Remote Sensing Digital Image Processing in R

  • Courage KamusokoEmail author
Part of the Springer Geography book series (SPRINGERGEOGR)


Remote sensing digital image processing and classification provide critical land use/cover and land use/cover change information at multiple spatial and temporal scales. Over the past decades, a plethora of image processing and classification methods have been developed and applied. The purpose of this chapter is to introduce remote sensing digital image processing and machine learning in R. The chapter will cover remote sensing image processing and classification, a brief overview on R and RStudio, tutorial exercises, data and test site.


Remote sensing Digital image processing Machine learning RStudio 


  1. Adler J (2010) R in a Nutshell. O’Reilly MediaGoogle Scholar
  2. Bousquet O, Boucheron S, Lugosi G (2004) Introduction to statistical learning theory. In: Bousquet O, von Luxburg U, Ratsch G (eds) Advanced lectures on machine learning. Lecture notes in artificial intelligence, vol 3176. Springer, Heidelberg, GermanyGoogle Scholar
  3. Breiman L (2001) Random forests. Mach Learn 45:5–32CrossRefGoogle Scholar
  4. Clarke B (2013) Guest editorial for Special Issue of Statistical Analysis and Data Mining. 6(4):271–272Google Scholar
  5. Cracknell MJ, Reading AM (2014) Geological mapping using remote sensing data: a comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information. Comput Geosci 63:22–33CrossRefGoogle Scholar
  6. Dietterich TG (1999) Machine learning. In: Wilson R, Keil F (eds) The MIT encyclopedia of the cognitive sciences. MIT Press, pp 497–498Google Scholar
  7. Fotheringham AS, Brunsdon C, Charlton M (2002) Geographically weighted regression—the analysis of spatially varying relationships. Wiley, ChichesterGoogle Scholar
  8. Gahegan M (2000) On the application of inductive machine learning tools to geographical analysis. Geog Anal 32(2):113–139CrossRefGoogle Scholar
  9. Gong P, Howarth PJ (1990) The use of structural information for improving land-cover classification accuracies at the rural-urban fringe. Photogramm Eng Remote Sens 56(1):67–73Google Scholar
  10. Griffiths P, Hostert P, Gruebner O, Linden S (2010) Mapping megacity growth with multi-sensor data. Remote Sens Environ 114(2):426–439CrossRefGoogle Scholar
  11. Gubbins D (2004) Time series analysis and inverse theory for geophysicists. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  12. Guindon B, Zhang Y, Dillabaugh C (2004) Landsat urban mapping based on a combined spectral-spatial methodology. Remote Sens Environ 92:218–232CrossRefGoogle Scholar
  13. Han J, Kamber M, Pei J (2012) Data mining: concepts and techniques, 3rd edn. Elsevier, AmsterdamGoogle Scholar
  14. Harris PM, Ventura SJ (1995) The integration of geographic data with remotely-sensed imagery to improve classification in urban area. Photogramm. Eng. Remote Sens 61:993–998Google Scholar
  15. Hastie T, Tibshirani R, Friedman JH (2009) The elements of statistical learning: data mining, inference, and prediction. Springer-Verlag, New YorkCrossRefGoogle Scholar
  16. Kamusoko C, Gamba J, Murakami H (2013) Monitoring urban spatial growth in Harare Metropolitan province, Zimbabwe. Adv Remote Sens 2:322–331CrossRefGoogle Scholar
  17. Kuhn M, Johnson K (2016) Applied predictive modeling. SpringerGoogle Scholar
  18. Lo CP, Choi J (2004) A hybrid approach to urban land use/cover mapping using Landsat 7 enhanced thematic mapper plus (ETM+) images. Int J Remote Sens 25:2687–2700CrossRefGoogle Scholar
  19. Lu D, Weng Q (2007) A survey of image classification methods and techniques for improving classification performance. Int J Remote Sens 28:823–870CrossRefGoogle Scholar
  20. MacKay DJC (2003) Information theory, inference, and learning algorithms. Cambridge University Press. Accessed 4 Jan 2018
  21. Maindonald J, Braun J (2003) Data analysis and graphics using R—an example-based approach. Cambridge series in statistical and probabilistic mathematics. Cambridge University Press, Cambridge, UKGoogle Scholar
  22. Michie D, Spiegelhalter DJ, Taylor CC (1994) Machine learning, neural and statistical classification. Ellis HorwoodGoogle Scholar
  23. Mitchell T (1997) Machine learning. McGraw HillGoogle Scholar
  24. Moller-Jensen L (1990) Knowledge-based classification of classification of an urban area using texture and context information in Landsat-TM imagery. Photogramm Eng Remote Sens 56(6):899–904Google Scholar
  25. Nemmour H, Chibani Y (2006) Multiple support vector machines for land cover change detection: an application for mapping urban extensions. ISPRS J Photogramm Remote Sens 61:125–133CrossRefGoogle Scholar
  26. Nyamapfene K (1991) Soils of Zimbabwe. Nehanda Publishers, Harare, ZimbabweGoogle Scholar
  27. Pal M, Mather PM (2003) An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sens Environ 86(4):554–565CrossRefGoogle Scholar
  28. Portugal I, Alencar P, Cowan D (2018) The use of machine learning in recommender systems: a systematic review. Expert Syst Appl 97:205–227CrossRefGoogle Scholar
  29. R Development Core Team (2005) R: A language and environment for statistical computing. R foundation for statistical computing. Accessed 3 April 2014
  30. Ridd MK (1995) Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing: comparative anatomy for cities. Int J Remote Sens 16:2165–2185CrossRefGoogle Scholar
  31. Ripley BD (1996) Pattern recognition and neural networks. Cambridge University PressGoogle Scholar
  32. Rodriguez-Galiano VF, Chica-Olmo M, Abarca-Hernandez F, Atkinson PM, Jeganathan C (2012) Random forest classification of mediterranean land cover using multi-seasonal imagery and multi-seasonal texture. Remote Sens Environ 121:93–107CrossRefGoogle Scholar
  33. Russell S, Norvig P (2003) Artificial intelligence: a modern approach, 2nd ed. Prentice HallGoogle Scholar
  34. Sedano F, Gong P, Ferrao M (2005) Land cover assessment with MODIS imagery in southern African Miombo ecosystems. Remote Sens Environ 98(4):429–441CrossRefGoogle Scholar
  35. Seto KC, Liu W (2003) Comparing ARTMAP neural network with the maximum-likelihood classifier for detecting urban change. Photogramm Eng Remote Sens 69(9):981–990CrossRefGoogle Scholar
  36. Stefanov WL, Ramsey MS, Christensen PR (2001) Monitoring urban land cover change: an expert system approach to land cover classification of semiarid to arid centers. Remote Sens Environ 77(2):173–185CrossRefGoogle Scholar
  37. Xu H (2007) Extraction of urban built-up land features from Landsat imagery using a thematic-oriented index combination technique. Photogramm Eng Remote Sens 73:1381–1391CrossRefGoogle Scholar
  38. Yu X, Wu X, Luo C, Ren P (2017) Deep learning in remote sensing scene classification: a data augmentation enhanced conventional neural network framework. GIS Remote Sens 54(5):741–758CrossRefGoogle Scholar
  39. Zha Y, Gao J, Ni S (2003) Use of normalized difference built-index in automatically mapping urban areas from TM imagery. Int J Remote Sens 24(3):583–594CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Asia Air Survey Co., Ltd.KawasakiJapan

Personalised recommendations