Skip to main content

Cubature Formula

  • Chapter
  • First Online:
Euclidean Design Theory

Part of the book series: SpringerBriefs in Statistics ((JSSRES))

  • 526 Accesses

Abstract

A cubature formula reveals a numerical integration rule that approximates a multiple integral by a positive linear combination of function values at finitely many specified points on the integral domain. A central objective is to investigate the existence as well as the construction of cubature formulas in high dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 22 January 2020

    In the original version of the book, the following belated corrections have been made

Notes

  1. 1.

    Let \(\mathscr {B}\) be the Borel \(\sigma \)-algebra of \(\varOmega \). Denote the support of \(\mu \) by \(\mathop {\mathrm {supp}}\nolimits (\mu )\), i.e., closure of \(\{ B \in \mathscr {B}\mid \mu (B) > 0 \}\).

  2. 2.

    An odd polynomial f is a polynomial satisfying \(f(-\omega ) = -f(\omega )\) for all \(\omega \in \varOmega \).

  3. 3.

    See [39, Theorems 12.1,12.2] for details of the proofs of Theorems 2.4 and 2.5.

References

  1. Bannai, E.: On antipodal euclidean tight \((2e+1)\)-designs. J. Algebr. Comb. 24(4), 391–414 (2006)

    MathSciNet  MATH  Google Scholar 

  2. Bannai, E., Bannai, E.: Spherical designs and Euclidean designs. In: Recent Developments in Algebra and Related Areas (Beijing, 2007). Advance Lectures in Mathematics, vol. 8, pp. 1–37. Higher Education Press, Beijing; International Press (2009)

    Google Scholar 

  3. Bannai, E., Bannai, E.: A survey on spherical designs and algebraic combinatorics on spheres. Eur. J. Comb. 30(6), 1392–1425 (2009)

    MathSciNet  MATH  Google Scholar 

  4. Bannai, E., Bannai, E.: Euclidean designs and coherent configurations. In: Combinatorics and graphs. Contemporary Mathematics, vol. 531, pp. 59–93. AMS, Providence, RI (2010)

    Google Scholar 

  5. Bannai, E., Bannai, E., Hirao, M., Sawa, M.: Cubature formulas in numerical analysis and Euclidean tight designs. Eur. J. Comb. 31(2), 423–441 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Bannai, E., Bannai, E., Hirao, M., Sawa, M.: On the existence of minimum cubature formulas for Gaussian measure on \(\mathbb{R}^{2}\) of degree \(t\) supported by \([\frac{t}{4}] + 1\) circles. J. Algebr. Comb. 35(1), 109–119 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Bannai, E., Munemasa, A., Venkov, B.: The nonexistence of certain tight spherical designs. Algebra i Analiz 16(4), 1–23 (2004)

    MathSciNet  MATH  Google Scholar 

  8. Bayer, C., Teichmann, J.: The proof of Tchakaloff’s theorem. Proc. Am. Math. Soc. 134(10), 3035–3040 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Bondarenko, A., Radchenko, D., Viazovska, M.: Optimal asymptotic bounds for spherical designs. Ann. Math. 178, 443–452 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Bondarenko, A., Radchenko, D., Viazovska, M.: Well-separated spherical designs. Constr. Approx. 41(1), 93–112 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Box, G.E.P., Behnken, D.: Some new three level designs for the study of quantitative variables. Technometrics 2(4), 455–475 (1960)

    MathSciNet  Google Scholar 

  12. Brauchart, J.S., Saff, E.B., Sloan, I.H., Womersley, R.S.: QMC designs: optimal order quasi-Monte Carlo integration schemes on the sphere. Math. Comput. 83(290), 2821–2851 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Cools, R.: An encyclopaedia of cubature formulas. J. Complexity 19(3), 445–453 (2003)

    MathSciNet  MATH  Google Scholar 

  14. Cools, R., Mysovskikh, I.P., Schmid, H.J.: Cubature formulae and orthogonal polynomials. J. Comput. Appl. Math. 127, 121–152 (2001)

    MathSciNet  MATH  Google Scholar 

  15. Curto, R.E., Fialkow, L.A.: A duality proof of Tchakaloff’s theorem. J. Math. Anal. Appl. 269(2), 519–532 (2002)

    MathSciNet  MATH  Google Scholar 

  16. Dao, T., De Sa, C., Ré, C.: Gaussian quadrature for kernel features. Adv. Neural. Inf. Process. Syst. 30, 6109–6119 (2017)

    Google Scholar 

  17. Delsarte, P., Goethals, J.M., Seidel, J.J.: Spherical codes and designs. Geom. Dedicata 6(3), 363–388 (1977)

    MathSciNet  MATH  Google Scholar 

  18. Delsarte, P., Seidel, J.J.: Fisher type inequalities for Euclidean \(t\)-designs. Lin. Algebra Appl. 114–115, 213–230 (1989)

    MathSciNet  MATH  Google Scholar 

  19. Dick, J., Pillichshammer, F.: Digital Nets and Sequences: Discrepancy Theory and Quasi-monte Carlo Integration. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  20. Dunkl, C.F., Xu, Y.: Orthogonal Polynomials of Several Variables. Encyclopedia of Mathematics and its Applications, vol. 155, second edn. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  21. Engels, H.: Numerical Quadrature and Cubature. Computational Mathematics and Applications. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, New York (1980)

    Google Scholar 

  22. Folland, G.: How to integrate a polynomial over a sphere. Amer. Math. Monthly 108, 446–448 (2001)

    MathSciNet  MATH  Google Scholar 

  23. Genz, A.: Testing multidimensional integration routines. In: Proceedings of International Conference on Tools. Methods and Languages for Scientific and Engineering Computation, pp. 81–94. North-Holland Inc, New York, NY, USA (1984)

    Google Scholar 

  24. Hilbert, D.: Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl \(n^{ter}\) Potenzen (Waringsches Problem). Math. Ann. 67(3), 281–300 (1909)

    MathSciNet  MATH  Google Scholar 

  25. Hirao, M.: QMC designs and determinantal point processes. In: Monte Carlo and Quasi-monte Carlo Methods 2016, pp. 331–343. Springer, Cham (2018)

    Google Scholar 

  26. Hirao, M., Sawa, M.: On almost tight Euclidean designs for rotationally symmetric integrals. Jpn. J. Stat. Data Sci (To appear)

    Google Scholar 

  27. Hirao, M., Sawa, M.: On minimal cubature formulae of small degree for spherically symmetric integrals. SIAM J. Numer. Anal. 47(4), 3195–3211 (2009)

    MathSciNet  MATH  Google Scholar 

  28. Hirao, M., Sawa, M.: On minimal cubature formulae of odd degrees for circularly symmetric integrals. Adv. Geom. 12(3), 483–500 (2012)

    MathSciNet  MATH  Google Scholar 

  29. Krylov, V.I.: Approximate Calculation of Integrals. Dover Publications (1962)

    Google Scholar 

  30. Kuperberg, G.: Numerical cubature using error-correcting codes. SIAM J. Numer. Anal. 44(3), 897–907 (2006)

    MathSciNet  MATH  Google Scholar 

  31. Lyons, T., Victoir, N.: Cubature on Wiener spaces. Proc. R. Soc. Lond. A Math. Phys. Sci. 460, 169–198 (2004)

    MathSciNet  MATH  Google Scholar 

  32. Lyubich, Y.I., Vaserstein, L.N.: Isometric embeddings between classical Banach spaces, cubature formulas, and spherical designs. Geom. Dedicata 47(3), 327–362 (1993)

    MathSciNet  MATH  Google Scholar 

  33. Möller, H.M.: Polynomideale und kubaturformeln. Ph.D. thesis, University of Dortmund (1973)

    Google Scholar 

  34. Möller, H.M.: Kubaturformeln mit minimaler knotenzahl. Numer. Math. 35(2), 185–200 (1976)

    MathSciNet  MATH  Google Scholar 

  35. Möller, H.M.: Lower bounds for the number of nodes in cubature formulae. In: Numerische Integration (Tagung, Math. Forschungsinst., Oberwolfach, 1978). International Series of Numerical Mathematics, vol. 45, pp. 221–230. Birkhäuser, Basel-Boston, Mass (1979)

    Google Scholar 

  36. Mysovskih, I.P.: On the construction of cubature formulas with the smallest number of nodes (in Russian). Dokl. Akad. Nauk SSSR 178, 1252–1254 (1968)

    MathSciNet  Google Scholar 

  37. Mysovskih, I.P.: Construction of cubature formulae (in Russian). Vopr. Vychisl. i Prikl. Mat. Tashkent 32, 85–98 (1975)

    Google Scholar 

  38. Mysovskih, I.P.: The approximation of multiple integrals by using interpolatory cubature formulae. In: DeVore, R.A., Scherer, K. (eds.) Quantitative Approximation. Academic Press, New York (1980)

    Google Scholar 

  39. Mysovskikh, I.P.: Interpolatory Cubature Formulas. Nauka, Moscow (1981). (in Russian)

    MATH  Google Scholar 

  40. Neumaier, A., Seidel, J.J.: Discrete measures for spherical designs, eutactic stars and lattices. Nederl. Akad. Wetensch. Indag. Math. 50(3), 321–334 (1988)

    MathSciNet  MATH  Google Scholar 

  41. Neumaier, A., Seidel, J.J.: Measures of strength \(2e\) and optimal designs of degree \(e\). Sankhyā Ser. A 54, 299–309 (1992)

    MathSciNet  MATH  Google Scholar 

  42. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 63. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1992)

    Google Scholar 

  43. Noskov, M.V., Schmid, H.J.: On the number of nodes in \(n\)-dimensional cubature formulae of degree 5 for integrals over the ball. J. Comput. Appl. Math. 169(2), 247–254 (2004)

    MathSciNet  MATH  Google Scholar 

  44. Nozaki, H., Sawa, M.: Remarks on Hilbert identities, isometric embeddings, and invariant cubature. Algebra i Analiz 25(4), 139–181 (2013)

    MathSciNet  MATH  Google Scholar 

  45. Pronzato, L., Müller, W.: Design of computer experiments: space filling and beyond. Stat. Comput. 22(3), 681–701 (2012)

    MathSciNet  MATH  Google Scholar 

  46. Putinar, M.: A note on Tchakaloff’s theorem. Proc. Am. Math. Soc. 125(8), 2409–2414 (1997)

    MathSciNet  MATH  Google Scholar 

  47. Reznick, B.: Sums of even powers of real linear forms. Mem. Am. Math. Soc. 96(463) (1992)

    MathSciNet  MATH  Google Scholar 

  48. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  49. Sawa, M., Uchida, Y.: Discriminants of classical quasi-orthogonal polynomials with application to diophantine equations. J. Math. Soc. Jpn. (To appear)

    Google Scholar 

  50. Sawa, M., Xu, Y.: On positive cubature rules on the simplex and isometric embeddings. Math. Comp. 83(287), 1251–1277 (2014)

    MathSciNet  MATH  Google Scholar 

  51. Schürer, R.: Parallel high-dimensional integration: Quasi-monte carlo versus adaptive cubature rules. In: 2001 Proceedings of International Conference on Computational Science – ICCS 2001, San Francisco, CA, USA, May 28–30, Part I, pp. 1262–1271. Springer, Berlin (2001)

    Google Scholar 

  52. Schürer, R.: A comparison between (quasi-)monte carlo and cubature rule based methods for solving high-dimensional integration problems. Math. Comput. Simul. 62(3–6), 509–517 (2003)

    MathSciNet  MATH  Google Scholar 

  53. Seymour, P.D., Zaslavsky, T.: Averaging sets: a generalization of mean values and spherical designs. Adv. Math. 52(3), 213–240 (1984)

    MathSciNet  MATH  Google Scholar 

  54. Shatalov, O.: Isometric embeddings \(l_2^m \rightarrow l_p^n\) and cubature formulas over classical fields. Ph.D. thesis, Technion-Israel Institute of Technology, Haifa, Israel (2001)

    Google Scholar 

  55. Silvey, S.D.: Optimal Design Monographs on Applied Probability and Statistics. Chapman & Hall, London-New York (1980)

    Google Scholar 

  56. Smolyak, S.A.: Quadrature and interpolation formulas for tensor products of certain classes of functions (in Russian). Dokl. Akad. Nauk SSSR 148(5), 1042–1053 (1963)

    MathSciNet  MATH  Google Scholar 

  57. Sobolev, S.L., Vaskevich, V.L.: The Theory of Cubature Formulas, Mathematics and its Applications, vol. 415. Kluwer Academic Publishers Group, Dordrecht (1997)

    MATH  Google Scholar 

  58. Stroud, A.H.: Approximate Calculation of Multiple Integrals. Prentice-Hall Series in Automatic Computation. Prentice-Hall Inc, Englewood Cliffs, N.J. (1971)

    MATH  Google Scholar 

  59. Szegő, G.: Orthogonal Polynomials. Colloquium Publications, Vol. XXIII. American Mathematical Society, Providence, R.I. (1975)

    Google Scholar 

  60. Tchakaloff, V.: Formules de cubatures mécaniques à coefficients non négatifs. Bull. Sci. Math. 2(81), 123–134 (1957)

    MathSciNet  MATH  Google Scholar 

  61. Verlinden, P., Cools, R.: On cubature formulae of degree \(4k+1\) attaining Möller’s lower bound for integrals with circular symmetry. Numer. Math. 61(3), 395–407 (1992)

    MathSciNet  MATH  Google Scholar 

  62. Victoir, N.: Asymmetric cubature formulae with few points in high dimension for symmetric measures. SIAM J. Numer. Anal. 42(1), 209–227 (2004)

    MathSciNet  MATH  Google Scholar 

  63. Xu, Y.: Constructing cubature formulae by the method of reproducing kernel. Numer. Math. 85(1), 155–173 (2000)

    MathSciNet  MATH  Google Scholar 

  64. Xu, Y.: Lower bound for the number of nodes of cubature formulae on the unit ball. J. Complexity 19(3), 392–402 (2003)

    MathSciNet  MATH  Google Scholar 

  65. Yudin, V.A.: Lower bounds for spherical designs. Izv. Ross. Akad. Nauk Ser. Mat. 61(3), 213–223 (1997)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanori Sawa .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sawa, M., Hirao, M., Kageyama, S. (2019). Cubature Formula. In: Euclidean Design Theory. SpringerBriefs in Statistics(). Springer, Singapore. https://doi.org/10.1007/978-981-13-8075-4_2

Download citation

Publish with us

Policies and ethics