Metabolomics of Lactic Acid Bacteria

  • Wanqiang WuEmail author
  • Nan Zhao


Metabonomics/metabolomics, developed in the late 1990s, is a science that deals with the types, quantities, and changes of metabolites (molecular weight <1000) of living organisms after different interferences (such as genetic engineering and changes in growth environment), and it is an important part of systems biology.


  1. Alves LL, Richards NSPS, Mattanna P et al (2013) Cream cheese as a symbiotic food carrier using bifidobacterium animalis Bb-12 and Lactobacillus acidophilus La-5 and inulin. Int J Dairy Technol 66(66):63–69Google Scholar
  2. Antoniewicz MR (2015) Methods and advances in metabolic flux analysis: a mini-review. J Ind Microbiol Biotechnol 42(3):317–325PubMedGoogle Scholar
  3. Blandino A, Al-Aseeri ME, Pandiella SS et al (2003) Cereal-based fermented foods and beverages. Food Res Int 36(6):527–543Google Scholar
  4. Coakley M, Ross RP, Nordgren M et al (2003) Conjugated linoleic acid biosynthesis by human-derived bifidobacterium, species. J Appl Microbiol 94(1):138–145PubMedGoogle Scholar
  5. Del BM, Lattanzi M, Rellini P et al (2009) Comparison of molecular and metabolomic methods as characterization tools of Debaryomyces hansenii cheese isolates. Food Microbiol 26(5):453–459Google Scholar
  6. Fenselau C, Demirev PA (2001) Characterization of intact microorganisms by MALDI mass spectrometry. Mass Spectrom Rev 20(4):157–171PubMedGoogle Scholar
  7. Florence ACR, Béal C, Silva RC et al (2012) Fatty acid profile, trans-octadecenoic, α-linolenic and conjugated linoleic acid contents differing in certified organic and conventional probiotic fermented milks. Food Chem 135(4):2207–2214PubMedGoogle Scholar
  8. Hong YS, Ahn YT, Park JC et al (2010) 1H NMR-based metabonomic assessment of probiotic effects in a colitis mouse model. Arch Pharm Res 33(7):1091–1101PubMedGoogle Scholar
  9. Hugenholtz J, Looijesteijn E, Starrenburg M et al (2000) Analysis of sugar metabolism in an EPS producing Lactococcus lactis, by 31P NMR. J Biotechnol 77(1):17–23PubMedGoogle Scholar
  10. Jeong SH, Lee HJ, Jung JY et al (2013) Effects of red pepper powder on microbial communities and metabolites during kimchi fermentation. Int J Food Microbiol 160(3):252–259PubMedGoogle Scholar
  11. Jung JY, Lee SH, Lee HJ et al (2012) Effects of Leuconostoc mesenteroides starter cultures on microbial communities and metabolites during kimchi fermentation. Int J Food Microbiol 153(3):378–387PubMedGoogle Scholar
  12. Kang HJ, Yang HJ, Kim MJ et al (2011) Metabolomic analysis of meju during fermentation by ultra performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-TOF MS). Food Chem 127(3):1056–1064PubMedGoogle Scholar
  13. Kim J, Choi JN, John KMM et al (2012) GC-TOF-MS-and CE–TOF-MS-based metabolic profiling of cheonggukjang (fast-fermented bean paste) during fermentation and its correlation with metabolic pathways. J Agric Food Chem 60(38):9746–9753PubMedGoogle Scholar
  14. Kishino S, Ogawa J, Yokozeki K et al (2009) Metabolic diversity in biohydrogenation of polyunsaturated fatty acids by lactic acid bacteria involving conjugated fatty acid production. Appl Microbiol Biotechnol 84(1):87–97PubMedGoogle Scholar
  15. Lee JE, Hong YS, Lee CH (2009) Characterization of fermentative behaviors of lactic acid bacteria in grape wines through 1H NMR-and GC-based metabolic profiling. J Agric Food Chem 57(11):4810–4817PubMedGoogle Scholar
  16. Lee SY, Lee S, Lee S et al (2014) Primary and secondary metabolite profiling of doenjang, a fermented soybean paste during industrial processing. Food Chem 165(3):157–166PubMedGoogle Scholar
  17. Link H, Buescher JM, Sauer U (2012) Targeted and quantitative metabolomics in bacteria. Sys Biol Bact 39:127–150Google Scholar
  18. Lippert K, Galinski EA (1992) Enzyme stabilization be ectoine-type compatible solutes: protection against heating, freezing and drying. Appl Microbiol Biotechnol 37(1):61–65Google Scholar
  19. Lópezrituerto E, Savorani F, Avenoza A et al (2012) Investigations of La Rioja terroir for wine production using 1H NMR metabolomics. J Agric Food Chem 60(13):3452–3461Google Scholar
  20. Martin FPJ, Wang Y, Sprenger N et al (2008) Probiotic modulation of symbiotic gut microbial–host metabolic interactions in a humanized microbiome mouse mode. Mol Syst Biol 4(1):157–157PubMedPubMedCentralGoogle Scholar
  21. Mashego M, Rumbold K, De Mey M et al (2007) Microbial metabolomics: past, present and future methodologies. Biotechnol Lett 29(1):1–16PubMedGoogle Scholar
  22. Mazzei P, Piccolo A (2012) 1H HRMAS-NMR metabolomic to assess quality and traceability of mozzarella cheese from Campania buffalo milk. Food Chem 132(3):1620–1627PubMedGoogle Scholar
  23. Namgung HJ, Park HJ, Cho IH et al (2010) Metabolite profiling of doenjang, fermented soybean paste, during fermentation. J Sci Food Agric 90(11):1926–1935PubMedGoogle Scholar
  24. Nguyen DT, Van HK, Cnockaert M et al (2013) A description of the lactic acid bacteria microbiota associated with the production of traditional fermented vegetables in Vietnam. Int J Food Microbiol 163(1):19–27PubMedGoogle Scholar
  25. Nicholson JK, Holmes E, Wilson ID (2005) Gut microorganisms, mammalian metabolism and personalized health care. Nat Rev Microbiol 3(5):431–438PubMedGoogle Scholar
  26. Ochi A, Nguyen AH, Bedrosian AS et al (2012) MyD88 inhibition amplifies dendritic cell capacity to promote pancreatic carcinogenesis via Th2 cells. J Exp Med 209(9):1671–1687PubMedPubMedCentralGoogle Scholar
  27. Palomo M, Gutiérrez AM, Pérezconde MC et al (2014) Se metallomics during lactic fermentation of se-enriched yogurt. Food Chem 164(20):371–379PubMedGoogle Scholar
  28. Piras C, Cesare MF, Savorani F et al (2013) A NMR metabolomics study of the ripening process of the Fiore Sardo cheese produced with autochthonous adjunct cultures. Food Chem 141(3):2137–2147PubMedGoogle Scholar
  29. Putri SP, Yamamoto S, Tsugawa H et al (2013) Current metabolomics: technological advances. J Biosci Bioeng 116(1):9–16PubMedGoogle Scholar
  30. Ramos A, Neves AR, Santos H (2002) Metabolism of lactic acid bacteria studied by nuclear magnetic resonance. Anton Leeuw Int J Gen Mol Microbiol 82(1–4):249–261Google Scholar
  31. Rodrigues JCV, Antony LMK (2011) First report of Raoiella indica (Acari: Tenuipalpidae) in Amazonas state, Brazil. Fla Entomol 94(4):1073–1074Google Scholar
  32. Settachaimongkon S, Nout MJ, Antunes Fernandes EC et al (2014) Influence of different proteolytic strains of Streptococcus thermophilus in co-culture with Lactobacillus delbrueckii subsp. bulgaricus on the metabolite profile of set-yoghurt. Int J Food Microbiol 177(5):29–36.Google Scholar
  33. Settachaimongkon S, van Valenberg HJF, Winata V et al (2015) Effect of sublethal preculturing on the survival of probiotics and metabolite formation in set-yoghurt. Food Microbiol 49:104–115PubMedGoogle Scholar
  34. Settachaimongkon S, van Valenberg HJF, Gazi I et al (2016) Influence of lactobacillus plantarum WCFS1 on post-acidification, metabolite formation and survival of starter bacteria in set-yoghurt. Food Microbiol 59:14–22PubMedGoogle Scholar
  35. Son HS, Hwang GS, Park WM et al (2009) Metabolomic characterization of malolactic fermentation and fermentative behaviors of wine yeasts in grape wine. J Agric Food Chem 57(11):4801–4809PubMedGoogle Scholar
  36. Soro-Yao AA, Schumann P, Thonart P et al (2014) The use of MALDI-TOF mass spectrometry, ribotyping and phenotypic tests to identify lactic acid bacteria from fermented cereal foods in Abidjan (Côte d’Ivoire). Open Microbiol J 8:78–86PubMedPubMedCentralGoogle Scholar
  37. Weiss RH, Kim KM (2012) Metabolomics in the study of kidney diseases. Nat Rev Nephrol 8(1):22–33Google Scholar
  38. Ye S, Yu T, Yang H et al (2013) Optimal culture conditions for producing conjugated linoleic acid in skim-milk by co-culture of different lactobacillus strains. Ann Microbiol 63(2):707–717Google Scholar
  39. Zhao N, Zhang C, Yang Q et al (2016) Selection of taste markers related to lactic acid bacteria microflora metabolism for Chinese traditional Paocai: a gas chromatography–mass spectrometry-based metabolomics approach. J Agric Food Chem 64(11):2415–2422PubMedGoogle Scholar
  40. Zheng H, Yde CC, Clausen MR et al (2015) Metabolomics investigation to shed light on cheese as a possible piece in the French paradox puzzle. J Agric Food Chem 63(10):2830–2839PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Science Press 2019

Authors and Affiliations

  1. 1.Jiangnan UniversityWuxiChina
  2. 2.Sichuan Academy of Agricultural SciencesChengduChina

Personalised recommendations