and the Committee on Economic Growth of the Social Science Research Councils (ed) The rate and direction of inventive activity: Economic and social factors (pp 609–626). Princeton, NJ: Princeton University Press.Google Scholar
  6. Baltagi, B. (2008). Econometric analysis of panel data (4th ed.). Chichester, United Kingdom, UK: Wiley.Google Scholar
  7. Blundell, R., & Bond, S. (1998). Initial conditions and moment restrictions in dynamic panel data models. Journal of Econometrics, 87(1), 115–143.CrossRefGoogle Scholar
  8. Bond, S. R. (2002). Dynamic panel data models: a guide to micro data methods and practice. Portuguese Economic Journal, 1(2), 141–162.CrossRefGoogle Scholar
  9. Bowman, E. (1980). A risk/return paradox for strategic management. Sloan Management Review, 21(1), 17–31.Google Scholar
  10. Bowman, E. (1982). Risk seeking by troubled firms. Sloan Management Review, 31(2), 33–42.Google Scholar
  11. Brealey, R. A., Myers, S. C., & Allen, F. (2008). Principles of corporate finance. New York, NY: McGraw-Hill.Google Scholar
  12. Brick, I. E., Palmon, O., & Venezia, I. (2015). On the relationship between accounting risk and return: is there a (Bowman) paradox? European Management Review, 12(2), 99–111.CrossRefGoogle Scholar
  13. Bromiley, P. (1991). Testing a causal model of corporate risk taking and performance. Academy of Management Journal, 24(1), 37–59.Google Scholar
  14. Carlson, K. D., & Wu, J. (2012). The illusion of statistical control: Control variable practice in management research. Organizational Research Methods, 15(3), 413–435.CrossRefGoogle Scholar
  15. Coskun, M., & Kulali, G. (2016). Relationship between accounting based risk and return: Analysis for Turkish companies. International Journal of Business and Management, 11(4), 240–251.Google Scholar
  16. Deephouse, D. L., & Wiseman, R. M. (2000). Comparing alternative explanations for accounting risk-return relations. Journal of Economic Behavior & Organization, 42(1), 463–482.CrossRefGoogle Scholar
  17. Ericson, R., & Pakes, A. (1995). Markov-perfect industry dynamics: A framework for empirical work. The Review of Economic Studies, 62(1), 53–82.CrossRefGoogle Scholar
  18. Fama, E. F., & French, K. R. (1992). The cross-section of expected stock returns. The Journal of Finance, 47(2), 427–465.CrossRefGoogle Scholar
  19. Fama, E. F., & French, K. R. (2006). Profitability, investment and average returns. Journal of Financial Economics, 82(1), 491–518.CrossRefGoogle Scholar
  20. Fiegenbaum, A., & Thomas, H. (1986). Dynamic and risk measurement, perspectives on Bowman’s risk–return paradox for strategic management: An empirical study. Strategic Management Journal, 7(1), 395–407.CrossRefGoogle Scholar
  21. Fiegenbaum, A., & Thomas, H. (2004). Strategic risk and competitive advantage: An integrative perspective. European Management Review, 1(1), 84–95.CrossRefGoogle Scholar
  22. Fiegenbaum, A., Hart, S., & Schendel, D. (1996). Strategic reference point theory. Strategic Management Journal, 17(1), 219–235.CrossRefGoogle Scholar
  23. Greene, W. H. (2003). Econometric analysis. New York: New York University.Google Scholar
  24. Greve, H. R. (1998). Performance, aspirations and risky organizational change. Administrative Science Quarterly, 43(1), 58–86.CrossRefGoogle Scholar
  25. Holtz-Eakin, D., Newey, W., & Rosen, H. (1988). Estimating vector auto regressions with panel data. Econometrica, 56(6), 1371–1395.Google Scholar
  26. Hsiao, C. (2003). Analysis of panel data. London. United Kingdom: Cambridge University Press.CrossRefGoogle Scholar
  27. Jegers, M. (1991). Prospect theory and the risk–return relation: Some Belgian evidence. Academy of Management Journal, 34(1), 215–225.Google Scholar
  28. Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47(2), 263–291.CrossRefGoogle Scholar
  29. Kim, W. C., Hwang, P., & Burgers, W. P. (1993). Multinationals’ diversification and the risk–return trade. Strategic Management Journal, 14(1), 275–286.CrossRefGoogle Scholar
  30. Lehner, J. M. (2000). Shifts of reference points for framing of strategic decisions and changing risk-return associations. Management Science, 46(1), 63–76.CrossRefGoogle Scholar
  31. Leonard-Barton, D. (1992). Core capabilities and core rigidities: A paradox in managing new product development. Strategic Management Journal, 13(1), 111–125.CrossRefGoogle Scholar
  32. Li, X., Yang, F., & Zhang, R. (2014). Determinants of corporate risk taking and risk-return relationship. Canadian Social Science, 10(2), 24–32.Google Scholar
  33. Loderer, C., & Waelchli, U. (2009). Firm age and performance. Discussion Paper No. 09-18. German Economic Association of Business Administration—GEABA. Retrieved from
  34. Miller, K. D., & Chen, W. (2003). Risk and firms’ costs. Strategic Organization, 1(4), 355–382.CrossRefGoogle Scholar
  35. Nickell, S. (1981). Biases in dynamic models with fixed effects. Econometrica, 49(6), 1417–1426.CrossRefGoogle Scholar
  36. Palmer, T. B., & Wiseman, R. M. (1999). Decoupling risk taking from income stream uncertainty: A holistic model of risk. Strategic Management Journal, 20(1), 1037–1062.CrossRefGoogle Scholar
  37. Siggelkow, N. (2001). Change in the presence of fit: The rise, the fall, and the renaissance of Liz Claiborne. Academy of Management Journal, 44(1), 838–857.Google Scholar
  38. Singh, S., Jain, P. K., & Yadav, S. S. (2016). Equity markets in India: Returns. Delhi, Springer (India) Private Limited: Risk and Price Multiples.CrossRefGoogle Scholar
  39. Sinha, T. (1994). Prospect theory and the risk return association: Another look. Journal of Economic Behavior & Organization, 24(1), 225–231.CrossRefGoogle Scholar
  40. Spector, P. A., & Brannick, M. T. (2011). Methodological urban legends: The misuse of statistical control variables. Organizational Research Methods, 14(1), 287–305.CrossRefGoogle Scholar
  41. United Nations Council on Trade and Development (UNCTAD), investment brief. Accessed 1 Nov, 2009 from…/Results.aspx?…write%3E%3D%2203%2F06%2F2012%22%20unctadla.
  42. Wintoki, M. B., Linck, J. S., & Netter, J. M. (2010) Endogeneity and the dynamics of internal corporate governance. In CELS 2009 4th Annual Conference on Emperical Legal Studies. SSRN:
  43. Wiseman, R. M., & Catanach, A. H. (1997). A longitudinal disaggregation of operational risk under changing regulations: evidence from the savings and loan industry. Academy of Management Journal, 40(4), 799–830.Google Scholar
  44. Xiaodong, L., & Lee, L. F. (2013). Two stage least squares estimation of spatial autoregressive models with endogenous regressors and many instruments. Econometric Reviews, 32(1), 734–753.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • M. V. Shivaani
    • 1
    Email author
  • P. K. Jain
    • 2
  • Surendra S. Yadav
    • 3
  1. 1.Indian Institute of Management (IIM), VNIT CampusNagpurIndia
  2. 2.Department of Management StudiesIndian Institute of Technology DelhiNew DelhiIndia
  3. 3.Department of Management StudiesIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations