Skip to main content

Circadian Rhythm and the Physiology and Pathology of Eye

  • 494 Accesses

Part of the Advances in Visual Science and Eye Diseases book series (AVSED,volume 3)

Abstract

With the proposing and popularizing of the concept of “ holistic integrative medicine,” people have moved their perspective from an isolated organ to the entire human body, and from the view of whole body further explore the relationship between human body and local organs at the level of internal body and analyze the interaction between the environment and the body at the level of external body, with the purpose of finding out the inner and close relationship from some of the past seemingly irrelevant things. “Circadian rhythm” is somehow strange for most ophthalmologists and far away from our usual study. But actually, “circadian rhythm” is the strongest rhythm system inside organisms, which can adjust the physiological rhythm and behavior according to the cycle of sun exposure. Light change is an important stimulus signal to the regulation of rhythm of the central. Eyes, which receive the light of outside world, without doubt, will have a complex relationship with circadian rhythm. In this section, we describe the basic concepts of biological rhythms, discuss the material basis and regulatory mechanisms of circadian rhythms with the most relevant to vision, and also introduce the interaction effect between circadian rhythm and physiology and pathology of the eye. It is expected that readers can understand the link between biological rhythm and ophthalmology after reading this chapter, and then deeply integrate the knowledge system related to biological rhythm and eye diseases by applying the concept of holistic integrative medicine, to better optimize the diagnosis and treatment of eye diseases.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Halberg F. Chronobiology:a science in tune with the rhythms of life. Minneapolis, MN: Bolger; 1986. p. 9–10.

    Google Scholar 

  2. Breaus T, Cornelissen G, Halberg F, et al. Temporal associations of life with solar and geophysical activity. Ann Geophys. 1995;13:1211–22.

    CrossRef  Google Scholar 

  3. Smolensky MH. Introduction to chronobiology. New York: Springer; 1983. p. 1–12.

    Google Scholar 

  4. Wang Z. Chronobiology. Beijing: Beijing Science; 2006.

    Google Scholar 

  5. Lucas RJ, Douglas RH, Foster RG. Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nat Neurosci. 2001;4(6):621–6.

    CrossRef  CAS  PubMed  Google Scholar 

  6. Provencio I, Jiang G, De Grip WJ, Hayes WP, Rollag MD. Melanopsin: an opsin in melanophores, brain, and eye. Proc Natl Acad Sci U S A. 1998;95:340–5.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  7. Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD. A novel human opsin in the inner retina. J Neurosci. 2000;20:600–5.

    CrossRef  CAS  PubMed  Google Scholar 

  8. Hattar S, Liao HW, Takao M, Berson DM, Yau KW. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science. 2002;295:1065–70.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gooley JJ, Lu J, Fischer D, Saper CB. A broad role for melanopsin in nonvisual photoreception. J Neurosci. 2003;23:7093–106.

    CrossRef  CAS  PubMed  Google Scholar 

  10. Morin LP, Blanchard JH, Provencio I. Retinal ganglion cell projections to the hamster suprachiasmatic nucleus, intergeniculate leaflet, and visual midbrain: bifurcation and melanopsin immunoreactivity. J Comp Neurol. 2003;465(3):401–16.

    CrossRef  PubMed  Google Scholar 

  11. Lucas RJ, Hattar S, Takao M, Berson DM, Foster RG, Yau KW. Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science. 2003;299:245–7.

    CrossRef  CAS  PubMed  Google Scholar 

  12. Lucas RJ, Freedman MS, Munoz M, Garcia-Fernandez JM, Foster RG. Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors. Science. 1999;284:505–7.

    CrossRef  CAS  PubMed  Google Scholar 

  13. Hattar S, Lucas RJ, Mrosovsky N, et al. Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature. 2003;424:76–81.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  14. Panda S, Provencio I, Tu DC, et al. Melanopsin is required for non-image-forming photic responses in blind mice. Science. 2003;301:525–7.

    CrossRef  CAS  PubMed  Google Scholar 

  15. Belenky MA, Smeraski CA, Provencio I, Sollars PJ, Pickard GE. Melanopsin retinal ganglion cells receive bipolar and amacrine cell synapses. J Comp Neurol. 2003;460:380–93.

    CrossRef  PubMed  Google Scholar 

  16. Perez-Leon JA, Warren EJ, Allen CN, Robinson DW, Brown RL. Synaptic inputs to retinal ganglion cells that set the circadian clock. EurJ Neurosci. 2006;24:1117–23.

    CrossRef  Google Scholar 

  17. Hatori M, Le H, Vollmers C, et al. Inducible ablation of melanopsin-expressing retinal ganglion cells reveals their central role in non-image forming visual responses. PLoS One. 2008;3:e2451.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  18. Dacey DM, Liao HW, Peterson BB, et al. Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature. 2005;433:749–54.

    CrossRef  CAS  PubMed  Google Scholar 

  19. Waller EA, Bendel RE, Kaplan J. Sleep disorder and the eye. Mayo Clin Proc. 2008;83(11):1251–61.

    CrossRef  PubMed  Google Scholar 

  20. Lockley SW, Skene DJ, Arendt J, et al. Relationship between melatonin rhythms and visual loss in the blind. J Clin Endocrinol Metab. 1997;82(11):3763–70.

    CAS  PubMed  Google Scholar 

  21. Gordo MA, Recio J, Sanchez-Barcelo EJ. Decreased sleep quality in patients suffering from retinitis pigmentosa. J Sleep Res. 2001;10(2):159–64.

    CrossRef  CAS  PubMed  Google Scholar 

  22. Jean-Louis G, Zizi F, Lazzaro DR, et al. Circadian rhythm dysfunction in glaucoma: a hypothesis. J Circ Rhythm. 2008;6:1.

    CrossRef  Google Scholar 

  23. McNab AA. The eye and sleep apnea. Sleep Med Rev. 2007;11(4):269–76.

    CrossRef  PubMed  Google Scholar 

  24. Sergi M, Salerno DE, Rizzi M, et al. Prevalence of normal tension glaucoma in obstructive sleep apnea syndrome patients. J Glaucoma. 2007;16:42–6.

    CrossRef  PubMed  Google Scholar 

  25. Yang J, Lin Z. Investigation of sleep disturbance in patients with primary glaucoma. Chin J Misdiagnostics. 2007;7:2168–9.

    Google Scholar 

  26. Wang HZ, Lu QJ, Wang NL, et al. Loss of melanopsin-containing retinal ganglion cells in a rat glaucoma model. Chin Med J. 2008;121(11):1015–9.

    CrossRef  PubMed  Google Scholar 

  27. Wang H, Hong J, Wang N. Effect of acute ocular hypertension on retinal ganglion cells containing melanopsin in rats. Chin Ophthalmic Res. 2009;27(7):558–62.

    Google Scholar 

  28. Drouyer E, Dkhissi-Benyahya O, Chiquet C, et al. Glaucoma alters the circadian timing system. PLoS One. 2008;3(12):e3931.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  29. Li RS. Melanopsin-expressing retinal ganglion cells are more injury-resistant in a chronic ocular hypertension model. Invest Ophthalmol Vis Sci. 2006;47(7):2951–8.

    CrossRef  PubMed  Google Scholar 

  30. Wang H, Zhang Y, Ding J, et al. Changes in the circadian rhythm in patients with primary glaucoma. PLoS One. 2013;8(4):e62841.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ningli Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd. and People's Medical Publishing House, PR of China

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, H., Wang, N., Wu, H.J. (2020). Circadian Rhythm and the Physiology and Pathology of Eye. In: Wang, N. (eds) Integrative Ophthalmology. Advances in Visual Science and Eye Diseases, vol 3. Springer, Singapore. https://doi.org/10.1007/978-981-13-7896-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7896-6_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7895-9

  • Online ISBN: 978-981-13-7896-6

  • eBook Packages: MedicineMedicine (R0)