Research Methodology

  • M. V. ShivaaniEmail author
  • P. K. Jain
  • Surendra S. Yadav
Part of the India Studies in Business and Economics book series (ISBE)


The present chapter delineates the objectives and hypotheses based on the gaps identified from the literature reviewed, data used to test these hypotheses and the methodology that has been used in the present research study. The study aims to develop normative frameworks on various aspects of risk and attempts to determine the relationships that may exist amongst these varied aspects. Accordingly, the study makes use of both primary data (capturing the managerial views on risk management) and secondary data (involving the components of balance sheet, profit and loss account and annual reports). The research techniques used in the study are in line with the leading research initiatives on the subject.


  1. Arellano, M., & Bond, S. (1991). Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. The Review of Economic Studies, 58(1), 277–297.CrossRefGoogle Scholar
  2. Arellano, M., & Bover, O. (1995). Another look at the instrumental variable estimation of error components models. Journal of Econometrics, 68(1), 29–51.CrossRefGoogle Scholar
  3. Baltagi, B. (2008). Econometric analysis of panel data (4th ed.). Chichester, UK: Wiley.Google Scholar
  4. Bebchuk, L., Cohen, A., & Ferrel, A. (2008). What matters in corporate governance? The Review of Financial Studies, 22(2), 783–827.CrossRefGoogle Scholar
  5. Blundell, R., & Bond, S. (1998). Initial conditions and moment restrictions in dynamic panel data models. Journal of Econometrics, 87(1), 115–143.CrossRefGoogle Scholar
  6. Bond, S. R. (2002). Dynamic panel data models: A guide to micro data methods and practice. Portuguese Economic Journal, 1(2), 141–162.CrossRefGoogle Scholar
  7. Brown, L., & Caylor, M. (2006). Corporate governance and firm valuation. Journal of Accounting and Public Policy, 25(4), 409–434.CrossRefGoogle Scholar
  8. Gompers, P., Ishii, J., & Metrick, A. (2003). Corporate governance and equity prices. Quarterly Journal of Economics, 118(1), 107–155.CrossRefGoogle Scholar
  9. Hansen, L. P. (1982). Large sample properties of generalized method of moments estimators. Econometrica: Journal of the Econometric Society, 1029–1054.CrossRefGoogle Scholar
  10. Haubrich, J. G. (1998). Bank diversification: Laws and fallacies of large numbers. Economic Review, Federal Reserve Bank of Cleveland, 34(2), 2–9.Google Scholar
  11. Hermalin, B., & Weisbach, M. (1998). Endogenously chosen boards of directors and their monitoring of the CEO. American Economic Review, 88(1), 96–118.Google Scholar
  12. Holsti, O. R. (1968). Content analysis. In G. Lindzey & E. Aronson (Eds.), The handbook of social psychology (2nd ed., Vol. II, pp. 596–692). New Delhi: Amerind Publishing Co.Google Scholar
  13. Holtz-Eakin, D., Newey, W., & Rosen, H. (1988). Estimating vector auto regressions with panel data. Econometrica, 56(6), 1371–1395.Google Scholar
  14. Hsiao, C. (2003). Analysis of panel data. London, UK: Cambridge University Press.CrossRefGoogle Scholar
  15. Hudrlikova, L., & Petkovova, L. (2013). Sustainable development—Czech region ranking using multi-criteria decision analysis. European Journal of Sustainable Development, 2(4), 253–262.Google Scholar
  16. International Finance Corporation. (2013). Risk culture, risk governance, and balanced incentives: Recommendations for strengthening risk management in emerging market banks. Washington, DC: IFC.Google Scholar
  17. Jia, J., Munro, L., & Buckby, S. (2016). A finer-grained approach to assessing the quality (quantity and richness) of risk management disclosures. Managerial Auditing Journal, 31(8/9), 770–803.CrossRefGoogle Scholar
  18. Krippendorff, K. (1980). Validity in content analysis. In E. Mochmann (Ed.), Computer analyse (pp. 69–112). Frankfurt, Germany. Retrieved from
  19. Nickell, S. (1981). Biases in dynamic models with fixed effects. Econometrica, 49(6), 1417–1426.CrossRefGoogle Scholar
  20. Ntim, C. G., Opong, K. K., & Danbolt, J. (2012). The relative value relevance of shareholder versus stakeholder corporate governance disclosure policy reforms in South Africa. Corporate Governance: An International Review, 20(1), 84–105.CrossRefGoogle Scholar
  21. Organisation for Economic Co-operation and Development. (2008). Handbook on constructing composite indicators: Methodology and user guide. OECD, European Commission, Joint Research Centre OECD Publishing. Available at
  22. Roodman, D. (2009). How to do xtabond2: An introduction to difference and system GMM in Stata. The Stata Journal, 9(1), 86–136.CrossRefGoogle Scholar
  23. Schultz, E. L., Tan, T. D., & Walsh, K. D. (2010). Endogeneity and the corporate governance–performance relation. Australian Journal of Management, 35(1), 145–163.CrossRefGoogle Scholar
  24. Tangian, A. (2004). Defining the flexicurity index in application to European countries. WSI-Diskussions papier, No. 122. Available at
  25. Weber, R. P. (1985). Basic content analysis. Series: Quantitative Applications in the Social Sciences. A Sage University Paper, Series/No. 07-049. Beverly Hills: Sage Publications.Google Scholar
  26. Wintoki, M. B., Linck, J. S., & Netter, J. M. (2010) Endogeneity and the dynamics of internal corporate governance. In CELS 2009 4th Annual Conference on Empirical Legal Studies. Available at SSRN:
  27. Wooldridge, J.M. (2010). Econometric analysis of cross section and panel data. Massachusetts: MIT Press.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • M. V. Shivaani
    • 1
    Email author
  • P. K. Jain
    • 2
  • Surendra S. Yadav
    • 3
  1. 1.Indian Institute of Management (IIM), VNIT CampusNagpurIndia
  2. 2.Department of Management StudiesIndian Institute of Technology DelhiNew DelhiIndia
  3. 3.Department of Management StudiesIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations