Skip to main content

Electronic Properties of Dilute Bismides

  • Chapter
  • First Online:
Bismuth-Containing Alloys and Nanostructures

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 285))

  • 696 Accesses

Abstract

In this chapter, electronic properties of dilute bismide III-V semiconductors are reviewed briefly. Theoretical and computational methods are collected and discussed extensively. Empirical models, including tight-binding (TB) model, band anti-crossing (BAC), valance band anti-crossing (VBAC), and k·p model, have been widely applied in calculations of electronic properties of dilute bismide III-V materials. First-principle methods have also been used to investigate many kinds of Bi-containing compounds, such as models of bulk, surface, and nanostructure. Several combined methods are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.A. Broderick, M. Usman, A. Lindsay et al., Tight binding analysis of the electronic structure of dilute bismide and nitride alloys of GaAs, in International Conference on Transparent Optical Networks, Stockholm, Sweden, 26–30 June 2011

    Google Scholar 

  2. V. Virkkala, V. Havu, F. Tuomisto et al., Phys. Rev. B 88, 235201 (2013)

    Article  Google Scholar 

  3. M. Usman, C.A. Broderick, Z. Batool et al., Phys. Rev. B 87, 115104 (2013)

    Article  Google Scholar 

  4. R. Maspero, S.J. Sweeney, M. Florescu, J. Phys.: Condens. Matter 29, 075001 (2016)

    Google Scholar 

  5. K. Saito, H. Sawahata, T. Komine et al., Phys. Rev. B 93, 041301 (2016)

    Article  Google Scholar 

  6. K. Alberi, O.D. Dubon, W. Walukiewicz et al., Appl. Phys. Lett. 91, 051909 (2007)

    Article  Google Scholar 

  7. S. Jin, S.J. Sweeney, J. Appl. Phys. 114, 213103 (2013)

    Article  Google Scholar 

  8. J.P. Petropoulos, Y. Zhong, J.M.O. Zide, Appl. Phys. Lett. 99, 031110 (2011)

    Article  Google Scholar 

  9. L.Y. Wu, L.H. Han, X.Y. Li et al., Valence band anticrossing, in InP1−xBix. Paper presented at Asia communications and photonics conference (ACP 2015), Hong Kong, China, 19–23 Nov 2015

    Google Scholar 

  10. Z. Bushell, C. Broderick, L. Nattermann et al., MOVPE growth studies on dilute bismide containing III/Vs & development of an MOVPE in-situ gas phase analysis setup, 83 (2017)

    Google Scholar 

  11. D.P. Samajdar, S. Dhar, Superlattices Microstruct. 89, 112 (2016)

    Article  CAS  Google Scholar 

  12. I.P. Marko, C.A. Broderick, S. Jin et al., Sci. Rep. 6, 28863 (2016)

    Article  CAS  Google Scholar 

  13. B. Chen, IEEE Trans. Electron. Devices 64, 1606 (2017)

    Article  CAS  Google Scholar 

  14. D.P. Samajdar, S. Dhar, Sci. World J. 2014, 704830 (2014)

    Article  CAS  Google Scholar 

  15. I. Mal, D.P. Samajdar, T.D. Das, Superlattices Microstruct. 109, 442 (2017)

    Article  CAS  Google Scholar 

  16. C.A. Broderick, M. Usman, S.J. Sweeney et al., Semicond. Sci. Technol. 27, 094011 (2012)

    Article  Google Scholar 

  17. H.X. Deng, J. Li, S.S. Li et al., Phys. Rev. B 82, 193204 (2010)

    Article  Google Scholar 

  18. Z. Batool, K. Hild, T.J.C. Hosea et al., J. Appl. Phys. 111, 113108 (2012)

    Article  Google Scholar 

  19. I.P. Marko, Z. Batool, K. Hild et al., Appl. Phys. Lett. 101, 221108 (2012)

    Article  Google Scholar 

  20. B. Fluegel, R.N. Kini, A.J. Ptak et al., Appl. Phys. Lett. 99, 162108 (2011)

    Article  Google Scholar 

  21. A. Lindsay, E.P. O’Reilly et al., Solid State Electron. 47, 443 (2003)

    Article  CAS  Google Scholar 

  22. C.A. Broderick, M. Usman, E.P. O’Reilly, Phys Status Solidi (b) 250, 773 (2014)

    Article  Google Scholar 

  23. B. Amrani, H. Achour, S. Louhibi et al., Solid State Commun. 148, 59 (2018)

    Article  Google Scholar 

  24. N.A.A. Rahim, R. Ahmed, B.U. Haq et al., Comput. Mater. Sci. 114, 40 (2016)

    Article  Google Scholar 

  25. D. Madouri, M. Ferhat, Physica Status Solidi (b) 242, 2856 (2005)

    Article  CAS  Google Scholar 

  26. A.H. Reshak, H. Kamarudin, S. Auluck et al., J. Solid State Chem. 186, 47 (2012)

    Article  CAS  Google Scholar 

  27. A. Abdiche, H. Abid, R. Riane et al., Physica B 405, 2311 (2010)

    Article  CAS  Google Scholar 

  28. H. Jacobsen, B. Puchala, T.K. Kuech et al., Phys. Rev. B 86, 085207 (2012)

    Article  Google Scholar 

  29. L.C. Bannow, O. Rubel, S.C. Badescu et al., Phys Rev B 93, 205202 (2016)

    Article  Google Scholar 

  30. X. Zhang, P. Lu, L. Han et al., Mod. Phys. Lett. B 28, 1450140 (2014)

    Article  Google Scholar 

  31. X. Chen, W. Shen, D. Liang et al., Opt. Mater. Express 8, 1184 (2018)

    Article  CAS  Google Scholar 

  32. K. Wang, Y. Gu, H.F. Zhou et al., Sci. Rep. 4, 5449 (2014)

    Article  CAS  Google Scholar 

  33. L. Wu, P. Lu, C. Yang et al., J. Alloy. Compd. 674, 21 (2016)

    Article  CAS  Google Scholar 

  34. G.N. Wei, X. Dai, Q. Feng et al., Sci. China Phys. Mech. Astron. 60, 047022 (2017)

    Article  Google Scholar 

  35. A. Assali, B. M’hamed, A.H. Reshak et al., Optik 135, 57 (2017)

    Article  CAS  Google Scholar 

  36. G. Luo, K. Forghani, T.F. Kuech et al., Appl. Phys. Lett. 109, 112104 (2016)

    Article  Google Scholar 

  37. M.P.J. Punkkinen, P. Laukkanen, H.P. Komsa et al., Phys. Rev. B 78, 195304 (2008)

    Article  Google Scholar 

  38. I. Murase, T. Akiyama, K. Nakamura et al., J. Cryst. Growth 378, 21 (2013)

    Article  CAS  Google Scholar 

  39. G. Luo, S. Yang, J. Li et al., Phys. Rev. B 92, 035415 (2015)

    Article  Google Scholar 

  40. H. Achour, S. Louhibi, B. Amrani et al., Superlattices Microstruct. 44, 223 (2008)

    Article  CAS  Google Scholar 

  41. L. Ding, P. Lu, H. Cao et al., J. Solid State Chem. 205, 44 (2013)

    Article  CAS  Google Scholar 

  42. J. Qi, D. Shi, J. Zhao et al., J. Phys. Chem. C 112, 10745 (2008)

    Article  CAS  Google Scholar 

  43. U. Gupta, J.U. Reveles, J.J. Melko et al., Chem. Phys. Lett. 480, 189 (2009)

    Article  CAS  Google Scholar 

  44. U. Gupta, J.U. Reveles, J.J. Melko et al., Chem. Phys. Lett. 467, 223 (2009)

    Article  CAS  Google Scholar 

  45. U. Gupta, J.U. Reveles, J.J. Melko et al., J. Phys. Chem. C 114, 15963 (2010)

    Article  CAS  Google Scholar 

  46. I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001)

    Article  CAS  Google Scholar 

  47. A. Belabbes, A. Zaoui, M. Ferhat, J. Phys.: Condens. Matter 20, 415221 (2008)

    Google Scholar 

  48. M. Mbarki, R. Alaya, A. Rebey, Solid State Commun. 155, 12 (2013)

    Article  CAS  Google Scholar 

  49. M. Mbarki, A. Rebey, J. Alloy. Compd. 530, 36 (2012)

    Article  CAS  Google Scholar 

  50. M. Mbarki, A. Rebey, Semicond. Sci. Technol. 26, 105020 (2011)

    Article  Google Scholar 

  51. L. Yu, D. Li, S. Zhao et al., Materials 5, 2486 (2012)

    Article  CAS  Google Scholar 

  52. M.A. Berding, A. Sher, A.B. Chen et al., J. Appl. Phys. 63, 107 (1988)

    Article  CAS  Google Scholar 

  53. D.P. Samajdar, T.D. Das, S. Dhar, Phys. Semicond. Devices (Springer, Cham, 2014)

    Google Scholar 

  54. V.K. Nikulin, N.A. Guschina, Tech. Phys. 52, 148 (2007)

    Article  CAS  Google Scholar 

  55. S. Imhof, C. Wagner, A. Chernikov et al., Physica Status Solidi (b) 248, 851 (2011)

    Article  CAS  Google Scholar 

  56. K. Reyes, P. Smereka, D. Nothern et al., Phys. Rev. B 87, 165406 (2013)

    Article  Google Scholar 

  57. J. Dai, J.R. Manson, J. Chem. Phys. 119, 9842 (2003)

    Article  CAS  Google Scholar 

  58. J. Akola, N. Atodiresei, J. Kalikka et al., J. Chem. Phys. 141, 194503 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to express our faithful appreciation to Xianlong Zhang, Wanting Shen, Junyu Zhang, and Kailin Wang, who graduated from Beijing University of Posts and Telecommunications, for their support in theoretical calculations. We also would like to thank for Prof. Pengfei Guan’s many fruitful collaborations and effective discussions. Finally, we gratefully acknowledge NSFC (No. 61675032), National Key Research and Development Program of China (No. 2017YFB0405100), and the Open Program of State Key Laboratory of Functional Materials for Informatics for funding our theoretical investigations discussed in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengfei Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lu, P., Liang, D., Guan, X., Wang, Q., Zhao, H., Wu, L. (2019). Electronic Properties of Dilute Bismides. In: Wang, S., Lu, P. (eds) Bismuth-Containing Alloys and Nanostructures. Springer Series in Materials Science, vol 285. Springer, Singapore. https://doi.org/10.1007/978-981-13-8078-5_1

Download citation

Publish with us

Policies and ethics