Effective Indoor Robot Localization by Stacked Bidirectional LSTM Using Beacon-Based Range Measurements

  • Hyungtae Lim
  • Hyun MyungEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1015)


In this paper, we propose a stacked bidirectional Long Short-Term Memory (stacked Bi-LSTM) for accurate localization of a robot. Using deep learning, the proposed structure directly maps range measurements from beacons into robot position. This operation non-linearly maps the relationship not only considering the long-range dependence of sequential distance data but also using the correlation of the backward information and the forward information of the sequence of each time step by virtue of its bidirectional architecture. Our stacked bidirectional LSTM structure exhibits better estimates of robot positions than other RNN structure units on the simulated environment. In addition, experiments suggest that even if the robot position is not included in the training dataset, our method is able to predict robot positions with small errors through sequential distance data.


Trilateration LSTM Mobile robot Bidirectional LSTM Recurrent Neural Networks 


  1. 1.
    Staras, H., Honickman, S.: The accuracy of vehicle location by trilateration in a dense urban environment. IEEE Trans. Veh. Technol. 21(1), 38–43 (1972)CrossRefGoogle Scholar
  2. 2.
    Thomas, F., Ros, L.: Revisiting trilateration for robot localization. IEEE Trans. Robot. 21(1), 93–101 (2005)CrossRefGoogle Scholar
  3. 3.
    Cho, H., Kim, S.W.: Mobile robot localization using biased chirp-spread-spectrum ranging. IEEE Trans. Ind. Electron. 57(8), 2826–2835 (2010)CrossRefGoogle Scholar
  4. 4.
    Raghavan, A.N., Ananthapadmanaban, H., Sivamurugan, M.S., Ravindran, B.: Accurate mobile robot localization in indoor environments using bluetooth. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 4391–4396. IEEE (2010)Google Scholar
  5. 5.
    Blanco, J.L., González, J., Fernández-Madrigal, J.A.: A pure probabilistic approach to range-only slam. In: ICRA, pp. 1436–1441 (2008). CiteseerGoogle Scholar
  6. 6.
    Blanco, J.L., Fernández-Madrigal, J.A., González, J.: Efficient probabilistic range-only slam. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2008, pp. 1017–1022. IEEE (2008)Google Scholar
  7. 7.
    Fabresse, F.R., Caballero, F., Maza, I., Ollero, A.: Undelayed 3D RO-SLAM based on Gaussian-mixture and reduced spherical parametrization. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1555–1561. Citeseer (2013)Google Scholar
  8. 8.
    Shetty, N.S.: Particle filter approach to overcome multipath propagation error in slam indoor applications. Ph.D. thesis, The University of North Carolina at Charlotte (2018)Google Scholar
  9. 9.
    LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)CrossRefGoogle Scholar
  10. 10.
    Lenz, I., Lee, H., Saxena, A.: Deep learning for detecting robotic grasps. Int. J. Robot. Res. 34(4–5), 705–724 (2015)CrossRefGoogle Scholar
  11. 11.
    Cai, Z., Fan, Q., Feris, R.S., Vasconcelos, N.: A unified multi-scale deep convolutional neural network for fast object detection. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 354–370. Springer, Cham (2016). Scholar
  12. 12.
    Smith, H.H.: Object detection and distance estimation using deep learning algorithms for autonomous robotic navigation (2018)Google Scholar
  13. 13.
    Zhu, Y., et al.: Target-driven visual navigation in indoor scenes using deep reinforcement learning. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 3357–3364. IEEE (2017)Google Scholar
  14. 14.
    Hamandi, M., D’Arcy, M., Fazli, P.: DeepMoTIon: learning to navigate like humans. arXiv preprint arXiv:1803.03719 (2018)
  15. 15.
    Walch, F., Hazirbas, C., Leal-Taixe, L., Sattler, T., Hilsenbeck, S., Cremers, D.: Image-based localization using LSTMs for structured feature correlation. In: International Conference on Computer Vision (ICCV), pp. 627-637 (2017)Google Scholar
  16. 16.
    Elman, J.L.: Finding structure in time. Cogn. Sci. 14(2), 179–211 (1990)CrossRefGoogle Scholar
  17. 17.
    Gladh, S., Danelljan, M., Khan, F.S., Felsberg, M.: Deep motion features for visual tracking. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 1243–1248. IEEE (2016)Google Scholar
  18. 18.
    Wang, S., Clark, R., Wen, H., Trigoni, N.: DeepVo: towards end-to-end visual odometry with deep recurrent convolutional neural networks. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 2043–2050. IEEE (2017)Google Scholar
  19. 19.
    Kendall, A., Grimes, M., Cipolla, R.: PoseNet: a convolutional network for real-time 6-DOF camera relocalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2938–2946 (2015)Google Scholar
  20. 20.
    Turan, M., Almalioglu, Y., Araujo, H., Konukoglu, E., Sitti, M.: Deep EndoVo: a recurrent convolutional neural network (RCNN) based visual odometry approach for endoscopic capsule robots. Neurocomputing 275, 1861–1870 (2018)CrossRefGoogle Scholar
  21. 21.
    Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRefGoogle Scholar
  22. 22.
    Zaremba, W., Sutskever, I.: Learning to execute. arXiv preprint arXiv:1410.4615 (2014)
  23. 23.
    Ordóñez, F.J., Roggen, D.: Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition. Sensors 16(1), 115 (2016)CrossRefGoogle Scholar
  24. 24.
    Clark, R., Wang, S., Wen, H., Markham, A., Trigoni, N.: VINet: visual-inertial odometry as a sequence-to-sequence learning problem. In: AAAI, pp. 3995–4001 (2017)Google Scholar
  25. 25.
    Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)
  26. 26.
    Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Sig. Process. 45(11), 2673–2681 (1997)CrossRefGoogle Scholar
  27. 27.
    Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Urban Robotics LabKAISTDaejeonRepublic of Korea

Personalised recommendations