Skip to main content

Stability Analysis of Teleoperation Systems with Asymmetric Time-Varying Delays

  • Chapter
  • First Online:
Analysis and Design for Networked Teleoperation System
  • 275 Accesses

Abstract

This chapter addresses the stability analysis problem for teleoperation systems with time delays. The communication delays are assumed to be both time-varying and asymmetric, which is the case for network-based teleoperation systems. The stability analysis is performed for the controller composed of delayed position error and velocity signal. By choosing Lyapunov Krasovskii functional, we show that the master-slave teleoperation systems are stable under specific LMI conditions. With the given controller design parameters, the proposed stability criteria can be used to compute the allowable maximal transmission delay. Finally, both simulations and experiments are performed to show the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.J. Anderson, M.W. Spong, Bilateral control of teleoperators with time delay. IEEE Trans. Autom. Control 34(5), 494–501 (1989)

    Article  MathSciNet  Google Scholar 

  2. W.R. Ferrell, Delayed force feedback. Hum. Factors 8(5), 449–455 (1966)

    Article  Google Scholar 

  3. N. Chopra, M.W. Spong, S. Hirche, M. Buss, Bilateral teleoperation over the internet: the time varying delay problem, in Proceeding of American Control Conference, pp. 155–160 (2003)

    Google Scholar 

  4. K. Gu, V.L. Kharitonov, J. Chen, Stability of Time Delay Systems (2003)

    Google Scholar 

  5. Y. He, G. Liu, D. Rees, New delay-dependent stability criteria for neural networks with time-varying delay. IEEE Trans. Neural Netw. Learn. Syst. 18(1), 310–314 (2007)

    Article  Google Scholar 

  6. Y. He, G. Liu, D. Rees, M. Wu, Improved delay-dependent stability criteria for systems with nonlinear perturbations. Eur. J. Control 13(4), 356–365 (2007)

    Article  MathSciNet  Google Scholar 

  7. C.C. Hua, G. Feng, X.P. Guan, Robust stabilization of a class of nonlinear time delay systems via backstepping method. Eur. J. Control 44(2), 567–573 (2008)

    MATH  Google Scholar 

  8. P. Arcara, C. Melchiorri, Control schemes for teleoperation with time delay: A comparative study. Robot. Auton. Syst. 38(1), 49–64 (2002)

    Article  Google Scholar 

  9. G. Niemeyer, J.E. Slotine, Stable adaptive teleoperation. IEEE J. Ocean. Eng. 16(1), 152–162 (1991)

    Article  Google Scholar 

  10. N.A. Tung, N.T. Binh, T.H. Anh et al., Synchronization control of bilateral teleoperation systems by using wave variable method under varying time delay, in 2017 International Conference on System Science and Engineering (ICSSE), pp. 21–23 (2017)

    Google Scholar 

  11. D. Lee, K. Huang, Passive-set-position-modulation framework for interactive robotic systems. IEEE Trans. Robot. 26(2), 354–369 (2010)

    Article  Google Scholar 

  12. I.G. Polushin, P.X. Liu, C.H. Lung, A control scheme for stable force-reflecting teleoperation over ip networks. IEEE Trans. Syst. Man Cybern. B Cybern. 36(4), 930–939 (2006)

    Article  Google Scholar 

  13. I.G. Polushin, P.X. Liu, C.H. Lung, A force reflection algorithm for improved transparency in bilateral teleoperation with communication delay. IEEE/ASME Trans. Mechatron. 12(3), 361–374 (2007)

    Article  Google Scholar 

  14. D. Lee, M.W. Spong, Passive bilateral teleoperation with constant time delay. IEEE Trans. Robot. Autom. 22(2), 269–281 (2006)

    Article  Google Scholar 

  15. E. Nu\(\tilde{n}\)o, R. Ortega, N. Barabanov, L. Basa\(\tilde{n}\)ez, A globally stable pd controller for bilateral teleoperators. IEEE Trans. Robot. 24(3), 753–758 (2008)

    Article  Google Scholar 

  16. E. Nu\(\tilde{n}\)o, L. Basa\(\tilde{n}\)ez, R. Ortega, M.W. Spong, Position tracking for non-linear teleoperators with variable time delay. Int. J. Robot. Res. 28(7), 895–910 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changchun Hua .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hua, C., Yang, Y., Yang, X., Guan, X. (2019). Stability Analysis of Teleoperation Systems with Asymmetric Time-Varying Delays. In: Analysis and Design for Networked Teleoperation System. Springer, Singapore. https://doi.org/10.1007/978-981-13-7936-9_2

Download citation

Publish with us

Policies and ethics