Advertisement

Meat By-Products

  • Joseph William Holloway
  • Jianping Wu
Chapter

Abstract

Red meat is produced from animal tissues, some of which have less value than others. Often, the financial success of the enterprise of producing red meat is entailed more in the sale of the less desirable tissues than the sale of the premium cuts. This text has been mostly concerned with the disposition of the premium cuts, especially the “middle meats.” This chapter focuses on the economically important “other products” that have value in some markets. This chapter presents a review of the scientific literature concerned with adding value to the production stream by consideration of the potential uses of meat by-products.

References

  1. Adewale, P., M.J. Dumont, and M. Ngadi. 2016. Enzyme-catalyzed synthesis and kinetics of ultrasonic assisted methanolysis of waste lard for biodiesel production. Chemical Engineering Journal 284: 158–165.CrossRefGoogle Scholar
  2. Adje, E.Y., R. Balti, M. Kouach, P. Dhulster, and D. Guillochon. 2011a. Obtaining antimicrobial peptides by controlled peptic hydrolysis of bovine hemoglobin. International Journal of Biological Macromolecules 49: 143–153.CrossRefGoogle Scholar
  3. Adje, E.Y., R. Balti, M. Kouach, D. Guillochon, and N. Nedjar-Arroume. 2011b. α 67–106 of bovine hemoglobin: A new family of antimicrobial and angiotensin I-converting enzyme inhibitory peptides. European Food Research and Technology 232: 637–646.CrossRefGoogle Scholar
  4. Alexis, A., and J. Robert. 2004. Animal byproduct conversion system and method. US patent 7,000,333.Google Scholar
  5. Aristoy, M.C., and F. Toldrá. 2011. Essential amino acids. In Handbook of analysis of edible animal by-products, ed. L.M.L. Nollet and F. Toldrá, 123–135. Boca Raton: CRC Press.CrossRefGoogle Scholar
  6. Bah, C.S.F., A. El-Din, A. Bekhit, A. Carne, and M.A. McConnell. 2016. Composition and biological activities of slaughterhouse blood from red deer, sheep, pig and cattle. Journal of the Science of Food and Agriculture 96: 79–89.CrossRefGoogle Scholar
  7. Baladincz, P., and J. Hancsók. 2015. Fuel from waste animal fats. Chemical Engineering Journal 282: 152–160.CrossRefGoogle Scholar
  8. Banković-Ilić, I.B., I.J. Stojković, O.S. Stamenković, V.B. Veljkovic, and Y.T. Hung. 2014. Waste animal fats as feed stocks for biodiesel production. Renewable and Sustainable Energy Reviews 32: 238–254.CrossRefGoogle Scholar
  9. Bello, A.E., and S. Oesser. 2006. Collagen hydrolysate for the treatment of osteoarthritis and other joint disorders: A review of the literature. Current Medical Research and Opinion 22: 2221–2232.CrossRefGoogle Scholar
  10. Bhatti, H.N., M.A. Hanif, M. Qasim, and A.U. Rheman. 2008. Biodiesel production from waste tallow. Fuel 87: 2961–2966.CrossRefGoogle Scholar
  11. Brandelli, A., L. Sala, and S.J. Kalil. 2015. Microbial enzymes for bioconversion of poultry waste into added-value products. Foodservice Research International 73: 3–12.CrossRefGoogle Scholar
  12. Bressler, D. 2009. Protein based foaming agents and methods of making thereof. World Patent WO2009053852.Google Scholar
  13. Bujak, J.W. 2015. New insights into waste management — Meat Ind. Renewable Energy 83: 1174–1186.CrossRefGoogle Scholar
  14. Cascarosa, E., G. Gea, and J. Arauzo. 2012. Thermochemical processing of meat and bone meal: A review. Renewable and Sustainable Energy Reviews 16: 942–957.CrossRefGoogle Scholar
  15. Catiau, L., J. Traisnel, N.E. Chihib, G. Le Flem, A. Blanpain, O. Melnyk, and et. al. 2011a. RYH: Aminimal peptidic sequence obtained frombeta-chain hemoglobin exhibiting an antimicrobial activity. Peptides 32: 463–468.Google Scholar
  16. Catiau, L., J. Traisnel, V. Delval-Dubois, N.E. Chihib, D. Guillochon, and N. Nedjar-Arroume. 2011b. Minimal antimicrobial peptidic sequence from hemoglobin alpha-chain: KYR. Peptides 32: 633–638.CrossRefGoogle Scholar
  17. Chang, C.Y., K.C. Wu, and S.H. Chiang. 2007. Antioxidant properties and protein compositions of porcine haemoglobin hydrolysates. Food Chemistry 100: 1537–1543.CrossRefGoogle Scholar
  18. Chen, M.J., and C.W. Lin. 2002. Factors affecting thewater-holding capacity of fibrinogen/plasma protein gels optimized by response surface methodology. Journal of Food Science 67: 2579–2582.CrossRefGoogle Scholar
  19. Chernukha, I.M., L.V. Fedulovaa, and E.A. Kotenkovaa. 2015. Meat by-product is a source of tissue-specific bioactive proteins and peptides against cardio-vascular diseases. Procedia Food Science 5: 50–53.CrossRefGoogle Scholar
  20. Cofrades, S., N.I.A. Guerra, J. Carballo, F. Fernández-Martin, and F. Jiménez-Colmenero. 2000. Plasma protein and soy fiber content effect on bologna sausage properties as influenced by fat levels. Journal of Food Science 65: 281–287.CrossRefGoogle Scholar
  21. Coutand, M., M. Cyr, D. Deydier, R. Guilet, and P. Clastres. 2008. Characteristics of industrial and laboratory meat and bone meal ashes and their potential applications. Journal of Hazardous Materials 150: 522–532.CrossRefGoogle Scholar
  22. Deivasigamani, B., and K.M. Alagappan. 2008. Industrial application of keratinase and soluble proteins from feather keratine. Journal of Environmental Biology 29: 933–936.PubMedGoogle Scholar
  23. Del, P.H., M. Rendueles, and M. Díaz. 2008. Effect of processing on functional properties of animal blood plasma. Meat Science 78: 522–528.CrossRefGoogle Scholar
  24. Di Bernardini, R., A.M. Mullen, D. Bolton, J. Kerry, E. O’Neill, and M. Hayes. 2012. Assessment of the angiotensin-I-converting enzyme (ACE-I) inhibitory and antioxidant activities of hydrolysates of bovine brisket sarcoplasmic proteins produced by papain and characterisation of associated bioactive peptidic fractions. Meat Science 90: 226–235.CrossRefGoogle Scholar
  25. Djagny, K.B., Z. Wang, and S. Xu. 2001. Gelatin: A valuable protein for food and pharmaceutical industries, review. Critical Reviews in Food Science and Nutrition 41: 481–492.CrossRefGoogle Scholar
  26. Froidevaux, R., M. Vanhoute, D. Lecouturier, P. Dhulster, and D. Guillochon. 2008. Continuous preparation of two opioid peptides and recycling of organic solvent using liquid/liquid extraction coupled with aluminium oxide column during haemoglobin hydrolysis by immobilized pepsin. Process Biochemistry 43: 431–437.CrossRefGoogle Scholar
  27. Gerpen, J.V. 2005. Biodiesel processing and production. Fuel Processing Technology 86: 1097–1107.CrossRefGoogle Scholar
  28. Gilbert, E.R., E.A. Wong, and K.E. Webb. 2008. Board-invited review: Peptide absorption and utilization: Implications for animal nutrition and health. Journal of Animal Science 86: 2135–2155.CrossRefGoogle Scholar
  29. Giu, H.M., and P.D. Giu. 2010. Blood waste treatment system for slaughtered animals, and method for producing high quality amino acid solution using blood waste. World patent WO2010KR00586 20100201.Google Scholar
  30. Gómez-Guillén, M.C., B. Giménez, M.E. López-Caballero, and M.P. Montero. 2011. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocolloids 25: 1813–1827.CrossRefGoogle Scholar
  31. Hamilton, C.R. 2016. Real and perceived issues involving animal proteins. Protein sources for the animal feed industry. FAO report Available at www.fao.org. Accessed 12 Apr 2016.
  32. Herregods, G., J. Van Camp, N. Morel, B. Ghesquière, K. Gevaert, L. Vercruysse, and et. al. 2011. Angiotensin I-converting enzyme inhibitory activity of gelatin hydrolysates and identification of bioactive peptides. Journal of Agricultural and Food Chemistry 59: 552–558.CrossRefGoogle Scholar
  33. Herskowitz, M. 2008 Reaction system for production of diesel fuel from vegetable and animal oils. World Patent WO2008035155.Google Scholar
  34. Honikel, K.O. 2011. Composition and calories. In Handbook of analysis of edible animal by-products, ed. L.M.L. Nollet and F. Toldrá, 105–121. Boca Raton: CRC Press.CrossRefGoogle Scholar
  35. Hsieh, Y.H., and J.A. Ofori. 2011. Food-grade proteins from animal by-products. Their usage and detection methods. In Handbook of analysis of edible animal by-products, ed. L.M.L. Nollet and F. Toldrá, 3–11. Boca Raton: CRC Press.Google Scholar
  36. Hu, J., M. Xu, B. Hang, L. Wang, Q. Wang, J. Chen, et al. 2011. Isolation and characterization of an antimicrobial peptide frombovine hemoglobin α-subunit. World Journal of Microbiology & Biotechnology 27: 767–771.CrossRefGoogle Scholar
  37. Jayathilakan, K., K. Sultana, K. Radhakrishna, and A.S. Bawa. 2012. Utilization of byproducts and waste materials from meat, poultry and fish processing industries: A review. Journal of Food Science and Technology 49: 278–293.CrossRefGoogle Scholar
  38. Kang, I.S., and T.C. Lanier. 1999. Bovine plasma proteins functions in surimi gelation compared with cysteine protease inhibitors. Journal of Food Science 64: 842–846.CrossRefGoogle Scholar
  39. Kapel, R., R. Froidevaux, N. Nedjar-Arroume, A. Fertin-Bazus, P. Dhulster, and D. Guillochon. 2003. Continuous production of a peptidic fraction containing the intermediate opioid peptide LVV-haemorphin-7 (LVVh-7) by peptic hydrolysis of bovine haemoglobin in a continuous membrane reactor. Biotechnology and Applied Biochemistry 37: 317–324.CrossRefGoogle Scholar
  40. Kim, Y.N. 2011. Vitamins. In Handbook of analysis of edible animal by-products, ed. L.M.L. Nollet and F. Toldrá, 161–182. Boca Raton: CRC Press.CrossRefGoogle Scholar
  41. Lafarga, T., and M. Hayes. 2014. Bioactive peptides from meat muscle and by-products: Generation, functionality and application as functional ingredients. Meat Science 98: 227–239.CrossRefGoogle Scholar
  42. Lasekan, A., F. Abu Bakar, and D. Hashim. 2013. Potential of chicken by-products as sources of useful biological resources. Waste Management 33: 552–565.CrossRefGoogle Scholar
  43. Lennon, A.M., K. McDonald, S.S. Moon, P. Ward, and T.A. Kenny. 2010. Performance of cold-set binding agents in re-formed beef steaks. Meat Science 85: 620–624.CrossRefGoogle Scholar
  44. Maehashi, K., M. Matsuzaki, Y. Yamamoto, and S. Udaka. 1999. Isolation of peptides from an enzymatic hydrolisate of food proteins and characterization of their taste properties. Bioscience, Biotechnology, and Biochemistry 63: 555–559.CrossRefGoogle Scholar
  45. Martínez-Alvarez, O., S. Chamorro, and A. Brenes. 2015. Protein hydrolysates from animal processing by-products as a source of bioactive molecules with interest in animal feeding: A review. Food Research International 73: 204–212.CrossRefGoogle Scholar
  46. Marulanda, V.F., G. Anitescu, and L.L. Tavlarides. 2010. Investigations on supercritical transestrification of chicken fat for biodiesel production from low cost lipid feedstocks. Journal of Supercritical Fluids 54: 53–60.CrossRefGoogle Scholar
  47. Mora, L., M. Reig, and F. Toldrá. 2014. Bioactive peptides generated from meat industry by-products. Food Research International 65: 344–349.CrossRefGoogle Scholar
  48. Mora, L., M. Gallego, E. Escudero, M. Reig, M.C. Aristoy, and F. Toldrá. 2015. Small peptides hydrolysis in dry-cured meats. International Journal of Food Microbiology 212: 9–15.CrossRefGoogle Scholar
  49. Moreira, A.L., J.M. Dias, M.F. Almeida, and C.M. Alvim-Ferraz. 2010. Biodiesel production through transesterification of poultry fat at 30 °C. Energy & Fuels 24: 5717–5721.CrossRefGoogle Scholar
  50. Murray, S.M., A.R. Patil, G.C. Fahey Jr., N.R. Merchen, and D.M. Hughes. 1997. Raw and rendered animal by-products as ingredients in dog diets. Journal of Animal Science 75: 2497–2505.CrossRefGoogle Scholar
  51. Nchienzia, H.A., R.O. Morawicki, and V.P. Gadang. 2010. Enzymatic hydrolysis of poultry meal with endo- and exopeptidases. Poultry Science 89: 2273–2280.CrossRefGoogle Scholar
  52. Nedjar-Arroume, N., V. Dubois-Delval, K. Miloudi, R. Daoud, F. Krier, M. Kouach, and et. al. 2006. Isolation and characterization of four antibacterial peptides from bovine hemoglobin. Peptides 27: 2082–2089.CrossRefGoogle Scholar
  53. Nedjar-Arroume, N., V. Dubois-Delval, E.Y. Adje, J. Traisnel, F. Krier, M. Kouach, et al. 2008. Bovine hemoglobin: An attractive source of antibacterial peptides. Peptides 29: 969–977.CrossRefGoogle Scholar
  54. Nissenson, A.R., J.S. Berns, P. Sakiewicz, S. Ghaddar, G.M. Moore, R.B. Schleicher, and P.A. Seligman. 2003. Clinical evaluation of heme iron polypeptide: Sustaining a response to rHuEPO in hemodialysis patients. American Journal of Kidney Diseases 42: 325–330.CrossRefGoogle Scholar
  55. Nollet, L.M.L., and F. Toldrá. 2011. Introduction. Offal meat: Definitions, regions, cultures, generalities. In Handbook of analysis of edible animal by-products, ed. L.M.L. Nollet and F. Toldrá, 3–11. Boca Raton: CRC Press.CrossRefGoogle Scholar
  56. Ockerman, H.W., and L. Basu. 2004a. By-products. In Encyclopedia of meat sciences, ed. W. Jensen, C. Devine, and M. Dikemann, 104–112. London: Elsevier Science Ltd.CrossRefGoogle Scholar
  57. ———. 2004b. Hides and skins. In Encyclopedia of meat sciences, ed. W. Jensen, C. Devine, and M. Dikemann, 125–138. London: Elsevier Science Ltd.CrossRefGoogle Scholar
  58. ———. 2006. Edible rendering-rendered products for human use. In Essential rendering: All about the animal by-products industry, ed. D.L. Meeker, 95–110. Arlignton: National Renderers Association.Google Scholar
  59. Ofori, J.A., and Y.H.P. Hsieh. 2014. Issues related to the use of blood in food and animal feed. Critical Reviews in Food Science and Nutrition 54: 687–697.CrossRefGoogle Scholar
  60. Pearl, G.G. 2004. Inedible. In Encyclopedia of meat sciences, ed. W. Jensen, C. Devine, and M. Dikemann, 112–125. London: Elsevier Science Ltd.CrossRefGoogle Scholar
  61. Pérez-Galvez, R., M.C. Almecija, F.J. Espejo, E.M. Guadix, and A. Guadix. 2011. Biobjective optimisation of the enzymatic hydrolysis of porcine blood protein. Biochemical Engineering Journal 53: 305–310.CrossRefGoogle Scholar
  62. Riedel, S.L., S. Jahnsa, S. Koeniga, M.C.E. Bocka, C.J. Brighamc, J. Baderd, and U. Stahla. 2015. Polyhydroxyalkanoates production with Ralstonia eutropha from low quality waste animal fats. Journal of Biotechnology 214: 119–127.CrossRefGoogle Scholar
  63. Ryder, K., M. Ha, A. El-Din Bekhit, and A. Carne. 2015. Characterisation of novel fungal and bacterial protease preparations and evaluation of their ability to hydrolyse meat myofibrillar and connective tissue proteins. Food Chemistry 172: 197–206.CrossRefGoogle Scholar
  64. Ryder, K., A. El-Din Bekhit, M. McConnell, and A. Carne. 2016. Towards generation of bioactive peptides from meat industry waste proteins: Generation of peptides using commercial microbial proteases. Food Chemistry 208: 42–50.CrossRefGoogle Scholar
  65. Saiga, A., K. Iwai, T. Hayakawa, Y. Takahata, S. Kitamura, T. Nishimura, and F. Morimatsu. 2008. Angiotensin I-converting enzyme-inhibitory peptides obtained from chicken collagen hydrolysate. Journal of Agricultural and Food Chemistry 56: 9586–9591.CrossRefGoogle Scholar
  66. Toldrá, F., and M. Reig. 2011. Innovations for healthier processed meats. Trends in Food Science and Technology 22: 517–522.CrossRefGoogle Scholar
  67. Toldrá, F., M.C. Aristoy, L. Mora, and M. Reig. 2012. Innovations in value-addition of edible meat byproducts. Meat Science 92: 290–296.CrossRefGoogle Scholar
  68. Toldrá, F., L. Mora, and M. Reig. 2016. New insights into meat by-product utilization. Meat Science 120: 54–59.CrossRefGoogle Scholar
  69. Valta, K., P. Damala, E. Orli, C. Papadaskalopoulou, K. Moustakas, D. Malamis, and M. Loizidou. 2015. Valorisation opportunities related to wastewater and animal by-products exploitation by the greek slaughtering industry: Current status and future potentials. Waste and Biomass Valorization 6: 927–945.CrossRefGoogle Scholar
  70. Vercruysse, L., J. Van Camp, and G. Smagghe. 2005. ACE inhibitory peptides derived from enzymatic hydrolysates of animal muscle protein: A review. Journal of Agricultural and Food Chemistry 53: 8106–8115.PubMedGoogle Scholar
  71. Viana, F.R., V.D.M. Silva, F.M. Delvivo, C.S. Bizzotto, and M.P.C. Silvestre. 2005. Quality of ham pâté containing bovine globin and plasma as fat replacers. Meat Science 70: 153–160.CrossRefGoogle Scholar
  72. Yousif, A.M., P. Cranston, and H.C. Deeth. 2003. Incorporation of bovine dry blood plasma into biscuit flour for the production of pasta. LWT- Food Science and Technology 36: 295–302.CrossRefGoogle Scholar
  73. Zhao, Q., F. Sannier, I. Garreau, D. Guillochon, and J.M. Piot. 1994. Inhibition and inhibition kinetics of angiotensin converting enzyme activity by hemorphins isolated from peptic bovine hydrolysate. Biochemical Biophysical Research Communications 204: 216–223.CrossRefGoogle Scholar
  74. Zhao, Q., I. Garreau, F. Sanier, and J.M. Piot. 1997. Opioid peptides derived fromhemoglobin: Hemorphins. Biopolymers 43: 75–98.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Science Press 2019

Authors and Affiliations

  • Joseph William Holloway
    • 1
  • Jianping Wu
    • 2
  1. 1.Animal ScienceTexas A&M UniversityUvaldeUSA
  2. 2.Gansu Academy of Agricultural SciencesLanzhouChina

Personalised recommendations