Skip to main content
  • 272 Accesses

Abstract

In recent years, with the rapid development of computer technology, electric communication technology and control technology, teleoperation system integrating these technologies has gained more and more attention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Niemeyer, J.J.E. Slotine, Telemanipulation with time delays. Int. J. Robot. Res. 23(9), 873–890 (2004)

    Article  Google Scholar 

  2. A. Rovetta, R. Sala, X. Wen, A. Togno, Remote control in telerobotic surgery. IEEE Trans. Syst. Man Cybern. 26(4), 438–444 (1996)

    Article  Google Scholar 

  3. A.K. Bejczy, Sensors, controls, and man-machine interface for advanced teleoperation. Science 208(4450), 1327–1335 (1980)

    Article  Google Scholar 

  4. O. Toshiki, W. Atsushi, Input-output linearization of nonlinear systems with time delays in state variables. Int. J. Syst. Sci. 29(6), 573–578 (1998)

    Article  Google Scholar 

  5. T.B. Sheridan, Telerobotics. Automatica 25(4), 487–507 (1989)

    Article  Google Scholar 

  6. A.A. El Kalam, A. Ferreira, F. Kratz, Bilateral teleoperation system using qos and secure communication networks for telemedicine applications. IEEE Syst. J. 10(2), 709–720 (2016)

    Article  Google Scholar 

  7. P.M. Kebria, H. Abdi et al., Control methods for internet-based teleoperation systems: a review. IEEE Trans. Hum. Mach. Syst. 49(1), 32–46 (2019)

    Article  Google Scholar 

  8. P.F. Hokayem, M.W. Spong, Bilateral teleoperation: an history survery. Automatica 42(12), 2035–2057 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Kong, X. Dong, X. Liu, Position and force control of teleoperation system based on phantom omni robots. Int. J. Mech. Eng. Robot. Res. 5(1), 57–61 (2016)

    Google Scholar 

  10. S. Soyguder, T. Abut, Haptic industrial robot control with variable time delayed bilateral teleoperation. Ind. Robot: Int. J. 43(4), 390–402 (2016)

    Article  Google Scholar 

  11. D. Sun, F. Naghdy, H. Du, Wave-variable-based passivity control of four-channel nonlinear bilateral teleoperation system under time delays. IEEE/ASME Trans. Mechatron. 21(1), 238–253 (2016)

    Article  Google Scholar 

  12. P. Pitakwatchara, Wave correction scheme for task space control of time-varying delayed teleoperation systems. IEEE Trans. Control Syst. Technol. 26(6), 2223–2231 (2018)

    Article  Google Scholar 

  13. X.J. Jing, Y.C. Wang, D.L. Tan, Control of time-delayed tele-robotic systems: review and analysis. ACTA Autom. Sin. 30(2), 214–223 (2004)

    Google Scholar 

  14. D. Heck, A. Saccon, R. Beerens, H. Nijmeijer, Direct force-reflecting two-layer approach for passive bilateral tteleoperation with time delays. IEEE Trans. Robot. 34(1), 194–206 (2018)

    Article  Google Scholar 

  15. R. Kelly, V. Santib\(\acute{a}\)\(\widetilde{n}\)ez, A. Loria. Control of Robot Manipulators in Joint Space. (Springer, 2005)

    Google Scholar 

  16. M.W. Spong, S. Hutchinson, M. Vidyasagar, Robot Modeling and Control (Wiley, 2005)

    Google Scholar 

  17. D.H. Zhai, Y.Q. Xia, A novel switching-based control framework for improved task performance in teleoperation system with asymmetric time-varying delays. IEEE Trans. Cybern. 48(2), 625–638 (2018)

    Article  Google Scholar 

  18. D.H. Zhai, Y.Q. Xia, Multilateral telecoordinated control of multiple robots with uncertain kinematics. IEEE Trans. Neural Netw. Learn. Syst. 29(7), 2808–2822 (2018)

    MathSciNet  Google Scholar 

  19. I.G. Polushin, P.X. Liu, C.H. Lung et al., Position-error based schemes for bilateral teleoperation with time delay: theory and experiments. J. Dyn. Syst. Measurement Control 132(3), 1–11 (2010)

    Article  Google Scholar 

  20. S.A. Deka, D.M. Stipanovi, T. Kesavadas, Stable bilateral teleoperation with bounded control. IEEE Trans. Control Syst. Technol. 1(1), 1–10 (2018)

    Article  Google Scholar 

  21. W.R. Ferrell, Remote manipulation with transmission delay. IEEE Trans. Human Factors Electron. 1, 24–32 (1965)

    Article  Google Scholar 

  22. W.S. Kim, Shared compliant control: a stability analysis and experiments, in Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, pp. 620–623 (1990)

    Google Scholar 

  23. Y. Yokokohji, T. Yoshikawa, Bilateral control of master-slave manipulator for ideal kinesthetic coupling-formulation and experiment. IEEE Trans. Robot. Autom. 10(5), 605–619 (1994)

    Article  Google Scholar 

  24. Hashtrudi-Zaad, S.E. Salcudean, On the use of local force feedback for teleoperation, inIEEE International Conference on Robotics and Automation, pp. 1863–1869 (1990)

    Google Scholar 

  25. G.C. Walsh, H. Ye, Scheduling of networked control systems. IEEE Control Syst. 21(1), 57–65 (2001)

    Article  Google Scholar 

  26. A. Ray, Output feedback control under randomly varying distributed delays. J. Guidance Control Dyn. 17(4), 57–65 (1994)

    Article  MATH  Google Scholar 

  27. S. Sirouspour, A. Shahdi, Bilateral teleoperation under communication time delay using an lqg controller, in Proceeding of IEEE Conference on Control Applications, pp. 1257–1262 (2005)

    Google Scholar 

  28. P.G. Griffiths, A.M. Okamura, Defining performance tradeoffs for multi-degree-of-freedom bilateral teleoperators with lqg control, in Proceeding of 49th IEEE Conference on Decision and Control (CDC), pp. 3542–3547 (2010)

    Google Scholar 

  29. J. Yan, S.E. Salcudean, Teleoperation controller design using h-infinity optimization with application to motion-scaling. IEEE Trans. Control Syst. 4(3), 244–258 (1996)

    Article  Google Scholar 

  30. H.P. Du, H-infinity state-feedback control of bilateral teleoperation systems with asymmetric time-varying delays. IET Control Theory Appl. 7(4), 594–605 (2013)

    Article  MathSciNet  Google Scholar 

  31. S. Lee, H.S. Lee, Modeling, design, and evaluation of advanced teleoperator control systems with short time-delay. IEEE Trans. Robot. Autom. 9(5), 607–623 (1993)

    Article  Google Scholar 

  32. K. Hastrudi-Zaad, S.E. Salcudean, Analysis of control architectures for teleoperation systems with impedance/admittance master and slave manipulators. Int. J. Robot. Res. 20(6), 419–445 (2001)

    Article  Google Scholar 

  33. D. Lee, M.W. Spong, Passive bilateral teleoperation with constant time delay. IEEE Trans. Robot. Autom. 22(2), 269–281 (2006)

    Article  Google Scholar 

  34. E. Nuño, R. Ortega, N. Barabanov, and L. Basa\(\tilde{n}\)ez, A globally stable pd controller for bilateral teleoperators. IEEE Trans. Robot. 24(3), 753–758 (2008)

    Article  Google Scholar 

  35. C.C. Hua, X.P. Liu, Delay-dependent stability criteria of teleoperation systems with asymmetric time-varying delays. IEEE Trans. Robot. 26(5), 925–932 (2010)

    Article  Google Scholar 

  36. X. Yang, C.C. Hua, J. Yan et al., Synchronization analysis for nonlinear bilateral teleoperator with interval time-varying delay. Int. J. Robust Nonlinear Control 25(3), 2142–2161 (2014)

    MathSciNet  MATH  Google Scholar 

  37. X. Yang, C.C. Hua, J. Yan et al., New stability criteria for networked teleoperation system. Inf. Sci. 233(2), 244–254 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. P. Buttolo, P. Braathen, and B. Hannaford, Sliding control of force reflecting teleoperation: preliminary studies. Presence Teleoperators Virtual Environ. 3(2), 158–172 (1994)

    Article  Google Scholar 

  39. R. Moreau, M.T. Pham, M. Tavakoli et al., Sliding-mode bilateral teleoperation control design for mastercslave pneumatic servo systems. Control Eng. Pract. 20(6), 584–597 (2012)

    Article  Google Scholar 

  40. X. Liu, X. Dong, 4-channel sliding mode control of teleoperation systems with disturbances. Asian J. Control 17(4), 1267–1273 (2015)

    Article  MATH  Google Scholar 

  41. S. Ganjefar, M.H. Sarajchi, M.T.H. Beheshti, Adaptive sliding mode controller design for nonlinear teleoperation systems using singular perturbation method. Nonlinear Dyn. 81(3), 1–18 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. S. Ganjefar, M.H. Sarajchi, M. Hosseini, Teleoperation systems design using singular perturbation method and sliding mode controllers. J. Dyn. Syst. Measurement Control 136(5), 562–576 (2014)

    Article  Google Scholar 

  43. Y.N. Yang, C.C. Hua, H.F. Ding et al., Finite-time coordination control for networked bilateral teleoperation. Robotica 33(2), 451–462 (2015)

    Article  Google Scholar 

  44. Y.N. Yang, C.C. Hua, X.P. Guan, Finite-time synchronization control for bilateral teleoperation under communication delays. Robot. Comput. Integr. Manuf. 31, 61–69 (2015)

    Article  Google Scholar 

  45. E. Nu\(\tilde{n}\)o, R. Ortega, L. Basa\(\tilde{n}\)ez, An adaptive controller for nonlinear bilateral teleoperators. Automatica 46(1), 155–159 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. E. Nu\(\tilde{n}\)o, R. Ortega, L. Basa\(\tilde{n}\)ez, Erratum to an adaptive controller for nonlinear bilateral teleoperators [automatica 46 (2010) 155-159]. Automatica 47(5), 1093–1094 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. F. Hashemzadeh, I. Hassanzadeh, M. Tavakoli, G. Alizadeh, Adaptive control of nonlinear teleoperation systems with varying asymmetric time delays, in In Proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3023–3028 (2012)

    Google Scholar 

  48. S. Islam, X.P. Liu, A.E.I. Saddik, Nonlinear adaptive control for teleoperation systems with symmetrical and unsymmetrical time-varying delay. Int. J. Syst. Sci. 46(16), 2928–2938 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  49. D.H. Zhai, Y.Q. Xia, Adaptive finite-time control for nonlinear teleoperation systems with asymmetric time-varying delays. Int. J. Robust Nonlinear Control 26(12), 2586–2607 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  50. S. Haykin. Neural Networks: A comprehensive foundation. (Prentice Hall PTR, 1998)

    Google Scholar 

  51. F.L. Lewis, A. Yesildirak, S. Jagannathan, Neural Network Control of Robot Manipulators and Nonlinear Systems (Taylor & Francis, 1998)

    Google Scholar 

  52. G.J. Klir, B. Yuan, Fuzzy sets and fuzzy logic: theory and applications (Prentice-Hall, 1994)

    Google Scholar 

  53. C.C. Lee, Fuzzy logic in control systems: fuzzy logic controller. IEEE Trans. Syst. Man Cybern. 20(2), 404–418 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  54. S.G. Yoo, K.T. Chong, Adaptive wave variables for bilateral teleoperation using neural networks. Neural Comput. Appl. 25(6), 1249–1262 (2014)

    Article  Google Scholar 

  55. A. Forouzantabar, H.A. Talebi, A.K. Sedigh, Adaptive neural network control of bilateral teleoperation with constant time delay. Nonlinear Dyn. 67(2), 1123–1134 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  56. Z.J. Li, C.Y. Su, Neural-adaptive control of single-master-multiple-slaves teleoperation for coordinated multiple mobile manipulators with time-varying communication delays and input uncertainties. IEEE Trans. Neural Netw. Learn. Syst. 24(9), 1400–1413 (2013)

    Article  Google Scholar 

  57. Z.J. Li, Y.Q. Xia et al., Neural network-based control of networked trilateral teleoperation with geometrically unknown constraints. IEEE Trans. Cybern. 46(5), 1051–1054 (2016)

    Article  Google Scholar 

  58. X. Yang, C.C. Hua, J. Yan et al., A new master-slave torque design for teleoperation system by t-s fuzzy approach. IEEE Trans. Control Syst. Technol. 23(4), 1611–1619 (2014)

    Article  Google Scholar 

  59. Z.J. Li, L. Ding, H.B. Gao et al., Trilateral teleoperation of adaptive fuzzy force/motion control for nonlinear teleoperators with communication random delays. IEEE Trans. Fuzzy Syst. 21(4), 610–624 (2013)

    Article  Google Scholar 

  60. Z.J. Li, Y.Q. Xia, F.C. Sun, Adaptive fuzzy control for multilateral cooperative teleoperation of multiple robotic manipulators under random network-induced delays. IEEE Trans. Fuzzy Syst. 22(2), 437–450 (2014)

    Article  Google Scholar 

  61. D.H. Zhai, Y.Q. Xia, Adaptive fuzzy control of multilateral asymmetric teleoperation for coordinated multiple mobile manipulators. IEEE Trans. Fuzzy Syst. 24(1), 57–70 (2015)

    Article  Google Scholar 

  62. Z.Y. Lu, P.F. Huang, Z.X. Liu, Predictive approach for sensorless bimanual teleoperation under random time delays with adaptive fuzzy control. IEEE Trans. Ind. Electron. 65(3), 2439–2448 (2018)

    Article  Google Scholar 

  63. D. Sun, Q.F. Liao, H.L. Ren, Type-2 fuzzy modeling and control for bilateral teleoperation system with dynamic uncertainties and time-varying delays. IEEE Trans. Ind. Electron. 65(1), 447–459 (2018)

    Article  Google Scholar 

  64. S. Manifar, M.A. Shoorhedeli, Application of ga based neuro-fuzzy automatic generation for teleoperation systems, in Conference In Proceeding of International Conference on Digital Content, Multimedia Technology and ITS Applications, pp. 466–479 (2010)

    Google Scholar 

  65. R. Mellah and R. Toumi, Compensatory neuro-fuzzy control of bilateral teleoperation system, in Proceeding of 20th International Conference on Methods and MODELS in Automation and Robotics, pp. 24–27 (2015)

    Google Scholar 

  66. H. Shao, K. Nonami, T. Wojtaea et al., Neuro-fuzzy position control of demining tele-operation system based on rnn modeling. Robot. Comput. Integr. Manuf. 22(1), 25–32 (2006)

    Article  Google Scholar 

  67. Y.N. Yang, C.C. Hua, X.P. Guan, Multi-manipulators coordination for bilateral teleoperation system using fixed-time control approach. Int. J. Robust Nonlinear Control 28(18), 5667–5687 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  68. M. Shahbazi, S.F. Atashzar, R.V. Patel, A systematic review of multilateral teleoperation systems. IEEE Trans. Haptics 11(3), 338–356 (2018)

    Article  Google Scholar 

  69. R.J. Anderson, M.W. Spong, Bilateral control of teleoperators with time delay. IEEE Trans. Autom. Control 34(5), 494–501 (1989)

    Article  MathSciNet  Google Scholar 

  70. W.R. Ferrell, Delayed force feedback. Hum. Factors 8(5), 449–455 (1966)

    Article  Google Scholar 

  71. N. Chopra, M. W. Spong, S. Hirche, M. Buss. Bilateral teleoperation over the internet: the time varying delay problem, in In Proceeding of American Control Conference, pp. 155–160 (2003)

    Google Scholar 

  72. Y. He, G. Liu, D. Rees, M. Wu, Improved delay-dependent stability criteria for systems with nonlinear perturbations. Eur. J. Control 13(4), 356–365 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  73. C.C. Hua, G. Feng, X.P. Guan, Robust stabilization of a class of nonlinear time delay systems via backstepping method. Eur. J. Control 44(2), 567–573 (2008)

    MATH  Google Scholar 

  74. J. Ramos, S. Kim, Humanoid dynamic synchronization through whole-body bilateral feedback teleoperation. IEEE Trans. Robot. 34(4), 953–965 (2018)

    Article  Google Scholar 

  75. P. Arcara, C. Melchiorri, Control schemes for teleoperation with time delay: a comparative study. Robot. Auton. Syst. 38(1), 49–64 (2002)

    Article  MATH  Google Scholar 

  76. K. Natori, T. Tsuji, K. Ohnishi et al., Time-delay compensation by communication disturbance observer for bilateral teleoperation under time-varying delay. IEEE Trans. Ind. Electron. 57(3), 1050–1062 (2010)

    Article  Google Scholar 

  77. N.A. Tung, N.T. Binh, T.H. Anh et al., Synchronization control of bilateral teleoperation systems by using wave variable method under varying time delay, in 2017 International Conference on System Science and Engineering (ICSSE), pp. 21–23 (2017)

    Google Scholar 

  78. D. Lee, K. Huang, Passive-set-position-modulation framework for interactive robotic systems. IEEE Trans. Robot. 26(2), 354–369 (2010)

    Article  Google Scholar 

  79. I.G. Polushin, P.X. Liu, C.H. Lung, A control scheme for stable force-reflecting teleoperation over ip networks. IEEE Trans. Syst. Man Cybern. B Cybern. 36(4), 930–939 (2006)

    Article  Google Scholar 

  80. I.G. Polushin, P.X. Liu, C.H. Lung, A force reflection algorithm for improved transparency in bilateral teleoperation with communication delay. IEEE/ASME Trans. Mechatron. 12(3), 361–374 (2007)

    Article  Google Scholar 

  81. S.H. Yu, X.H. Yu, B. Shirinzadeh, Z.H. Man, Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41(11), 1957–1964 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  82. F. Amato, M. Ariola, P. Dorato, Finite-time control of linear systems subject to parametric uncertainties and disturbances. Automatica 37(9), 1459–1463 (2001)

    Article  MATH  Google Scholar 

  83. Y.G. Hong, Y.S. Xu, J. Huang, Finite-time control for robot manipulators. Syst. Control Lett. 46(4), 243–253 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  84. A. Ilchmann, E.P. Ryan, S. Trenn, Tracking control: performance funnels and prescribed transient behaviour. Syst. Control Lett. 54(7), 655–670 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  85. C.P. Bechlioulis, G.A. Rovithakis, Adaptive control with guaranteed transient and steady state tracking error bounds for strict feedback systems. Automatica 45(2), 532–538 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  86. C.P. Bechlioulis, G.A. Rovithakis, Robust adaptive control of feedback linearizable mimo nonlinear systems with prescribed performance. IEEE Trans. Autom. Control 53(9), 2090–2099 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  87. A.N. Atassi, H.K. Khalil, Separation results for the stabilization of nonlinear systems using different high-gain observer designs. Syst. Control Lett. 39(3), 183–191 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  88. K.W. Lee, H.K. Khalil, Adaptive output feedback control of robot manipulators using high-gain observer. Int. J. Control 67(6), 869–886 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  89. J. Davila, L. Fridman, A. Levant, Second-order sliding-mode observer for mechanical systems. IEEE Trans. Autom. Control 50(11), 1785–1789 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  90. Y. Feng, J.F. Zheng, X.H. Yu, N.V. Truong, Hybrid terminal sliding-mode observer design method for a permanent-magnet synchronous motor control system. IEEE Trans. Ind. Electron. 56(9), 3424–3431 (2009)

    Article  Google Scholar 

  91. A. Astolfi, R. Ortega, A. Venkatraman, A globally exponentially convergent immersion and invariance speed observer for mechanical systems with non-holonomic constraints. Automatica 46(1), 182–189 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  92. A. Astolfi, R. Ortega, A. Venkatraman, A globally exponentially convergent immersion and invariance speed observer for n degrees of freedom mechanical systems, in Proceedings of the 48h IEEE Conference on Decision and Control (CDC), pp. 6508–6513 (2009)

    Google Scholar 

  93. T.S. Hu, Z.L. Lin, Control Systems with Actuator Saturation: Analysis and Design (Springer, 2001)

    Google Scholar 

  94. T.S. Hu, Z.L. Lin, B.M. Chen, An analysis and design method for linear systems subject to actuator saturation and disturbance. Syst. Control Lett. 38(2), 351–359 (2002)

    MATH  Google Scholar 

  95. V. Kapila, K. M. Grigoriadis, Acturator Saturation Control (Marcel Dekker, Inc, 2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changchun Hua .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hua, C., Yang, Y., Yang, X., Guan, X. (2019). Introduction. In: Analysis and Design for Networked Teleoperation System. Springer, Singapore. https://doi.org/10.1007/978-981-13-7936-9_1

Download citation

Publish with us

Policies and ethics