Skip to main content

Part of the book series: Atmosphere, Earth, Ocean & Space ((AEONS))

  • 520 Accesses

Abstract

In previous chapters we comprehensively introduced KAWs in space and solar plasmas, including their observational identifications and applications to related particle kinetic phenomena, such as the auroral energetic electron acceleration in auroral magnetospheric plasmas, the anomalous particle transport in the magnetopause, the kinetic turbulence in the solar wind, and the solar coronal heating problem. The solar and solar-system plasma, especially the solar-terrestrial coupling system, is a natural laboratory for plasma astrophysics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcalá, J. M., Krautter, J., Covino, E., et al. (1997). A study of the Chamaeleon star-forming region from the ROSAT All-Sky Survey. II. The pre-main sequence population. Astronomy & Astrophysics, 319, 184–200.

    ADS  Google Scholar 

  • Alexandrova, O., Carbone, V., Veltri, P., & Sorriso-Valvo, L. (2008). Small-scale energy cascade of the solar wind turbulence. The Astrophysical Journal, 674, 1153–1157.

    Article  ADS  Google Scholar 

  • Alfvén, H. (1939). On the motion of cosmic rays in interstellar space. Physical Review, 55(425), 429.

    ADS  MATH  Google Scholar 

  • Alfvén, H., & Herlofson, N. (1950). Cosmic radiation and radio stars. Physical Review, 78, 616–616.

    Article  ADS  Google Scholar 

  • Armstrong, J. W., Cordes, J. M., & Rickett, B. J. (1981). Density power spectrum in the local interstellar medium. Nature, 291, 561–564.

    Article  ADS  Google Scholar 

  • Armstrong, J. W., Rickett, B. J., & Spangler, S. R. (1995). Electron density power spectrum in the local interstellar medium. The Astrophysical Journal, 443, 209.

    Article  ADS  Google Scholar 

  • Bîrzan, L., Rafferty, D. A., Mcnamara, B. R., et al. (2004). A systematic study of radio induced x-ray cavities in clusters, groups, and galaxies. The Astrophysical Journal, 607, 800–809.

    Article  ADS  Google Scholar 

  • Baganoff, F. K., Bautz, M. W., Brandt, W. N., et al. (2001). Rapid X-ray flaring from the direction of the supermassive black hole at the Galactic Centre. Nature, 413, 45–48.

    Article  ADS  Google Scholar 

  • Beck, R. (2001). Galactic and extragalactic magnetic fields, Space Sci. Review, 99, 243–260.

    Google Scholar 

  • Begelman, M. C., Blandford, R. D., & Rees, M. J. (1984). Theory of extragalactic radio sources. Reviews of Modern Physics, 56, 255–351.

    Article  ADS  Google Scholar 

  • Belsole, E., Sauvageot, J. L., Böhringer, H., et al. (2001). An XMM-Newton study of the sub-structure in M 87’s halo. Astronomy & Astrophysics, 365, L188–L194.

    Article  ADS  Google Scholar 

  • Benevolenskaya, E. E., Kosovichev, A. G., Lemen, J. R., et al. (2002). Large-scale solar coronal structures in soft x-rays and their relationship to the magnetic flux. The Astrophysical Journal, 571, L181.

    Article  ADS  Google Scholar 

  • Benford, G. (1978). Current-carrying beams in astrophysics: models for double radio sources and jets. Monthly Notices of the Royal Astronomical Society, 183, 29–48.

    Article  ADS  Google Scholar 

  • Benford, G. (1984). Magnetically ordered jets from pulsars. The Astrophysical Journal, 282, 154–160.

    Article  ADS  Google Scholar 

  • Benz, A. O., & Güdel, M. (1994). X-ray/microwave ratio of flares and coronae. Astronomy & Astrophysics, 285, 621–630.

    ADS  Google Scholar 

  • Berghöfer, T. W., Schmitt, J. H. M. M., & Cassinelli, J. P. (1996). The ROSAT all-sky survey catalogue of optically bright OB-type stars. Astronomy & Astrophysics Supplement, 118, 481–494.

    Article  ADS  Google Scholar 

  • Bicknell, G. V. (1984). A model for the surface brightness of a turbulent low mach number jet. I. Theoretical development and application to 3C 31. The Astrophysical Journal, 286, 68–87.

    Article  ADS  Google Scholar 

  • Birkinshaw, M. (1999). The effects of nearby clusters of galaxies on the microwave background radiation. Smithsonian Astrophysical Observatory Cambridge, MA United States: Technical Report.

    Google Scholar 

  • Blake, G. M. (1972). Fluid dynamic stability of double radio sources. Monthly Notices of the Royal Astronomical Society, 181, 465.

    Google Scholar 

  • Blandford, R. D. (1976). Accretion disc electrodynamics-a model for double radio sources. Monthly Notices of the Royal Astronomical Society, 176, 465–481.

    Article  ADS  Google Scholar 

  • Blandford, R. D., & Rees, M. J. (1974). A “twin-exhaust” model for double radio sources. Monthly Notices of the Royal Astronomical Society, 169, 395–415.

    Article  ADS  Google Scholar 

  • Blanton, E. L., Sarazin, C. L., McNamara, B. R., & Wise, M. W. (2001). Chandra observations of the radio source/X-ray gas interaction in the cooling flow cluster Abell 2052. The Astrophysical Journal Letters, 558, L15–L19.

    Article  ADS  Google Scholar 

  • Böhringer, H., & Werner, N. (2010). X-ray spectroscopy of galaxy clusters: studying astrophysical processes in the largest celestial laboratories. Astronomy & Astrophysics Review, 18, 127–196.

    Article  ADS  Google Scholar 

  • Böhringer, H., Belsole, E., Kennea, J., et al. (2001). XMM-Newton observations of M 87 and its X-ray halo. Astronomy & Astrophysics, 365, L181–L187.

    Article  ADS  Google Scholar 

  • Böhringer, H., Nulsen, P. E. J., Braun, R., & Fabian, A. C. (1995). The interaction of the radio halo of M87 with the cooling intracluster medium of the Virgo cluster. Monthly Notices of the Royal Astronomical Society, 274, L67–L71.

    Article  ADS  Google Scholar 

  • Braginskii, S. I. (1965). Transport processes in a plasma. Reviews of Modern Plasma Physics, 1, 205–311.

    Google Scholar 

  • Branduardi-Raymont, G., Fabricant, D., Feigelson, E., et al. (1981). Soft X-ray images of the central region of the Perseus cluster. The Astrophysical Journal, 248, 55–60.

    Article  ADS  Google Scholar 

  • Briel, U. G., Henry, J. P., & Boehringer, H. (1992). Observation of the Coma cluster of galaxies with ROSAT during the all-sky-survey. Astronomy & Astrophysics, 259, L31–L34.

    ADS  Google Scholar 

  • Brown, J. C., & Bingham, R. (1984). Electrodynamics effects in beam-return current systems and their implications for solar impulsive bursts. Astronomy & Astrophysics, 131, L11.

    ADS  Google Scholar 

  • Burbidge, G. (1967). Generation of radio sources. Nature, 216, 1287–1289.

    Article  ADS  Google Scholar 

  • Burns, J. O., Feigelson, E. D., & Schreier, E. J. (1983). The inner radio structure of Centaurus A: Clues to the origin of the jet X-ray emission. The Astrophysical Journal, 273, 128–153.

    Article  ADS  Google Scholar 

  • Carilli, C. L., & Taylor, G. B. (2002). Cluster magnetic fields. Annual Reviews Astronomy & Astrophysics, 40, 319–348.

    Article  ADS  Google Scholar 

  • Catura, R. C., Acton, L. W., & Johnson, H. M. (1975). Evidence for x-ray emission from Capella. The Astrophysical Journal, 196, L47–L49.

    Article  ADS  Google Scholar 

  • Cavaliere, A., & Fusco-Femiano, R. (1976). X-rays from hot plasma in clusters of galaxies. Astronomy & Astrophysics, 49, 137–144.

    ADS  Google Scholar 

  • Chandran, B. D. G., Quataert, E., Howes, G. G., et al. (2009). Constraining low-frequency Alfvénic turbulence in the solar wind using density-fluctuation measurements. The Astrophysical Journal, 707, 1668–1675.

    Article  ADS  Google Scholar 

  • Chen, C. H. K., Salem, C. S., Bonnell, J. W., et al. (2012). Density fluctuation spectrum of solar wind turbulence between ion and electron scales. Physical Review Letters, 109, 035001.

    Article  ADS  Google Scholar 

  • Chen, L., Wu, D. J., Zhao, G. Q., & Tang, J. F. (2017). A self-consistent mechanism for electron cyclotron maser emission and its application to type III solar radio bursts. Journal of Geophysical Research, 122, 35–49.

    Google Scholar 

  • Chen, L., Wu, D. J., Zhao, G. Q., et al. (2014). Excitation of kinetic Alfvén waves by fast electron beams. The Astrophysical Journal, 793, 13.

    Article  ADS  Google Scholar 

  • Chen, L., Wu, D. J., Zhao, G. Q., et al. (2015). A possible mechanism for the formation of filamentous structures in magnetoplasmas by kinetic Alfvén waves. Journal of Geophysical Research, 120, 61–69.

    Google Scholar 

  • Chepurnov, A., & Lazarian, A. (2010). Extending the big power law in the sky with turbulence spectra from Wisconsin H mapper data. The Astrophysical Journal, 710, 853–858.

    Article  ADS  Google Scholar 

  • Chiaberge, M., Capetti, A., & Celotti, A. (1999). The HST view of FR I radio galaxies: Evidence for non-thermal nuclear sources. Astronomy & Astrophysics, 349, 77–87.

    ADS  Google Scholar 

  • Cho, J., & Vishniac, E. T. (2000). The anisotropy of MHD Alfvénic turbulence. The Astrophysical Journal, 539, 273–282.

    Article  ADS  Google Scholar 

  • Churazov, E., Bruggen, M., Kaiser, C. R., et al. (2001). Evolution of Buoyant bubbles in M87. The Astrophysical Journal, 554, 261–273.

    Article  ADS  Google Scholar 

  • Clarke, T. E., Kronberg, P. P., & Böhringer, H. (2001). A new radio-X-ray probe of galaxy cluster magnetic fields. The Astrophysical Journal, 547, L111–L114.

    Article  ADS  Google Scholar 

  • Clarke, T. E., Sarazin, C. L., Blanton, E. L., et al. (2005). Low-frequency radio observations of X-ray ghost bubbles in A2597: A history of radio activity in the core. The Astrophysical Journal, 625, 748–753.

    Article  ADS  Google Scholar 

  • Corbel, S., Nowak, M. A., Fender, R. P., et al. (2003). Radio/X-ray correlation in the low/hard state of GX 339–4. Astronomy & Astrophysics, 400, 1007–1012.

    Article  ADS  Google Scholar 

  • Cordes, J. M., Weisberg, J. M., & Boriakoff, V. (1985). Small-scale electron density turbulence in the interstellar medium. The Astrophysical Journal, 288, 221–247.

    Article  ADS  Google Scholar 

  • Cowie, L. L. (1981). Theoretical models of X-ray emission from rich clusters of galaxies. In X-ray Astronomy with the Einstein Satellite (Proceedings of the Meeting, Cambridge M. A., January 28–30, 1980, ed. R. Giacconi), Dordrecht, Reidel, 227–240.

    Google Scholar 

  • Cowie, L. L., & Binney, J. (1977). Radiative regulation of gas flow within clusters of galaxies: A model for cluster X-ray sources. The Astrophysical Journal, 215, 723–732.

    Article  ADS  Google Scholar 

  • Crovisier, J., & Dickey, J. M. (1983). The spatial power spectrum of galactic neutral hydrogen from observations of the 21-cm emission line. Astronomy & Astrophysics, 122, 282–296.

    ADS  Google Scholar 

  • Dai, Z. G., Wang, X. Y., Wu, X. F., & Zhang, B. (2006). X-ray flares from postmerger, millisecond pulsars. Science, 311, 1127.

    Article  ADS  Google Scholar 

  • Dame, T. M., Elmegreen, B. G., Cohen, R. S., & Thaddeus, P. (1986). The largest molecular cloud complexes in the first galactic quadrant. The Astrophysical Journal, 305, 892–908.

    Article  ADS  Google Scholar 

  • David, L. P., Nulsen, P. E. J., McNamara, B. R., et al. (2001). A high-resolution study of the Hydra A cluster with Chandra: Comparison of the core mass distribution with theoretical predictions and evidence for feedback in the cooling flow. The Astrophysical Journal, 557, 546–559.

    Article  ADS  Google Scholar 

  • De Young, D. S., & Axford, W. I. (1967). Inertial confinement of extended radio sources. Nature, 216, 129–131.

    Article  ADS  Google Scholar 

  • Di Matteo, T., Celotti, A., & Fabian, A. C. (1999). Magnetic flares in accretion disc coronae and the spectral states of black hole candidates: The case of GX339-4. Monthly Notices of the Royal Astronomical Society, 304, 809.

    Article  ADS  Google Scholar 

  • Dunn, R. J. H., & Fabian, A. C. (2006). Investigating AGN heating in a sample of nearby clusters. Monthly Notices of the Royal Astronomical Society, 373, 959–971.

    Article  ADS  Google Scholar 

  • Eilek, J. A. (1985). Current systems in radio jets. In M. R. Kundu & G. D. Holman (eds.) Unstable Current Systems and Plasma Instabilities in Astrophysics IAU Symposia, 107, 433–437.

    Google Scholar 

  • Elphic, R. C. (1985). Magnetic flux ropes of Venus-A paradigm for helical magnetic structures in astrophysical systems. In M. R. Kundu & G. D. Holman (eds.) Unstable Current Systems and Plasma Instabilities in Astrophysics. IAU Symposia, 107, 43–46.

    Google Scholar 

  • Ettori, S. (2000). \(\beta \)-model and cooling flows in X-ray clusters of galaxies. Monthly Notices of the Royal Astronomical Society, 318, 1041–1046.

    Article  ADS  Google Scholar 

  • Fabian, A. C. (1994). Cooling flows in clusters of galaxies. Annual Reviews Astronomy & Astrophysics, 32, 277–318.

    Article  ADS  Google Scholar 

  • Fabian, A. C., & Nulsen, P. E. J. (1977). Subsonic accretion of cooling gas in clusters of galaxies. Monthly Notices of the Royal Astronomical Society, 180, 479–484.

    Article  ADS  Google Scholar 

  • Fabian, A. C., Celotti, A., Blundell, K. M., et al. (2002). The properties of the X-ray holes in the intracluster medium of the Perseus cluster. Monthly Notices of the Royal Astronomical Society, 331, 369–375.

    Article  ADS  Google Scholar 

  • Fabian, A. C., Hu, E. M., Cowie, L. L., & Grindlay, J. (1981). The distribution and morphology of x-ray-emitting gas in the core of the perseus cluster. The Astrophysical Journal, 248, 47–54.

    Article  ADS  Google Scholar 

  • Fabian, A. C., Reynolds, C. S., Taylor, G. B., & Dunn, R. J. H. (2005). On viscosity, conduction and sound waves in the intracluster medium. Monthly Notices of the Royal Astronomical Society, 363, 891–896.

    Article  ADS  Google Scholar 

  • Fabian, A. C., Sanders, J. S., Taylor, G. B., et al. (2006). A very deep Chandra observation of the Perseus cluster: Shocks, ripples and conduction. Monthly Notices of the Royal Astronomical Society, 366, 417–428.

    Article  ADS  Google Scholar 

  • Fabricant, D., & Gorenstein, P. (1983). Further evidence for M87’s massive, dark halo. The Astrophysical Journal, 267, 535–546.

    Article  ADS  Google Scholar 

  • Falcke, H., & Biermann, P. L. (1995). The jet-disk symbiosis. I. Radio to X-ray emission models for quasars. Astronomy & Astrophysics, 293, 665–682.

    ADS  Google Scholar 

  • Falcke, H., Kording, E., & Markoff, S. (2004). A scheme to unify low-power accreting black holes, Jet-dominated accretion flows and the radio/X-ray correlation. Astronomy & Astrophysics, 414, 895–903.

    Article  ADS  Google Scholar 

  • Feretti, L., Gioia, I. M. & Giovannini, G. (2002). Merging processes in galaxy clusters, Edited by L. Feretti, Istituto di Radioastronomia CNR, Bologna, Italy; I.M. Gioia, Istituto di Radioastronomia CNR, Bologna, Italy; G. Giovannini, Physics Department, University of Bologna, Italy. Astrophysics and Space Science Library, Vol. 272. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Finoguenov, A., & Jones, C. (2001). Chandra observation of M84, a radio lobe elliptical galaxy in the Virgo cluster. The Astrophysical Journal, 547, L107–L110.

    Article  ADS  Google Scholar 

  • Ford, H. C., Harms, R. J., Tsvetanov, Z. I., et al. (1994). Narrowband HST images of M87: Evidence for a disk of ionized gas around a massive black hole. Astrophysical Journal Letters, 435, L27.

    Article  ADS  Google Scholar 

  • Forman, W., & Jones, C. (1982). X-ray-imaging observations of clusters of galaxies. Annual Reviews Astronomy & Astrophysics, 20, 547–585.

    Article  ADS  Google Scholar 

  • Forman, W., Jones, C., Churazov, E., et al. (2007). Filaments, bubbles, and weak shocks in the gaseous atmosphere of M87. The Astrophysical Journal, 665, 1057–1066.

    Article  ADS  Google Scholar 

  • Forman, W., Kellogg, E., Gursky, H., et al. (1972). Observations of the extended X-ray sources in the Perseus and Coma clusters from UHURU. The Astrophysical Journal, 178, 309–316.

    Article  ADS  Google Scholar 

  • Forman, W., Nulsen, P., Heinz, S., et al. (2005). Reflections of active galactic nucleus outbursts in the gaseous atmosphere of M87. The Astrophysical Journal, 635, 894–906.

    Article  ADS  Google Scholar 

  • Furlanetto, S. R., & Loeb, A. (2001). Intergalactic magnetic fields from quasar outflows. The Astrophysical Journal, 556, 619–634.

    Article  ADS  Google Scholar 

  • Gallo, E., Fender, R. P., & Pooley, G. G. (2003). A universal radio-X-ray correlation in low/hard state black hole binaries. Monthly Notices of the Royal Astronomical Society, 344, 60–72.

    Article  ADS  Google Scholar 

  • Ghisellini, G., Padovani, P., Celotti, A., & Maraschi, L. (1993). Relativistic bulk motion in active galactic nuclei. The Astrophysical Journal, 407, 65.

    Article  ADS  Google Scholar 

  • Giacconi, R., Kellogg, E., Gorenstein, P., et al. (1971). An X-ray scan of the galactic plane from UHURU. The Astrophysical Journal, 165, L27.

    Article  ADS  Google Scholar 

  • Gilfanov, M. R., Syunyaev, R. A., & Churazov, E. M. (1987). The X-ray surface brightness distribution of clusters of galaxies in resonance lines. Pisma v Astronomicheskii Zhurnal, 13, 7–18.

    ADS  Google Scholar 

  • Gillmon, K., Sanders, J. S., & Fabian, A. C. (2004). An X-ray absorption analysis of the high-velocity system in NGC 1275. Monthly Notices of the Royal Astronomical Society, 348, 159–164.

    Article  ADS  Google Scholar 

  • Goldreich, P., & Sridhar, S. (1995). Toward a theory of interstellar turbulence. 2: Strong Alfvénic turbulence. The Astrophysical Journal, 438, 763–775.

    Article  ADS  Google Scholar 

  • Goldreich, P., & Sridhar, S. (1997). Magnetohydrodynamic turbulence revisited. The Astrophysical Journal, 485, 680–688.

    Article  ADS  Google Scholar 

  • Gorenstein, P., Fabricant, D., Topka, K., & ... (1977). Structure of the X-ray source in the Virgo cluster of galaxies. The Astrophysical Journal, 216, L95–L99.

    Google Scholar 

  • Govoni, F. (2006). Observations of magnetic fields in regular and irregular clusters. Astronomische Nachrichten, 327, 539.

    Article  ADS  Google Scholar 

  • Govoni, F., & Feretti, L. (2004). Magnetic fields in clusters of galaxies. International Journal of Modern Physics D, 13, 1549–1594.

    Article  ADS  MATH  Google Scholar 

  • Gronenschild, E. H. B. M., & Mewe, R. (1978). Calculated X-radiation from optically thin plasmas. III. Abundance effects on continuum emission. Astronomy and Astrophysics Supplement, 32, 283–305.

    ADS  Google Scholar 

  • Güdel, M. (2004). X-ray astronomy of stellar coronae. Astronomy & Astrophysics Review, 12, 71–237.

    Article  ADS  Google Scholar 

  • Güdel, M., & Benz, A. O. (1993). X-Ray/microwave relation of different types of active stars. Astrophysical Journal Letters, 405, L63.

    Article  ADS  Google Scholar 

  • Gurnett, D. A., Kurth, W. S., Burlaga, L. F., & Ness, N. F. (2013). In situ observations of interstellar plasma with Voyager 1. Science, 341, 1489–1492.

    Article  ADS  Google Scholar 

  • Gurnett, D. A., Kurth, W. S., Stone, E. C., et al. (2015). Precursors to interstellar shocks of solar origin. The Astrophysical Journal, 809, 121.

    Article  ADS  Google Scholar 

  • Gursky, H., & Schwartz, D. A. (1977). Extragalactic X-ray sources. Annual Reviews Astronomy & Astrophysics, 15, 541–568.

    Article  ADS  Google Scholar 

  • Gursky, H., Kellogg, E., Murray, S., et al. (1971). A strong X-ray source in the coma cluster observed by UHURU. The Astrophysical Journal, 167, L81.

    Article  ADS  Google Scholar 

  • Haardt, F., Maraschi, L., & Ghisellini, G. (1997). X-Ray variability and correlations in the two-Phase disk-corona model for Seyfert galaxies. The Astrophysical Journal, 476, 620–631.

    Article  ADS  Google Scholar 

  • Haisch, B., Strong, K. T., & Rodono, M. (1991). Flares on the Sun and other stars, Annual Rev. Astronomy & Astrophysics, 29, 275–324.

    Article  ADS  Google Scholar 

  • Hammer, D. A., & Rostoker, N. (1970). Propagation of high current relativistic electron beams. Physics of Fluids, 13, 1831–1850.

    Article  ADS  Google Scholar 

  • Hardee, P. E. (1985). Is the jet in M87 magnetically confined? In M. R. Kundu & G. D. Holman (eds. )Unstable Current Systems and Plasma Instabilities in Astrophysics, IAU Synmp. 107, 442, 443.

    Google Scholar 

  • Harms, R. J., Ford, H. C., Tsvetanov, Z. I., et al. (1994). HST FOS spectroscopy of M87: Evidence for a disk of ionized gas around a massive black hole. Astrophysical Journal Letters, 435, L35.

    Article  ADS  Google Scholar 

  • Harris, D. E., Biretta, J. A., Junor, W., et al. (2003). Flaring X-ray emission from HST-1, a knot in the M87 jet. The Astrophysical Journal, 586, L41–L44.

    Article  ADS  Google Scholar 

  • Hasegawa, A. (1976). Kinetic theory of MHD instabilities in a nonuniform plasma. Solar Physics, 47, 325–330.

    Article  ADS  Google Scholar 

  • Hasegawa, A. (1985). Plasma heating by Alfvén waves-kinetic properties of magnetohydrodynamic disturbances. In M. R. Kundu & G. D. Holman (eds.) Unstable Current Systems and Plasma Instabilities in AstrophysicsIAU Symposia, 107, 381–388.

    Google Scholar 

  • Hasegawa, A., & Chen, L. (1976). Kinetic process of plasma heating by resonant mode conversion of Alfvén wave. Physics of Fluids, 19, 1924–1934.

    Article  ADS  Google Scholar 

  • Hasegawa, A., & Uberoi, C. (1982). The Alfvén Waves. Tech: Inf. Center, US Dept. of Energy, Oak Ridge.

    Google Scholar 

  • Hattori, M., Kneib, J., & Makino, N. (1999). Gravitational lensing in clusters of galaxies. Progress of Theoretical Physics Supplements, 133, 1–51.

    Article  ADS  Google Scholar 

  • Hawley, J. F., Balbus, S. A., & Winters, W. F. (1999). Local hydrodynamic stability of accretion disks. The Astrophysical Journal, 518, 394–404.

    Article  ADS  Google Scholar 

  • Heise, J., Brinkman, A. C., Schrijver, J., et al. (1975). Evidence for x-ray emission from flare stars observed by ANS. The Astrophysical Journal, 202, L73–L76.

    Article  ADS  Google Scholar 

  • Heyvaerts, J., & Priest, E. R. (1983). Coronal heating by phase-mixed shear Alfvén waves. Astronomy & Astrophysics, 117, 220–234.

    ADS  MATH  Google Scholar 

  • Higdon, J. C. (1984). Density fluctuations in the interstellar medium: Evidence for anisotropic magnetogasdynamic turbulence. I-Model and astrophysical sites. The Astrophysical Journal, 285, 109–123.

    Article  ADS  Google Scholar 

  • Horbury, T. S., Forman, M., & Oughton, S. (2008). Anisotropic scaling of magnetohydrodynamic turbulence. Physical Review Letters, 101, 175005.

    Article  ADS  Google Scholar 

  • Howes, G. G., Cowley, S. C., Dorland, W., et al. (2006). Astrophysical gyrokinetics: basic equations and linear theory. The Astrophysical Journal, 651, 590–614.

    Article  ADS  Google Scholar 

  • Hünsch, M., Schmitt, J. H. M. M., & Voges, W. (1998a). The ROSAT all-sky survey catalogue of optically bright late-type giants and supergiants. Astronomy and Astrophysics Supplement, 127, 251–255.

    Article  ADS  Google Scholar 

  • Hünsch, M., Schmitt, J. H. M. M., & Voges, W. (1998b). The ROSAT all-sky survey catalogue of optically bright main-sequence stars and subgiant stars. Astronomy and Astrophysics Supplement, 132, 155–171.

    Article  ADS  Google Scholar 

  • Hünsch, M., Schmitt, J. H. M. M., Sterzik, M. F., & Voges, W. (1999). The ROSAT all-sky survey catalogue of the nearby stars. Astronomy and Astrophysics Supplement, 135, 319–338.

    Article  ADS  Google Scholar 

  • Jafelice, L. C., & Opher, R. (1987a). Kinetic Alfvén waves in extended radio sources, I. Reacceleration. Astrophysics and Space Science, 137, 303–315.

    Article  ADS  Google Scholar 

  • Jafelice, L. C., & Opher, R. (1987b). Kinetic Alfvén waves in extended radio sources, II. Electric Currents, Collimated Jets, and Inhomogeneities. Astrophysics and Space Science, 138, 23–39.

    Article  ADS  Google Scholar 

  • Kellogg, P. J., & Horbury, T. S. (2005). Rapid density fluctuations in the solar wind. Annales Geophysicae, 23, 3765–3773.

    Article  ADS  Google Scholar 

  • Kim, T. K., Pogorelov, N. V., & Burlaga, L. F. (2017). Modeling shocks detected by Voyager 1 in the local interstellar medium. The Astrophysical Journal, 843, L32.

    Article  ADS  Google Scholar 

  • Kolmogorov, A. N. (1941). The local structure turbulence in incompressible viscous fluids for very large Reynolds numbers, Dokl. Akad. Nauk. SSSR 30, 301–305. Reprinted in 1991. Proceedings of the Royal Society London A, 434, 9–13.

    Google Scholar 

  • Kronberg, P. P. (2003). Galaxies and the magnetization of intergalactic space. Physics of Plasmas, 10, 1985–1991.

    Article  ADS  Google Scholar 

  • Kronberg, P. P., Dufton, Q. W., Li, H., & Colgate, S. A. (2001). Magnetic energy of the intergalactic medium from galactic black holes. The Astrophysical Journal, 560, 178–186.

    Article  ADS  Google Scholar 

  • Lacombe, C. (1977). Acceleration of particles and plasma heating by turbulent Alfvén waves in a radiogalaxy. Astronomy & Astrophysics, 54, 1–16.

    ADS  Google Scholar 

  • Larson, R. B. (1979). Stellar kinematics and interstellar turbulence. Monthly Notices of the Royal Astronomical Society, 186, 479–490.

    Article  ADS  Google Scholar 

  • Larson, R. B. (1981). Turbulence and star formation in molecular clouds. Monthly Notices of the Royal Astronomical Society, 194, 809–826.

    Article  ADS  Google Scholar 

  • Lawson, W. A., Feigelson, E. D., & Huenemoerder, D. P. (1996). An improved HR diagram for Chamaeleon I pre-main-sequence stars. Monthly Notices of the Royal Astronomical Society, 280, 1071–1088.

    ADS  Google Scholar 

  • Lee, K. H. (2017). Generation of parallel and quasi-perpendicular EMIC waves and mirror waves by fast magnetosonic shocks in the solar wind. Journal of Geophysical Research, 122, 7307–7322.

    Google Scholar 

  • Lee, K. H., & Lee, L. C. (2019). Interstellar turbulence spectrum from in situ observations of Voyager 1. Nature Astronomy, 3, 154–159.

    Article  ADS  Google Scholar 

  • Lee, L. C., & Jokipii, J. R. (1976). The irregularity spectrum in interstellar space. The Astrophysical Journal, 206, 735–743.

    Article  ADS  Google Scholar 

  • Lee, M. A., & Roberts, B. (1986). On the behavior of hydromagnetic surface waves. The Astrophysical Journal, 301, 430–439.

    Article  ADS  Google Scholar 

  • Lee, R., & Sudan, R. N. (1971). Return current induced by a relativistic beam propagating in a magnetized plasma. Physics of Fluids, 14, 1213–1225.

    Article  ADS  Google Scholar 

  • Liang, E. P. (1998). Multi-wavelength signatures of galactic black holes: observation and theory. Physics Reports, 302, 67–142.

    Article  ADS  Google Scholar 

  • Little, L. T., & Matheson, D. N. (1973). Radio scintillations due to plasma irregularities with power law spectra: the interplanetary medium. Monthly Notices of the Royal Astronomical Society, 162, 329–338.

    Article  ADS  Google Scholar 

  • Lovelace, R. V. E. (1976). Dynamo model of double radio sources. Nature, 262, 649–652.

    Article  ADS  Google Scholar 

  • Luo, Q. Y., & Wu, D. J. (2010). Observations of anisotropic scaling of solar wind turbulence. Astrophysical Journal Letters, 714, L138–L141.

    Article  ADS  Google Scholar 

  • Maccarone, T. J. (2003). Do X-ray binary spectral state transition luminosities vary? Astronomy & Astrophysics, 409, 697–706.

    Article  ADS  Google Scholar 

  • Macchetto, F., Marconi, A., Axon, D. J., et al. (1997). The super massive black hole of M87 and the kinematics of its associated gaseous disk. The Astrophysical Journal, 489, 579–600.

    Article  ADS  Google Scholar 

  • Maron, J., & Goldreich, P. (2001). Simulations of incompressible magnetohydrodynamic turbulence. The Astrophysical Journal, 554, 1175.

    Article  ADS  Google Scholar 

  • Marshall, H. L., Miller, B. P., Davis, D. S., et al. (2002). A high-resolution X-ray image of the jet in M87. The Astrophysical Journal, 564, 683–687.

    Article  ADS  Google Scholar 

  • Mathews, W. G., & Bregman, J. N. (1978). Radiative accretion flow onto giant galaxies in clusters. The Astrophysical Journal, 224, 308–319.

    Article  ADS  Google Scholar 

  • Matsushita, K., Belsole, E., Finoguenov, A., & Böhringer, H. (2002). XMM-Newton observation of M 87. I. Single-phase temperature structure of intracluster medium. Astronomy & Astrophysics, 386, 77–96.

    Article  ADS  Google Scholar 

  • McNamara, B. R., & Nulsen, P. E. J. (2007). Heating hot atmospheres with active galactic nuclei. Annual Review Astronomy & Astrophysics, 45, 117–175.

    Article  ADS  Google Scholar 

  • McNamara, B. R., Wise, M. W., Nulsen, P. E. J., et al. (2001). Discovery of ghost cavities in the X-ray atmosphere of Abell 2597. The Astrophysical Journal, 562, L149–L152.

    Article  ADS  Google Scholar 

  • McNamara, B., Donahue, M., Nulsen, P., et al. (2005), Star bursts and super cavities in clusters of galaxies, Spitzer Proposal ID 20345.

    Google Scholar 

  • Melrose, D. B. (1990). Particle beams in the solar atmosphere: General overview. Solar Physics, 130, 3–18.

    Article  ADS  Google Scholar 

  • Mewe, R., Heise, J., Gronenschild, E. H. B. M., et al. (1975). Detection of x-ray emission from stellar coronae with ANS. The Astrophysical Journal, 202, L67–L71.

    Article  ADS  Google Scholar 

  • Mills, D. M., & Sturrock, P. A. (1970). A model of extragalactic radio sources. Astrophysical Journal Letters, 5, 105.

    Google Scholar 

  • Mitchell, R. J., Culhane, J. L., Davison, P. J. N., & Ives, J. C. (1976). Ariel 5 observations of the X-ray spectrum of the Perseus cluster. Monthly Notices of the Royal Astronomical Society, 175, 29–34.

    Article  ADS  Google Scholar 

  • Molendi, S. (2002). On the temperature structure of M87. The Astrophysical Journal, 580, 815–823.

    Article  ADS  Google Scholar 

  • Montgomery, D., Brown, M. R., & Matthaeus, W. H. (1987). Density fluctuation spectra in magnetohydrodynamic turbulence. Journal of Geophysical Research, 92, 282–284.

    Article  ADS  Google Scholar 

  • Müller, W. C., Biskamp, D., & Grappin, R. (2003). Statistical anisotropy of magnetohydrodynamic turbulence. Physical Review E, 67, 066302.

    Article  ADS  MathSciNet  Google Scholar 

  • Myers, P. C. (1983). Dense cores in dark clouds III-subsonic turbulence. The Astrophysical Journal, 270, 105–118.

    Article  ADS  Google Scholar 

  • Nagar, N. M., Falcke, H., Wilson, A. S., & Ho, L. C. (2000). Radio sources in low-luminosity active galactic nuclei. I. VLA detections of compact flat-spectrum cores. The Astrophysical Journal, 542, 186–196.

    Article  ADS  Google Scholar 

  • Narayan, R. (1992). The physics of pulsar scintillation. Philosophical Transactions of the Royal Society A, 341, 151–165.

    Article  ADS  Google Scholar 

  • Neugebauer, M. (1975). The enhancement of solar wind fluctuations at the proton thermal gyroradius. Journal of Geophysical Research, 80, 998–1002.

    Article  ADS  Google Scholar 

  • Nipoti, C., & Binney, J. (2004). Cold filaments in galaxy clusters: Effects of heat conduction. Monthly Notices of the Royal Astronomical Society, 349, 1509–1515.

    Article  ADS  Google Scholar 

  • Norman, M. L., Winkler, K. H. A., Smarr, L., & Smith, M. D. (1982). Structure and dynamics of supersonic jets. Astronomy & Astrophysics, 113, 285–302.

    ADS  Google Scholar 

  • Nulsen, P. E. J., David, L. P., McNamara, B. R., et al. (2002). Interaction of radio lobes with the hot intracluster medium: Driving convective outflow in Hydra A. The Astrophysical Journal, 568, 163–173.

    Article  ADS  Google Scholar 

  • Nulsen, P. E. J., McNamara, B. R., Wise, M. W., & David, L. P. (2005). The cluster-scale AGN outburst in Hydra A. The Astrophysical Journal, 628, 629–636.

    Article  ADS  Google Scholar 

  • Oboukhov, A. (1941). On the distribution of energy in the spectrum of turbulent fow. Dokl. Akad. Nauk SSSR, 32, 22.

    Google Scholar 

  • Pallavicini, R., Tagliaferri, G., & Stella, L. (1990). X-ray emission from solar neighborhood flare stars: A comprehensive survey of EXOSAT results. Astronomy & Astrophysics, 228, 403–425.

    ADS  Google Scholar 

  • Perley, R. A., Dreher, J. W., & Cowan, J. J. (1984). The jet and filaments in Cygnus A. The Astrophysical Journal, 285, L35–L38.

    Article  ADS  Google Scholar 

  • Perlman, E. S., Biretta, J. A., Sparks, W. B., et al. (2001). The optical-near-infrared spectrum of the M87 jet from Hubble space telescope observations. The Astrophysical Journal, 551, 206–222.

    Article  ADS  Google Scholar 

  • Perryman, M. A. C., & the Hipparcos Science Team,. (1997). The Hipparcos and Tycho catalogues, ESA report SP-1200. Noordwijk: ESA.

    Google Scholar 

  • Peterson, J. R., & Fabian, A. C. (2006). X-ray spectroscopy of cooling clusters. Physics Reports, 427, 1–39.

    Article  ADS  Google Scholar 

  • Peterson, J. R., Kahn, S. M., Paerels, F. B. S., et al. (2003). High-resolution X-ray spectroscopic constraints on cooling-flow models for clusters of galaxies. The Astrophysical Journal, 590, 207–224.

    Article  ADS  Google Scholar 

  • Peterson, J. R., Paerels, F. B. S., Kaastra, J. S., et al. (2001). X-ray imaging-spectroscopy of Abell 1835. Astronomy & Astrophysics, 365, L104–L109.

    Article  ADS  Google Scholar 

  • Pevtsov, A. A., Fisher, G. H., Acton, L. W., et al. (2003). The relationship between X-ray radiance and magnetic flux. The Astrophysical Journal, 598, 1387–1391.

    Article  ADS  Google Scholar 

  • Phillips, J. A., & Wolszczan, A. (1991). Time variability of pulsar dispersion measures. The Astrophysical Journal, 382, L27–L30.

    Article  ADS  Google Scholar 

  • Podesta, J. J. (2009). Dependence of solar-wind power spectra on the direction of the local mean magnetic field. The Astrophysical Journal, 698, 986–999.

    Article  ADS  Google Scholar 

  • Pointecouteau, E., Arnaud, M., Kaastra, J., & de Plaa, J. (2004). XMM-Newton observation of the relaxed cluster A478: Gas and dark matter distribution from 0.01R200 to 0.5R200. Astronomy & Astrophysics, 423, 33–47.

    Article  ADS  Google Scholar 

  • Potash, R. I., & Wardle, J. F. C. (1980). 4C 32.69: a quasar with a radio jet. The Astrophysical Journal, 239, 42–49.

    Article  ADS  Google Scholar 

  • Pratt, G. W., Böhringer, H., Croston, J. H., et al. (2007). Temperature profiles of a representative sample of nearby X-ray galaxy clusters. Astronomy & Astrophysics, 461, 71–80.

    Article  ADS  Google Scholar 

  • Rafferty, D. A., McNamara, B. R., Nulsen, P. E. J., & Wise, M. W. (2006). The feedback-regulated growth of black holes and bulges through gas accretion and star bursts in cluster central dominant galaxies. The Astrophysical Journal, 652, 216–231.

    Article  ADS  Google Scholar 

  • Rees, M. J. (1982), in D. S. Heesehen & C. M. Wade (eds.), ‘Extragalactic radio sources’, IAU Syrup. 97, 21.

    Google Scholar 

  • Reynolds, C. S., Heinz, S., & Begelman, M. C. (2001). Shocks and sonic booms in the intracluster medium: X-ray shells and radio galaxy activity. The Astrophysical Journal, 549, L179–L182.

    Article  ADS  Google Scholar 

  • Rickett, B. J. (1970). Interstellar scintillation and pulsar intensity variations. Monthly Notices of the Royal Astronomical Society, 150, 67–91.

    Article  ADS  Google Scholar 

  • Rickett, B. J., Coles, W. A., & Bourgois, G. (1984). Slow scintillation in the interstellar medium. Astronomy & Astrophysics, 134, 390–395.

    ADS  Google Scholar 

  • Rickett, B. J. (1990). Radio propagation through the turbulent interstellar plasma. Annual Review Astronomy & Astrophysics, 28, 561–605.

    Article  ADS  Google Scholar 

  • Ross, D. W., Chen, G. L., & Mahajan, S. M. (1982). Kinetic description of Alfvén wave heating. Physics of Fluids, 25, 652–667.

    Article  ADS  MATH  Google Scholar 

  • Russell, C. T. (1985). Patchy reconnection and magnetic ropes in astrophysical plasmas. In M. R. Kundu & G. D. Holman (eds.) Unstable Current Systems and Plasma Instabilities in AstrophysicsIAU Symposia, 107, 25–42.

    Google Scholar 

  • Šafránková, J., Němeček, Z., Němec, F., et al. (2015). Solar wind density spectra around the ion spectral break. The Astrophysical Journal, 803, 107.

    Article  ADS  Google Scholar 

  • Sahraoui, F., Goldstein, M. L., Robert, P., & Khotyaintsev, Y. V. (2009). Evidence of a cascade and dissipation of solar-wind turbulence at the electron gyroscale. Physical Review Letters, 102, 231102.

    Article  ADS  Google Scholar 

  • Salpeter, E. E. (1969). Pulsar amplitude variations. Nature, 221, 31–33.

    Article  ADS  Google Scholar 

  • Sambruna, R. M., Maraschi, L., & Urry, C. M. (1996). On the spectral energy distributions of Blazars. The Astrophysical Journal, 463, 444.

    Article  ADS  Google Scholar 

  • Sarazin, C. L. (1988). X-ray emission from clusters of galaxies. Cambridge Astrophysics Series, Cambridge: Cambridge University Press.

    Google Scholar 

  • Schekochihin, A. A., Cowley, S. C., Dorland, W., et al. (2009). Astrophysical gyrokinetics: Kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas. The Astrophysical Journal Supplement, 182, 310–377.

    Article  ADS  Google Scholar 

  • Scheuer, P. A. G. (1968). Amplitude variations in pulsed radio sources. Nature, 218, 920–922.

    Article  ADS  Google Scholar 

  • Schödel, R., Ott, T., Genzel, R., et al. (2002). A star in a 15.2-year orbit around the supermassive black hole at the center of the Milky Way. Nature, 419, 694–696.

    Article  ADS  Google Scholar 

  • Schuecker, P., Finoguenov, A., Miniati, F., et al. (2004). Probing turbulence in the Coma galaxy cluster. Astronomy & Astrophysics, 426, 387–397.

    Article  ADS  Google Scholar 

  • Serlemitsos, P. J., Smith, B. W., Boldt, E. A., et al. (1977). X-radiation from clusters of galaxies: Spectral evidence for a hot evolved gas. The Astrophysical Journal, 211, L63–L66.

    Article  ADS  Google Scholar 

  • Shakura, N. I. & Sunyaev, R. A. (1973). Black holes in binary systems: Observational appearance, Edited by H. Bradt and Riccardo Giacconi, IAU Symposium 55, Dordrecht, Holland, Boston, D. Reidel, 155.

    Google Scholar 

  • Silk, J. (1976). Accretion by galaxy clusters and the relationship between X-ray luminosity and velocity dispersion. The Astrophysical Journal, 208, 646–649.

    Article  ADS  Google Scholar 

  • Simionescu, A., Böhringer, H., Bruggen, M., & Finoguenov, A. (2007). The gaseous atmosphere of M 87 seen with XMM-Newton. Astronomy & Astrophysics, 465, 749–758.

    Article  ADS  Google Scholar 

  • Simionescu, A., Roediger, E., Nulsen, P. E. J., et al. (2009). The large-scale shock in the cluster of galaxies Hydra A. Astronomy & Astrophysics, 495, 721–732.

    Article  ADS  Google Scholar 

  • Simionescu, A., Werner, N., Finoguenov, A., et al. (2008). Metal-rich multi-phase gas in M 87. AGN-driven metal transport, magnetic-field supported multi-temperature gas, and constraints on non-thermal emission observed with XMM-Newton. Astronomy & Astrophysics, 482, 97–112.

    Article  ADS  Google Scholar 

  • Smith, D. A., Wilson, A. S., Arnaud, K. A., et al. (2002). A Chandra X-ray study of Cygnus A. III. The cluster of galaxies. The Astrophysical Journal, 565, 195–207.

    Article  ADS  Google Scholar 

  • Solomon, P. M., Rivolo, A. R., Barrett, J., & Yahil, A. (1987). Mass, luminosity, and line width relations of galactic molecular clouds. The Astrophysical Journal, 319, 730–741.

    Article  ADS  Google Scholar 

  • Sparks, W. B., Biretta, J. A., & Macchetto, F. (1996). The jet of M87 at Tenth-Arcsecond resolution: Optical, ultraviolet, and radio observations. The Astrophysical Journal, 473, 254.

    Article  ADS  Google Scholar 

  • Spicer, D. S., & Sudan, R. N. (1984). Beam-return current systems in solar flares. The Astrophysical Journal, 280, 448–456.

    Article  ADS  Google Scholar 

  • Spinrad, H., Djorgovski, S., Marr, J., & Aguilar, L. (1985). A third update of the status of the 3 CR sources: further new redshifts and new identifications of distant galaxies. Publications of the Astronomical Society of the Pacific, 97, 932–961.

    Article  ADS  Google Scholar 

  • Sridhar, S., & Goldreich, P. (1994). Toward a theory of interstellar turbulence 1: weak Alfvénic turbulence. The Astrophysical Journal, 432, 612–621.

    Article  ADS  Google Scholar 

  • Steinolfson, R. S. (1985). Resistive wave dissipation on magnetic inhomogeneities Normal modes and phase mixing. The Astrophysical Journal, 295, 213–219.

    Article  ADS  Google Scholar 

  • Steinolfson, R. S., Priest, E. R., Poedts, S., et al. (1986). Viscous normal modes on coronal inhomogeneities and their role as a heating mechanism. The Astrophysical Journal, 304, 526.

    Article  ADS  Google Scholar 

  • Sturrock, P. A., & Feldman, P. A. (1968). A mechanism for continuum radiation from quasi-stellar radio sources with application to 3c 273B. The Astrophysical Journal, 152, L39.

    Article  ADS  Google Scholar 

  • Tamura, T., Kaastra, J. S., Peterson, J. R., et al. (2001). X-ray spectroscopy of the cluster of galaxies Abell 1795 with XMM-Newton. Astronomy & Astrophysics, 365, L87–L92.

    Article  ADS  Google Scholar 

  • Tanaka, Y., & Lewin, W. H. G. (1995). Black-hole binaries. In W. H. G. Lewin, J. van Paradijs, & E. P. J. van den Heuvel (Eds.), x-ray Binaries (pp. 126–174). Cambridge: Cambridge University Press.

    Google Scholar 

  • Terashima, Y., & Wilson, A. S. (2003). Chandra snapshot observations of low-luminosity active galactic nuclei with a compact radio source. The Astrophysical Journal, 583, 145–158.

    Article  ADS  Google Scholar 

  • Tribble, P. C. (1989). The reduction of thermal conductivity by magnetic fields in clusters of galaxies. Monthly Notices of the Royal Astronomical Society, 238, 1247–1260.

    Article  ADS  Google Scholar 

  • Tsurutani, B. T., Smith, E. J., Anderson, R. R., et al. (1982). Lion roars and nonoscillatory drift mirror waves in the magnetosheath. Journal of Geophysical Research, 87, 6060–6072.

    Article  ADS  Google Scholar 

  • Vaiana, G. S., Cassinelli, J. P., Fabbiano, G., et al. (1981). Results from an extensive Einstein stellar survey. The Astrophysical Journal, 244, 163–182.

    Article  ADS  Google Scholar 

  • Vallée, J. P. (2004). Cosmic magnetic fields-as observed in the universe, in galactic dynamos, and in the Milky Way, New Astron. Review, 48, 763–841.

    Google Scholar 

  • van den Oord, G. H. J. (1990). The electrodynamics of beam/return current systems in the solar corona. Astronomy & Astrophysics, 234, 496–518.

    ADS  MATH  Google Scholar 

  • van der Laan, H. (1963). Radio galaxies, II. Monthly Notices of the Royal Astronomical Society, 126, 535.

    Article  ADS  Google Scholar 

  • Vikhlinin, A., Kravtsov, A., Forman, W., et al. (2006). Chandra sample of nearby relaxed galaxy clusters: mass, gas fraction, and mass-temperature relation. The Astrophysical Journal, 640, 691–709.

    Article  ADS  Google Scholar 

  • Vikhlinin, A., Markevitch, M., Forman, W., & Jones, C. (2001). Zooming in on the coma cluster with Chandra: compressed warm gas in the brightest cluster galaxies. The Astrophysical Journal, 555, L87–L90.

    Article  ADS  Google Scholar 

  • von Hoerner, S. (1951). Eine methode zur untersuchung der turbulenz der interstellaren materie. mit 10 textabbildungen. Z. Astrophysics, 30, 17–64.

    ADS  MATH  Google Scholar 

  • von Weizsäcker, C. F. (1951). The evolution of galaxies and stars. The Astrophysical Journal, 114, 165.

    Article  ADS  MathSciNet  Google Scholar 

  • Walter, F. M., Linsky, J. L., Bowyer, S., & Garmire, G. (1980). HEAO 1 observations of active coronae in main-sequence and subgiant stars. The Astrophysical Journal, 236, L137–L141.

    Article  ADS  Google Scholar 

  • Wentzel, D. G. (1968). Hydromagnetic waves excited by slowly streaming cosmic rays. The Astrophysical Journal, 152, 987.

    Article  ADS  Google Scholar 

  • Werner, N., Zhuravleva, I., Churazov, E., et al. (2009). Constraints on turbulent pressure in the X-ray haloes of giant elliptical galaxies from resonant scattering. Monthly Notices of the Royal Astronomical Society, 398, 23–32.

    Article  ADS  Google Scholar 

  • White, N. E., Sanford, P. W., & Weiler, E. J. (1978). An X-ray outburst from the RS CVn binary HR1099. Nature, 274, 569.

    Article  ADS  Google Scholar 

  • Wicks, R. T., Horbury, T. S., Chen, C. H. K., & Schekochihin, A. A. (2010). Power and spectral index anisotropy of the entire inertial range of turbulence in the fast solar wind. Monthly Notices of the Royal Astronomical Society, 407, L31–L35.

    Article  ADS  Google Scholar 

  • Wise, M. W., McNamara, B. R., Nulsen, P. E. J., et al. (2007). X-ray super cavities in the Hydra A cluster and the outburst history of the central galaxy’s active nucleus. The Astrophysical Journal, 659, 1153–1158.

    Article  ADS  Google Scholar 

  • Wu, D. J., Chen, L., Zhao, G. Q., & Tang, J. F. (2014). A novel mechanism for electron-cyclotron maser. Astronomy & Astrophysics, 566, A138.

    Article  ADS  Google Scholar 

  • Wu, D. J., & Chen, L. (2013). Excitation of kinetic Alfvén waves by density striation in magneto-plasmas. The Astrophysical Journal, 771, 3.

    Article  ADS  Google Scholar 

  • Xiang, L., Chen, L., & Wu, D. J. (2019). Resonant Mode Conversion of Alfvén Waves to Kinetic Alfvén Waves in an Inhomogeneous Plasma. The Astrophysical Journal, 881, 61.

    Article  ADS  Google Scholar 

  • Xu, L., Chen, L., & Wu, D. J. (2013). Anomalous resistivity in beam-return currents and hard-X ray spectra of solar flares. Astronomy & Astrophysics, 550, A63.

    Article  ADS  Google Scholar 

  • Young, A. J., Wilson, A. S., & Mundell, C. G. (2002). Chandra imaging of the X-ray core of the Virgo cluster. The Astrophysical Journal, 579, 560–570.

    Article  ADS  Google Scholar 

  • Zhang, S. N., Cui, W., Chen, W., et al. (2000). Three-layered atmospheric structure in accretion disks around stellar-mass black holes. Science, 287, 1239–1241.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Jin Wu .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Nanjing University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, DJ., Chen, L. (2020). KAWs in Extrasolar Astrophysical Plasmas. In: Kinetic Alfvén Waves in Laboratory, Space, and Astrophysical Plasmas. Atmosphere, Earth, Ocean & Space. Springer, Singapore. https://doi.org/10.1007/978-981-13-7989-5_7

Download citation

Publish with us

Policies and ethics