VCE Overpressure Prediction Using Empirical Methods

  • Guowei MaEmail author
  • Yimiao Huang
  • Jingde Li


In this chapter, three of the most popular empirical load prediction models, i.e., TNT equivalency model, TNO Multi-Energy model and Baker–Strehlow–Tang model, are introduced. The mechanism of each method is explained in detail for reader’s reference. DNV PHAST also introduced and used for modelling. Three application examples of real gas explosion accidents are presented. The explosion events are simulated and analysed by using DNV PHAST.


  1. Baker, Q. A., Doolittle, C. M., Fitzgerald, G. A., & Tang, M. J. (1998). Recent developments in the Baker-Strehlow VCE analysis methodology. Process Safety Progress, 17(4), 297–301. Scholar
  2. Caixin. (2015). Fujian Gulei explosion.
  3. DailyMail. (2014). Taiwan port city left devastated after ‘sewage system gas leak’ explosions killed 25 people, destroying buildings and roads.
  4. DNV GL. (2016). PHAST tutorial manual. London, UK: DNV GL software.Google Scholar
  5. Formby, S. A., & Wharton, R. K. (1996). Blast characteristics and TNT equivalence values for some commercial explosives detonated at ground level. Journal of Hazardous Materials, 50(2), 183–198.CrossRefGoogle Scholar
  6. Kingery, C. N., & Pannill, B. F. (1964). Peak overpressure vs scaled distance for TNT surface bursts (hemispherical charges) (No. BRL-MR-1518). ARMY BALLISTIC RESEARCH LAB ABERDEEN PROVING GROUND MD.Google Scholar
  7. LLG. (2015). Causes of Texas oil and gas refinery explosions.
  8. Lobato, J., Rodríguez, J., Jiménez, C., Llanos, J., Nieto-Márquez, A., & Inarejos, A. (2009). Consequence analysis of an explosion by simple models: Texas refinery gasoline explosion case. Afinidad, 66(543), 372–279.Google Scholar
  9. Mannan, S. (2012). Lees’ Loss prevention in the process industries: Hazard identification, assessment and control. Butterworth-Heinemann.Google Scholar
  10. Pierorazio, A. J., Thomas, J. K., Baker, Q. A., & Ketchum, D. E. (2005). An update to the Baker–Strehlow–Tang vapor cloud explosion prediction methodology flame speed table. Process Safety Progress, 24(1), 59–65.CrossRefGoogle Scholar
  11. Rui, H., Lizhong, Y., Wanghua, C., Jiacong, L., & Weicheng, F. (2002). Evaluation of the power of the distributed blast type explosive. Journal of Loss Prevention in the Process Industries, 15(5), 323–327.CrossRefGoogle Scholar
  12. Skacel, R., Janovsky, B., Dostal, L., & Svihovsky, J. (2013). Small-scale physical explosions in shock tubes in comparison with condensed high explosive detonations. Journal of Loss Prevention in the Process Industries, 26(6), 1590–1596.CrossRefGoogle Scholar
  13. Tang, M. J., & Baker, Q. A. (1999). A new set of blast curves from vapor cloud explosion. Process Safety Progress, 18(4), 235–240.CrossRefGoogle Scholar
  14. The Guardian. (2010). BP plans to close its US safety watchdog.
  15. The Wall Street Journal. (2014). Deadly gas-pipeline explosions rock Taiwan.
  16. Van den berg, A. C. (1985). The Multi-Energy method—A framework for vapor cloud explosion blast prediction. Journal of Hazardous Materials, 12(1), 1–10. Scholar
  17. Van den Bosch, C. J. H., & Weterings, R. A. P. M. (Eds.). (2005). Methods for the calculation of physical effects: Due to releases of hazardous materials, liquids and gases: Yellow Book. Ministerie van Volkshuisvesting en Ruimtelijke Ordening (VROM). Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Civil and Transportation EngineeringHebei University of TechnologyTianjinChina
  2. 2.Department of Civil, Environmental and Mining Engineering, School of EngineeringUniversity of Western AustraliaPerthAustralia
  3. 3.Centre for Infrastructural Monitoring and ProtectionCurtin UniversityPerthAustralia

Personalised recommendations