Advertisement

CFD-Based Explosion Risk Analysis of Blast Wall Effects on FLNG Platforms

  • Guowei MaEmail author
  • Yimiao Huang
  • Jingde Li
Chapter
  • 227 Downloads

Abstract

This chapter presents a comprehensive safety design of blast wall layout on a cylindrical floating liquefied natural gas (FLNG) platform. The computational fluid dynamics (CFD) simulation results of more than 120 gas cloud sizes and 16,000 gas explosion overpressures indicate that blast walls are exclusively beneficial for mitigating flammable gas cloud and explosion overpressure only if the initial gas leak rates are highly momentous. A series of different blast wall layouts are designed for the cylindrical FLNG.

References

  1. Black & Veatch. (2016). Floating liquefied natural gas. https://en.wikipedia.org/wiki/Floating_liquefied_natural_gas.
  2. Boh, J., Louca, L. A., & Choo, Y. (2007). Finite element analysis of blast resistant structures in the oil and gas industry.Google Scholar
  3. Gexcon. (2012). FLNG concept explosion study—Explosion risk analysis. Ref. No.: GexCon-2011-F40836-RA-01.Google Scholar
  4. Gexcon. (2015). FLACS v10.4 user’s manual (Doxygen: Norway).Google Scholar
  5. Hansen, O. R., Gavelli, F., Ichard, M., & Davis, S. G. (2010). Validation of FLACS against experimental data sets from the model evaluation database for LNG vapor dispersion. Journal of Loss Prevention in the Process Industries, 23(6), 857–877.CrossRefGoogle Scholar
  6. Hansen, O. R., & Johnson, D. M. (2015). Improved far-field blast predictions from fast deflagrations, DDTs and detonations of vapour clouds using FLACS CFD. Journal of Loss Prevention in the Process Industries, 35, 293–306.CrossRefGoogle Scholar
  7. HSE. (2006). Structural strengthening of offshore topsides structures as part of explosion risk reduction methods. In Research Report 489. UK: Health & Safety Executive.Google Scholar
  8. Huang, Y. M., Ma, G. W., Li, J. D., & Hao, H. (2016). Multi-level explosion risk analysis (MLERA) for accidental gas explosion events in super-large FLNG facilities. Journal of Loss Prevention in the Process Industries. In Press.Google Scholar
  9. Kang, K.-Y., Choi, K.-H., Choi, J., Choi, Y., & Choi, J.-M. (2016). Explosion induced dynamic responses of blast wall on FPSO topside: Blast loading application methods. International Journal of Naval Architecture and Ocean Engineering. In Press.Google Scholar
  10. Langdon, G. S., & Schleyer, G. K. (2005). Inelastic deformation and failure of profiled stainless steel blast wall panels. Part I: Experimental investigations. International Journal of Impact Engineering, 31(4), 341–369.Google Scholar
  11. Langdon, G. S., & Schleyer, G. K. (2006). Deformation and failure of profiled stainless steel blast wall panels. Part III: Finite element simulations and overall summary. International Journal of Impact Engineering, 32(6), 988–1012.Google Scholar
  12. Li, J. D., Abdel-jawad, M., & Ma, G. W. (2014). New correlation for vapor cloud explosion overpressure calculation at congested configurations. Journal of Loss Prevention in the Process Industries, 31, 16–25.CrossRefGoogle Scholar
  13. Li, J. D., Ma, G. W., Abdel-Jawad, M., & Huang, Y. M. (2016). Gas dispersion risk analysis of safety gap effect on the innovating FLNG vessel with a cylindrical platform. Journal of Loss Prevention in the Process Industries, 40, 304–316.Google Scholar
  14. Li, J., Ma, G., Hao, H., & Huang, Y. (2017). Optimal blast wall layout design to mitigate gas dispersion and explosion on a cylindrical FLNG platform. Journal of Loss Prevention in the Process Industries.Google Scholar
  15. Louca, L. A., Boh, J. W., & Choo, Y. S. (2004). Design and analysis of stainless steel profiled blast barriers. Journal of Constructional Steel Research, 60(12), 1699–1723.CrossRefGoogle Scholar
  16. Louca, L. A., Punjani, M., & Harding, J. E. (1996). Non-linear analysis of blast walls and stiffened panels subjected to hydrocarbon explosions. Journal of Constructional Steel Research, 37(2), 93–113.CrossRefGoogle Scholar
  17. Norsok. (2001). Norsok standard—Risk and emergency preparedness analysis Z-013. Norway: Norwegian Technology Centre.Google Scholar
  18. Schleyer, G. K., Lowak, M. J., Polcyn, M. A., & Langdon, G. S. (2007). Experimental investigation of blast wall panels under shock pressure loading. International Journal of Impact Engineering, 34(6), 1095–1118.CrossRefGoogle Scholar
  19. Silvestrini, M., Genova, B., & Trujillo, F. J. L. (2008). Correlations for flame speed and explosion overpressure of dust clouds inside industrial enclosures. Journal of Loss Prevention in the Process Industries, 21(4), 374–392.CrossRefGoogle Scholar
  20. Syed, Z. I., Mohamed, O. A., & Rahman, S. A. (2016). Non-linear Finite Element Analysis of Offshore Stainless Steel Blast Wall under High Impulsive Pressure Loads. Procedia Engineering. 145, 1275–1282. Google Scholar
  21. Uijt, P. A. M., & Ale, B. J. M. (2005). Guidelines for quantitative risk assessment. Ministerie van Verkeer en Waterstaat, VROM.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Civil and Transportation EngineeringHebei University of TechnologyTianjinChina
  2. 2.Department of Civil, Environmental and Mining Engineering, School of EngineeringUniversity of Western AustraliaPerthAustralia
  3. 3.Centre for Infrastructural Monitoring and ProtectionCurtin UniversityPerthAustralia

Personalised recommendations