Skip to main content

Coordinated Distributed Experiments (CDEs) Applied to Earthquake Forecast Test Sites

  • Chapter
  • First Online:
Earthquake and Disaster Risk: Decade Retrospective of the Wenchuan Earthquake

Abstract

Field experiments for testing the hypotheses related to earthquake preparation and earthquake forecast have been facing dual challenges due to the nature of the study of earthquakes. On the one hand, physical laws derived from laboratory experiments, when applied to field, have the problems of scaling, which necessitate field experiments. On the other hand, due to the limitation of earthquake ‘samples’ and the complicated factors controlling the preparation of an earthquake, the tests of the physical hypotheses by field experiments have vague significance. Such challenges are not only in the field of earthquake studies. In ecology and environmental science, ‘few samples, many factors’ is also one of the difficulties blocking the test of scientific hypotheses. To tackle this problem, in those fields, ‘Coordinated Distributed Experiments (CDEs)’ was proposed as an operational tool for hypothesis testing. Such an idea also provides earthquake studies with a new vision. In connection to the top-level design of the China Seismic Experiment Site (CSES), in this chapter, we discuss the concept CDEs applied to the test sites of earthquake forecast. We propose that an ‘earthquake rupture scenario’ be used for the coordination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Hoshiba (2006).

  2. 2.

    Stefansson et al. (1998, 2001).

  3. 3.

    http://iaspei.org/about/resolutions-statements, last access: July 31, 2018.

  4. 4.

    Here we use the words of late Prof. Leon Knopoff who commented world seismicity as ‘SO but not C’ in which SO stands for self-organized and C criticality.

References

  • Audet, P. 2010. Temporal variations in crustal scattering structure near Parkfield, California, using receiver functions. Bulletin of the Seismological Society of America 100: 1356–1362.

    Article  Google Scholar 

  • Bakun, W.H., and A.G. Lindh. 1985. The Parkfield, California, earthquake prediction experiment. Science 229: 619–624.

    Article  Google Scholar 

  • Barbot, S., N. Lapusta, and J.P. Avouac. 2012. Under the hood of the earthquake machine, toward predictive modeling of the Seismic Cycle. Science 336: 707–710. https://doi.org/10.1126/science.1218796.

    Article  Google Scholar 

  • Bennett, R.A. 2007. Instantaneous slip rates from geology and geodesy. Geophysical Journal International 169: 19–28.

    Article  Google Scholar 

  • Beroza, G.C., and S. Ide. 2011. Slow earthquake and non-volcanic tremor. Annual Review of Earth and Planetary Sciences 39: 271–296. https://doi.org/10.1146/annurev-earth-040809-152531.

    Article  Google Scholar 

  • Chao, K., and Z. Peng. 2009. Temporal changes of seismic velocity and anisotropy in the shallow crust induced by the 1999 October 22 M6.4 Chia-Yi, Taiwan earthquake. Geophysical Journal International 179: 1800–1816.

    Article  Google Scholar 

  • Davis, J.F., and P. Somerville. 1982. Comparison of earthquake prediction approaches in the Tokai area of Japan and in California. Bulletin of the Seismological Society of America 72: S367–S392.

    Google Scholar 

  • Evans, R., D. Beamish, S. Crampin, and S.B. Ucer. 1987. The Turkish dilatancy project (TDP3), multidisciplinary studies of a potential earthquake source region. Geophysical Journal of Royal Astronomical Society 91: 265–286.

    Article  Google Scholar 

  • Field, E.H., T.H. Jordan, M.T. Page, K.R. Milner, B.E. Shaw, T.E. Dawson, G.P. Biasi, T. Parsons, J.L. Hardebeck, A.J. Michael, R.J. Weldon II, P.M. Powers, K.M. Johnson, Y.H. Zeng, K.R. Felzer, N. van der Elst, C. Madden, R. Arrowsmith, M.J. Werner, and W.R. Thatcher. 2017. A synoptic view of the third Uniform California Earthquake Rupture Forecast (UCERF3). Seismological Research Letters 88: 1259–1267. https://doi.org/10.1785/0220170045.

  • Field, E.H., R.J. Arrowsmith, G.P. Biasi, P. Bird, T.E. Dawson, K.R. Felzer, D.D. Jackson, K.M. Johnson, T.H. Jordan, C. Madden, A.J. Michael, K.R. Milner, M.T. Page, T. Parsons, P.M. Powers, B.E. Shaw, W.R. Thatcher, R.J. Weldon II, and Y.H. Zeng. 2014. Uniform California Earthquake Rupture Forecast, version 3 (UCERF3)—The time-independent model. Bulletin of the Seismological Society of America 104: 1122–1180. https://doi.org/10.1785/0120130164.

    Article  Google Scholar 

  • Fraser, L.H., H.A.L. Henry, C.N. Carlyle, S.R. White, C. Beierkuhnlein, J.F. Cahill Jr., B.B. Casper, E. Cleland, S.L. Collins, J.S. Dukes, A.K. Knapp, E. Lind, R. Long, Y. Luo, P.B. Reich, M.D. Smith, M. Sternberg, and R. Turkington. 2012. Coordinated distributed experiments, an emerging tool for testing global hypotheses in ecology and environmental science. Frontier in Ecology and Environment Science 11: 147–155.

    Article  Google Scholar 

  • Hoshiba, M. 2006. Current strategy for prediction of Tokai earthquake and its recent topics. http://cais.gsi.go.jp/UJNR/6th/orally/O04_UJNR_Hoshiba.pdf. Last access: 31 July 2018.

  • Ide, S., G.C. Beroza, D.R. Shelly, and T. Uchide. 2007. A scaling law for slow earthquakes. Nature 447: 76–79.

    Article  Google Scholar 

  • Kaneko, Y., Y. Fialko, D.T. Sandwell, X. Tong, and M. Furuya. 2013. Interseismic deformation and creep along the central section of the North Anatolian Fault (Turkey), InSAR observations and implications for rate-and-state friction properties. Journal of Geophysical Research 118: 316–331. https://doi.org/10.1029/2012JB009661.

    Article  Google Scholar 

  • Kano, M., N. Aso, T. Matsuzawa, S. Ide, S. Annoura, R. Arai, S. Baba, M. Bostock, K. Chao, K. Heki, S. Itaba, Y. Ito, N. Kamaya, T. Maeda, J. Maury, M. Nakamura, T. Nishimura, K. Obana, K. Ohta, N. Poiata, B. Rousset, H. Sugioka, R. Takagi, T. Takahashi, A. Takeo, Y. Tu, N. Uchida, Y. Yamashita, and K. Obara. 2018. Development of a slow earthquake database. Seismological Research Letters 89: 1566–1575. https://doi.org/10.1785/0220180021.

    Article  Google Scholar 

  • Lachenbruch, A.H., J.H. Sass, G.D. Clow, and R. Weldon. 1995. Heat flow at Cajon Pass, California. Journal Geophysical Research 100: 2005–2012.

    Article  Google Scholar 

  • Mogi, K. 2004. Two grave issues concerning the expected Tokai Earthquake. Earth, Plants and Space 56: li–lxvi. https://doi.org/10.1186/bf03353074.

  • Mora, P., and D. Place. 1998. Numerical simulation of earthquake faults with gouge: Toward a comprehensive explanation for the heat flow paradox. Journal Geophysical Research 103: 21067–21089. https://doi.org/10.1029/98JB01490.

    Article  Google Scholar 

  • Nekrasova, A., V. Kossobokov, A. Peresan, and A. Magrin. 2014. The comparison of the NDSHA, PSHA seismic hazard maps and real seismicity for the Italian territory. Natural Hazards 70: 629–641. https://doi.org/10.1007/s11069-013-0832-6.

    Article  Google Scholar 

  • Roeloffs, E. 2000. The Parkfield California earthquake experiment, an update in 2000. Current Science 79: 1226–1236.

    Google Scholar 

  • Roeloffs, E., and L. Langbein. 1994. The earthquake prediction experiment at Parkfield, California. Review of Geophysics 32: 315–336.

    Article  Google Scholar 

  • Schorlemmer, D., M.J. Werner, W. Marzocchi, T.H. Jordan, Y. Ogata, D.D. Jackson, S. Mak, D.A. Rhoades, M.C. Hirata, N. Gerstenberger, M. Liukis, P.J. Maechling, A. Strader, M. Taroni, S. Wiemer, J.D. Zechar, and J. Zhuang. 2018. The Collaboratory for the Study of Earthquake Predictability: achievements and priorities. Seismological Research Letters 89: 1305–1313. https://doi.org/10.1785/0220180053.

    Article  Google Scholar 

  • Schwartz, S.Y., and J.M. Rokosky. 2007. Slow slip events and seismic tremor at circum-Pacific subduction zones. Review of Geophysics 45: RG3004. https://doi.org/10.1029/2006RG000208.

  • Semenov, A.M. 1969. Variations in the travel-time of transverse and longitudinal waves before violent earthquakes. Izvestia Academy of Science. USSR Physics of Solid Earth (Engl. Transl.) 4: 245–248.

    Google Scholar 

  • Stefansson, R., F. Bergerat, M. Bonafede, R. Boovarsson, S. Crampin, K.L. Feigl, F. Roth, F. Sigmundsson, and R. Slunga. 2001. PRENLAB-TWOFinal report. Veourstofa Islands Report.

    Google Scholar 

  • Stefansson, R., F. Bergerat, M. Bonafede, R. Boovarsson, S. Crampin, P. Einarsson, K.L. Feigl, A. Guomundsson, F. Roth, F. Sigmundsson, and R. Slunga.1998. PRENLAB final report. Reykjavik.

    Google Scholar 

  • Tong, X., D.T. Sandwell, and B.R. Smith-Konter. 2015. An integral method to estimate the moment accumulation rate on the Creeping Section of the San Andreas Fault. Geophysical Journal International 203: 48–62. https://doi.org/10.1093/gji/ggv269.

    Article  Google Scholar 

  • Wegler, U., H. Nakahara, C. Sens-Schönfelder, M. Korn, and K. Shiomi. 2009. Sudden drop of seismic velocity after the 2004 Mw6.6 mid-Niigata earthquake, Japan, observed with passive image interferometry. Journal of Geophysical Research: Solid Earth 114: B06305. https://doi.org/10.1029/2008jb005869.

  • Werner, M.J., K. Ide, and D. Sornette. 2011. Earthquake forecasting based on data assimilation: sequential Monte Carlo methods for renewal point process. Nonlinear Processes in Geophysics 18: 49–70. https://doi.org/10.5194/npg-18-49-2011.

    Article  Google Scholar 

  • Zechar, J.D., and K.L. Frankel. 2009. Incorporating and reporting uncertainties in fault slip rates. Journal Geophysical Research 114: B12407. https://doi.org/10.1029/2009JB006325.

    Article  Google Scholar 

  • Zuccolo, E., F. Vaccari, A. Peresan, and G.F. Panza. 2010. Neo-deterministic and probabilistic seismic hazard assessments: A comparison over the Italian territory. Pure and Applied Geophysics 168: 69–83. https://doi.org/10.1007/s00024-010-0151-8.

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to Drs. Paramesh Banerjee and Li Li, President and Secretary-General of the Asian Seismological Commission (ASC), for invitation to the 12th ASC General Assembly in connection to the 4th ICCE, and to Prof. Yong-Gang Li for invitation to the current monograph.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongliang Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Higher Education Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, Z., Zhang, Y., Li, J. (2019). Coordinated Distributed Experiments (CDEs) Applied to Earthquake Forecast Test Sites. In: Li, YG. (eds) Earthquake and Disaster Risk: Decade Retrospective of the Wenchuan Earthquake. Springer, Singapore. https://doi.org/10.1007/978-981-13-8015-0_4

Download citation

Publish with us

Policies and ethics