Skip to main content

Hazard-Free Treatment and Reuse of Magnesium Slag

  • Chapter
  • First Online:
Industrial Solid Waste Recycling in Western China
  • 641 Accesses

Abstract

This chapter mainly discusses the magnesium (Mg) slag generated in silicon thermic reduction of magnesium by Pidgeon process. Fluoride and fine dust in the slag and also the huge quantity of the slag (six to seven times of the magnesium produced) cause a big problem of environmental pollution, which can be eliminated by different technologies. First, it is discussed about the mechanism of the slag dust generation, the pellets disintegration, experimental results for slag volume stabilization, and dust controlled by adding several mineralizers. The second part of this chapter discusses the behavior of fluoride in Mg slag by Pidgeon process through a pilot trial facility, followed by the description of the utilization of F-free mineralizers in place of calcium fluoride (CaF2) in magnesium production for the elimination of fluoride contamination. The last part discusses the utilization of stabilized magnesium slag instead of lime as a fluxing medium for steel smelting and the use of the mixture of magnesium slag and manganese residue to make sulphoaluminate cement clinker.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xu RY (2003) Production technology of magnesium metal. Central South University Press, Changsha.

    Google Scholar 

  2. Li MZ, Xu BS (2006) Smelting process of magnesium and magnesium alloy. Chemical Industry Press, Beijing.

    Google Scholar 

  3. Wang YC, Gao Q (2016) Chaerhan Salt Lake–China magnesium industry’s future. Technology and Business (1):111–112.

    Google Scholar 

  4. Qu T, Dai YN, Yang B et al (2014) Research of magnesium extraction by carbothermic reduction in vacuum. Vacuum (4):11–18.

    Google Scholar 

  5. Li XB, Li JB (2000) Study on thermal process of magnesium smelting. Aluminum Magnesium Communication (2):47.

    Google Scholar 

  6. Tang QF, Gao JC, Chen XH et al (2014) Research progress of magnesium production by carbothermic reduction at vacuum. Materials Review 28(23):64–67.

    Google Scholar 

  7. Anonymity (2016) Developed a new energy saving and environmental friendly magnesium smelting technology in Australia. China Powder Industry (4):34.

    Google Scholar 

  8. Su HY (2009) Review of magnesium smelting technology. World Nonferrous Metals (7):30–31.

    Google Scholar 

  9. Han JL, Sun QG (2008) Progress of magnesium production process. Journal of Salt Lake Research 16(4):59–65.

    Google Scholar 

  10. Xue XS, Pang QS (1993) Review on the comprehensive utilization of “three wastes” produced in the process of electrolytic magnesium smelting. Light Metals (7):38–43.

    Google Scholar 

  11. Cui ZZ, Ni X, Meng XL (2006) Study on the expansibility of magnesium slag. Fly Ash Comprehensive 6:8–11.

    Google Scholar 

  12. Li YL, Liang PX, Fan Y et al (2015) The resource utilization characterization and heavy metals pollution risk of magnesium slags. Environmental Chemistry 34(11):2077–2084.

    Google Scholar 

  13. Wu LE, Han FL, Yang QX et al (2012) Fluoride emissions from Pidgeon process for magnesium production. Paper presented at the international conference on solid waste technology and management, Philadelphia, USA, 11–14 Mar 2012.

    Google Scholar 

  14. Xu XB (2011) Study on magnesium smelting slag as Coal Sulfur Fixing Agent. Dissertation, Jiangxi University of Science and Technology.

    Google Scholar 

  15. Wang X (2011) Experimental research on magnesium slag for desulfurtion by fluidized bed reactor. Dissertation, Taiyuan University of Technology.

    Google Scholar 

  16. Li XJ, Zhang SY, Wang FF (2011) Review on the recycle of magnesium slag wastes. Concrete 08:97–100.

    Google Scholar 

  17. Li YL, Ge T, Cheng FQ (2016) Effect of different treatment methods on the physico-chemical properties of magnesium slag (MS). Inorganic Chemicals Industry 48(3):52–55.

    Google Scholar 

  18. Cui SP, Du X, Guo XH et al (2012) Study on the performance of using magnesium slag as expansive agents for concrete. New Building Materials 39(09):1–3.

    Google Scholar 

  19. Seiji T, Chekyu K, Akira I (1967) Fluxing effect of iron blastfurnace slag and Pidgeon process’s slag in smelting of copper and nickel ores I. on copper yield and matte grade. Technology reports of the Osaka University, Tokumoto 17(782):345–352.

    Google Scholar 

  20. Oliveira CAS, Gumieri AG, Gomes AM et al (2004) Characterization of magnesium slag aiming the utilization as a mineral admixture in mortar. Paper presented at the international RILEM conference on the use of recycled material in buildings and structure, Barcelona, Spain, 8–11 Nov 2004.

    Google Scholar 

  21. Courtial M, Cabrillac R, Duval R (1991) Feasibility of the manufacturing of building materials from magnesium slag. Studies in Environmental Science 48(08):491–498.

    Google Scholar 

  22. Courtial M, Cabrillac R, Duval R (1994) Recycling of magnesium slags in construction block form. Studies in Environmental Science 60:599–604.

    Google Scholar 

  23. Thermfact/CRCT (2016) GTT-Technologies. http://www.factsage.cn. Accessed 30 Jul 2016.

  24. Han FL, Yang QX, Wu LE et al (2013) Reclaim and treatment of magnesium slag from Pidgeon process. Inorganic Chemicals Industry 45(7):52–55.

    Google Scholar 

  25. Tian XZ, etc, National international science and technology cooperation “Study on the comprehensive treatment and recycling technology of magnesium slag” (2010DFB50140) Project Technical Report, 2012.

    Google Scholar 

  26. Jürgen G (2000) Properties of iron and steel slags regarding their use. Paper presented at the 6th international conference on molten slags, fluxes and salts, Stockholm City, Stockholm, Sweden-Helsinki, Finland, 12–17 June 2000.

    Google Scholar 

  27. Youn JK, Ian N, Waltraud MK (1992) Phase transformations in dicalcium silicate: II, TEM studies of crystallography, microstructure, and mechanisms. Journal of the American Ceramic Society 75(9):2407–2419.

    Google Scholar 

  28. Yang QX, Engström F, Tossavainen M et al (2005) AOD slag treatments to recover metal and to prevent slag dusting. Paper presented at 7th Nordic-Japan symposium on science and technology of process metallurgy, Stockholm, Sweden, 15–16 Sept 2005.

    Google Scholar 

  29. Han FL, Yang QX, Wu LE et al (2012) Treatments of magnesium slag to recycle waste from Pidgeon Process. Advanced Materials Research 418–420:1657–1667.

    Google Scholar 

  30. Duan ZM (2009) Prevention and Control of Fluoride Pollution in Production of Magnesium. Energy Conservation & Environmental Protection (7):48–49.

    Google Scholar 

  31. Jiao Y, Yang ZP, Fu Q et al (2000) Fluorine harm and control. Chinese Journal of Ecology 19(05):67–70.

    Google Scholar 

  32. Gao F, Nie Z, Wang Z et al (2008) Assessing environmental impact of magnesium production using Pidgeon process in China. Transactions of Nonferrous Metals Society of China 18(3): 749–754.

    Google Scholar 

  33. Gao F, Nie Z, Wang Z et al (2009) Life cycle assessment of primary magnesium production using the Pidgeon process in China. International Journal of Life Cycle Assessment 14(5):480–489.

    Google Scholar 

  34. Han FL, Wu LE, Guo SW et al (2012) Fluoride evaporation during thermal treatment of waste slag from Mg production using Pidgeon process. Advanced Materials Research 581–582:1044–1049.

    Google Scholar 

  35. Wu LE, Han FL, Yang QX et al (2013) Fluorine vaporization and leaching from Mg slag treated at different conditions. Advanced Materials Research 753–755:88–94.

    Google Scholar 

  36. Han FL, Wu LE, Yang QX et al (2013) Fluorine vaporization and leaching from Mg slag treated at high temperature. Advanced Materials Research 726–731:2898–2907.

    Google Scholar 

  37. Ministry of Environmental Protection of the People ‘s Republic of China (2007) Leaching method for leaching toxicity of solid waste Sulfuric acid method. HJ/T299–2007.

    Google Scholar 

  38. National Standards Commission and Ministry of health (2006) Hygienic standard for drinking water. GB 5749–2006.

    Google Scholar 

  39. Han FL, Wu LE (2015) Effect of boric acid on the properties of magnesium slag powder. Key Engineering Materials 633:218–224.

    Google Scholar 

  40. Han FL, Yang QX, Wu LE et al (2013) Innovative utilization of a borate additive in magnesium production to decrease environmental impact of fluorides from Pidgeon process. Advanced Materials Research 690–693:378–389.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fenglan Han .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Han, F., Wu, L. (2019). Hazard-Free Treatment and Reuse of Magnesium Slag. In: Industrial Solid Waste Recycling in Western China. Springer, Singapore. https://doi.org/10.1007/978-981-13-8086-0_2

Download citation

Publish with us

Policies and ethics