Skip to main content

Biosorption of Heavy Metals: Potential and Applications of Yeast Cells for Cadmium Removal

  • Chapter
  • First Online:

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 14))

Abstract

Biosorption is a physicochemical process that uses nonliving biomass to remove metal ions. The process is promising and innovative biotechnology, which has excellent economic feasibility for metal removal and/or recovery due to its efficiency, simplicity, cost-effectiveness, and abundance of biomass when compared to industrial synthetic adsorbents. Practically, most biomaterials have an affinity for metal species. By using a low-value biosorbents such as a waste stream, two sustainable goals can be achieved in a single process: reducing the waste stream and removing/recovering metals from industrial effluents. In literature, several studies have investigated the efficiency of various biosorbents to remove/recover metals from solution. This chapter critically reviews different aspects of biosorption research such as the characteristics of an ideal biosorbents, the key main parameters affecting the metal uptake performance, different metal uptake mechanisms, the process advantages and drawbacks, and potential of biosorption as a possible industrial process. It also summarizes key recent developments in these areas and the significance of biosorption in wastewater treatment processes and in the environment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbas SH, Ismail IB, Mostafa TM, Sulaymon AH (2014) Biosorption of heavy metals: a review. J Chem Sci Technol 3(4):74–102

    Google Scholar 

  • Abdel-Ghani NT, El-Chaghaby GA (2014) Biosorption for metal ions removal from aqueous solutions: a review of recent studies. Int J Latest Res Sci Technol 3(1):24–42

    Google Scholar 

  • Abdi O, Kazemi M (2015) A review study of biosorption of heavy metals and comparison between different biosorbents. J Mater Environ Sci 6(5):1386–1399

    Google Scholar 

  • Al-Homaidan AA, Al-Houri HJ, Al-Hazzani AA, Elgaaly G, Moubayed NMS (2014) Biosorption of copper ions from aqueous solutions by Spirulina platensis biomass. Arab J Chem 7(1):57–62

    Article  CAS  Google Scholar 

  • Al-Saydeh SA, El-Naas MH, Zaidi SJ (2017) Copper removal from industrial wastewater: a comprehensive review. J Ind Eng Chem 56:35–44

    Article  CAS  Google Scholar 

  • Ayangbenro AS, Babalola OO (2017) A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health 14(1):94

    Article  CAS  Google Scholar 

  • Bazrafshan E, Mohammadi L, Ansari-Moghaddam A, Mahvi AH (2015) Heavy metals removal from aqueous environments by electrocoagulation process–a systematic review. J Environ Health Sci Eng 13(1):74

    Google Scholar 

  • Broach JR (2012) Nutritional control of growth and development in yeast. Genetics 192(1):73–105

    Article  CAS  Google Scholar 

  • Brown TJ, Idoine NE, Raycraft ER, Shaw RA, Deady EA, Hobbs SF, Bide T (2017) World mineral production. Br Geol Surv

    Google Scholar 

  • Davis TA, Volesky B, Vieira R (2000) Sargassum seaweed as biosorbent for heavy metals. Water Res 34(17):4270–4278

    Article  CAS  Google Scholar 

  • Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37(18):4311–4330

    Article  CAS  Google Scholar 

  • De Gisi S, Lofrano G, Grassi M, Notarnicola M (2016) Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review. Sustain Mater Technol 9:10–40

    Google Scholar 

  • Dhankhar R, Hooda A (2011) Fungal biosorption–an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environ Technol 32(5):467–491

    Article  CAS  Google Scholar 

  • Fadel M, Hassanein NM, Elshafei MM, Mostafa AH, Ahmed MA, Khater HM (2017) Biosorption of manganese from groundwater by biomass of Saccharomyces cerevisiae. HBRC J 13(1):106–113

    Article  Google Scholar 

  • Farhan SN, Khadom AA (2015) Biosorption of heavy metals from aqueous solutions by Saccharomyces cerevisiae. Int J Ind Chem 6(2):119–130

    Article  CAS  Google Scholar 

  • Fiset JF, Blais JF, Riveros PA (2008) Review on the removal of metal ions from effluents using seaweeds, alginate derivatives and other sorbents. Rev Sci de l’eau/J Water Sci 21(3):283–308

    CAS  Google Scholar 

  • Gadd GM (2009) Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol 84(1):13–28

    Article  CAS  Google Scholar 

  • Ganguly A, Guha AK, Ray L (2011) Adsorption behaviour of cadmium by Bacillus cereus M116: some physical and biochemical studies. Chem Speciat Bioavailab 23(3):175–182

    Article  CAS  Google Scholar 

  • Gow NAR, Latge JP, Munro CA (2017) The fungal cell wall: structure, biosynthesis, and function. Microbiol Spectr

    Google Scholar 

  • Gupta P, Diwan B (2017) Bacterial exopolysaccharide mediated heavy metal removal: a review on biosynthesis, mechanism and remediation strategies. Biotechnol Rep 13:58–71

    Article  Google Scholar 

  • Hadi B, Margaritis A, Berruti F, Bergougnou F (2003) Kinetics and equilibrium of cadmium biosorption by yeast cells S. cerevisiae and K. fragilis. Int J Chem React Eng 1(1):826–829

    Google Scholar 

  • Horsfall M Jr, Ogban FE, Akporhonor EE (2006) Recovery of lead and cadmium ions from metal-loaded biomass of wild cocoyam (Caladium bicolor) using acidic, basic and neutral eluent solutions. Electron J Biotechnol 9(2):0–0

    CAS  Google Scholar 

  • Kratochvil D, Volesky B (1998) Advances in the biosorption of heavy metals. Trends Biotechnol 16(7):291–300

    Article  CAS  Google Scholar 

  • Leusch A, Holan ZR, Volesky B (1995) Biosorption of heavy metals (Cd, Cu, Ni, Pb, Zn) by chemically-reinforced biomass of marine algae. J Chem Technol Biotechnol 62(3):279–288

    Article  CAS  Google Scholar 

  • Li Y, Helmreich B, Horn H (2011) Biosorption of Cu (II) ions from aqueous solution by red alga (Palmaria Palmata) and beer draff. Mater Sci Appl 2(02):70

    CAS  Google Scholar 

  • Limousin G, Gaudet JP, Charlet L, Szenknect S, Barthes V, Krimissa M (2007) Sorption isotherms: a review on physical bases, modeling and measurement. Appl Geochem 22(2):249–275

    Article  CAS  Google Scholar 

  • Lodeiro P, Barriada JL, Herrero R, Sastre De Vicente ME (2006) The marine macroalga Cystoseira baccata as biosorbent for cadmium (II) and lead (II) removal: kinetic and equilibrium studies. Environ Pollut 142(2):264–273

    Article  CAS  Google Scholar 

  • Machado MD, Janssens S, Soares HMVM, Soares EV (2009) Removal of heavy metals using a brewer’s yeast strain of Saccharomyces cerevisiae: advantages of using dead biomass. J Appl Microbiol 106(6):1792–1804

    Article  CAS  Google Scholar 

  • Malkoc E, Nuhoglu Y (2005) Investigations of nickel (II) removal from aqueous solutions using tea factory waste. J Hazard Mater 127(1):120–128

    Article  CAS  Google Scholar 

  • Mehta S, Gaur J (2005) Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit Rev Biotechnol 25(3):113–152

    Article  CAS  Google Scholar 

  • Michalak I, Chojnacka K, Witek-Krowiak A (2013) State of the art for the biosorption process—a review. Appl Biochem Biotechnol 170(6):1389–1416

    Article  CAS  Google Scholar 

  • Mishra SP (2014) Adsorption–desorption of heavy metal ions. Curr Sci 107(4):601–612

    CAS  Google Scholar 

  • Muhamad H, Doan H, Lohi A (2010) Batch and continuous fixed-bed column biosorption of Cd 2+ and Cu 2+. Chem Eng J 158(3):369–377

    Article  CAS  Google Scholar 

  • Mukhopadhyay M, Noronha SB, Suraishkumar GK (2007) Kinetic modeling for the biosorption of copper by pretreated Aspergillus niger biomass. Bioresour Technol 98(9):1781–1787

    Article  CAS  Google Scholar 

  • Naja G, Volesky B (2006) Behavior of the mass transfer zone in a biosorption column. Environ Sci Technol 40(12):3996–4003

    Article  CAS  Google Scholar 

  • Naja GM, Volesky B (2009) Toxicity and sources of Pb, Cd, Hg, Cr, As, and radionuclides in the environment. Heavy Met Environ 8:16–18

    Google Scholar 

  • Naja G, Volesky B (2011) The mechanism of metal cation and anion biosorption. In: Microbial biosorption of metals. Springer, pp 19–58

    Google Scholar 

  • Ngo HH, Guo W, Zhang J, Liang S, Ton-That C, Zhang X (2015) Typical low cost biosorbents for adsorptive removal of specific organic pollutants from water. Bioresour Technol 182:353–363

    Google Scholar 

  • Pagnanelli F, Papini MP, Toro L, Trifoni M, Veglio F (2000) Biosorption of metal ions on Arthrobacter sp.: biomass characterization and biosorption modeling. Environ Sci Technol 34(13):2773–2778

    Article  CAS  Google Scholar 

  • Park D, Yun YS, Park JM (2010) The past, present, and future trends of biosorption. Biotechnol Bioprocess Eng 15(1):86–102

    Article  CAS  Google Scholar 

  • Rafatullah M, Sulaiman O, Hashim R, Ahmad A (2010) Adsorption of methylene blue on low-cost adsorbents: a review. J Hazard Mater 177(1):70–80

    Article  CAS  Google Scholar 

  • Sağ Y, Kutsal T (2000) Determination of the biosorption activation energies of heavy metal ions on Zoogloea ramigera and Rhizopus arrhizus. Process Biochem 35(8):801–807

    Article  Google Scholar 

  • Say R, Denizli A, Arıca MY (2001) Biosorption of cadmium (II), lead (II) and copper (II) with the filamentous fungus Phanerochaete chrysosporium. Bioresour Technol 76(1):67–70

    Article  CAS  Google Scholar 

  • Schiewer S, Patil SB (2008) Modeling the effect of pH on biosorption of heavy metals by citrus peels. J Hazard Mater 157(1):8–17

    Article  CAS  Google Scholar 

  • Singleton I, and Simmons P (1996) Factors affecting silver biosorption by an industrial strain of Saccharomyces cerevisiae. J Chem Technol Biotechnol 65(1):21–28

    Article  CAS  Google Scholar 

  • Sulaiman MS (2015) Factors affecting biosorption of cu (ii) ions from industrial wastewater. Appl Res J 1:311–315

    CAS  Google Scholar 

  • Sulaymon AH, Shahlaa EE, Sama MA, Al-Musawi TJ (2010) Removal of lead, cadmium, and mercury ions using biosorption. Desalin Water Treat 24(1–3):344–352

    Google Scholar 

  • Sulaymon AH, Mohammed AA, Al-Musawi TJ (2013a) Column biosorption of lead, cadmium, copper, and arsenic ions onto algae. J Bioprocess Biotechnol 3(128):2

    Google Scholar 

  • Sulaymon AH, Mohammed AA, Al-Musawi TJ (2013b) Competitive biosorption of lead, cadmium, copper, and arsenic ions using algae. Environ Sci Pollut Res 20(5):3011–3023

    Article  CAS  Google Scholar 

  • Ting YP, Sun G (2000) Use of polyvinyl alcohol as a cell immobilization matrix for copper biosorption by yeast cells. J Chem Technol Biotechnol 75(7):541–546

    Article  CAS  Google Scholar 

  • Velkova Z, Kirova G, Kafadarova V, Stoytcheva M, Gochev V (2015) Biosorption of Zn (II) Ions by Pretreated Waste Brewery Biomass. Int J Ind Chem 6:119–130

    Google Scholar 

  • Vianna LNL, Andrade MC, Nicoli JR (2000) Screening of waste biomass from Saccharomyces cerevisiae, Aspergillus oryzae and Bacillus lentus fermentations for removal of Cu, Zn and Cd by biosorption. World J Microbiol Biotechnol 16(5):437–440

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Jegan J, Palanivelu K, Velan M (2005) Biosorption of copper, cobalt and nickel by marine green alga Ulva reticulata in a packed column. Chemosphere 60(3):419–426

    Article  CAS  Google Scholar 

  • Volesky B (1990a) Removal and recovery of heavy metals by biosorption. In: Volesky B (ed) Biosorption of heavy metals. CRC Press, Boca Raton, pp 7–43

    Google Scholar 

  • Volesky B (1990b) Biosorption by fungal biomass. In: Volesky B (ed) Biosorption of heavy metals. CRC Press, Boca Raton, pp 139–171

    Google Scholar 

  • Volesky B (2003) Sorption and biosorption. BV Sorbex, Montreal

    Google Scholar 

  • Volesky B, Schiewer S (1999) Metals biosorption. In: Flickinger M, Drew S (eds) Encyclopedia of bioprocess technology: fermentation, biocatalysis, and bioseparation. Wiley, New York, pp 433–4531999

    Google Scholar 

  • Wang L (2014) Overview on biological activities and molecular characteristics of sulfated polysaccharides from marine green algae in recent years. Mar Drugs 12(9):4984–5020

    Article  CAS  Google Scholar 

  • Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27(2):195–226

    Article  CAS  Google Scholar 

  • Yang J, Volesky B (1999) Modeling uranium-proton ion exchange in biosorption. Environ Sci Technol 33(22):4079–4085

    Article  CAS  Google Scholar 

  • Zargar V, Asghari M, Dashti A (2015) A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. ChemBioEng Rev 2(3):204–226

    Article  CAS  Google Scholar 

  • Zhao X, Höll WH, Yun G (2002) Elimination of cadmium trace contaminations from drinking water. Water Res 36(4):851–858

    Article  CAS  Google Scholar 

  • Zouboulis AI, Rousou EG, Matis KA, Hancock IC (1999) Removal of toxic metals from aqueous mixtures. Part 1: biosorption. J Chem Technol Biotechnol 74(5):429–436

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Zineb Bouabidi for her help with formatting the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muftah H. El-Naas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hadi, B., El-Naas, M.H. (2019). Biosorption of Heavy Metals: Potential and Applications of Yeast Cells for Cadmium Removal. In: Bharagava, R. (eds) Environmental Contaminants: Ecological Implications and Management . Microorganisms for Sustainability, vol 14. Springer, Singapore. https://doi.org/10.1007/978-981-13-7904-8_11

Download citation

Publish with us

Policies and ethics