Photocatalytic Decolorization of Rhodamine B Dye Solution Using TiO2 Coated Cotton Fabric

Conference paper


TiO2 is known for its photocatalytic activity. It has ability to degrade a number of organic pollutants. In the current study, TiO2 has been prepared in situ on cotton fabric, using its precursor through a modified sol-gel method. The in situ prepared TiO2 on fabric was further given heat treatments via different routes. The crystalline form, surface morphology and Ti content of the samples coated with TiO2 have been evaluated by XRD, FESEM and ICP-MS. The UV absorption behavior of the samples was studied using UV-visible spectroscopy. The photocatalytic degradation of Rhodamine B dye was conducted under UV light, using TiO2 coated cotton fabric prepared via different routes. It has been found that the sample treated with TiO2 via pad-dry-solvothermal route shows the highest rate of decolorization in comparison with samples prepared via pad-dry-cure and pad-dry-hydrothermal route. The mechanism of dye decolorization using TiO2 coated fabric has also been discussed.


Photocatalyst TiO2 Dye decolorization Sol-gel Rhodamine B 


  1. 1.
    Vinu, R., Akki, S.U., Madras, G.: Investigation of dye functional group on the photocatalytic degradation of dyes by nano-TiO2. J. Hazard. Mater. 176, 765–773 (2010)CrossRefGoogle Scholar
  2. 2.
    Chatterjee, S., Tyagi, A.K., Ayyub, P.: Efficient photocatalytic degradation of rhodamine B dye by aligned arrays of self-assembled hydrogen titanate nanotubes. J. Nanomater. 2014, 7 p (2014)Google Scholar
  3. 3.
    Aarthi, T., Madras, G.: Photocatalytic degradation of rhodamine dyes with nano-TiO2. Ind. Eng. Chem. Res. 46(1), 7–14 (2007)CrossRefGoogle Scholar
  4. 4.
    Abdel-Messih, M.F., Ahmed, M.A., El-Sayed, A.S.: Photocatalytic decolorization of Rhodamine B dye using novel mesoporous SnO2–TiO2 nano mixed oxides prepared by sol–gel method. J. Photochem. Photobiol. A 260, 1–8 (2013)CrossRefGoogle Scholar
  5. 5.
    Yu, K., Yang, S., He, H., Sun, C., Gu, C., Ju, Y.: Visible light-driven photocatalytic degradation of Rhodamine B over NaBiO3: Pathways and mechanism. J. Phys. Chem. A 113, 10024–10032 (2009)CrossRefGoogle Scholar
  6. 6.
    Ayed, L., Chaieb, K., Cheref, A., Bakhrouf, A.: Biodegradation of triphenylmethane dye Malachite Green by Sphingomonas paucimobilis. World J. Microbiol. Biotechnol. 25(4), 705–711 (2009)CrossRefGoogle Scholar
  7. 7.
    Li, L., Dai, W., Yu, P., Zhao, J., Qu, Y.: Decolorisation of synthetic dyes by crude laccase from Rigidoporus lignosus. J. Chem. Technol. Biotechnol. 84(3), 399–404 (2009)CrossRefGoogle Scholar
  8. 8.
    Mishra, G., Parida, K.M., Singh, S.K.: Solar light driven Rhodamine B degradation over highly active β-SiC–TiO2 nanocomposite. RSC Adv. 4(25), 12918–12928 (2014)CrossRefGoogle Scholar
  9. 9.
    Chen, Y., Li, Y., Zhu, A., Huang, Y., Liu, Z., Yan, K.: Degradation of aqueous Rhodamine B by plasma generated along the water surface and its enhancement using nanocrystalline Fe-, Mn-, and Ce-doped TiO2 films. Environ. Sci. Pollut. Res. 21(16), 9948–9958 (2014)CrossRefGoogle Scholar
  10. 10.
    Di Paola, A., Cufalo, G., Addamo, M., Bellardita, M., Campostrini, R., Ischia, M., Ceccato, R., Palmisano, L.: Photocatalytic activity of nanocrystalline TiO2 (brookite, rutile and brookite-based) powders prepared by thermohydrolysis of TiCl4 in aqueous chloride solutions. Colloids Surf. A 317(1), 366–376 (2008)CrossRefGoogle Scholar
  11. 11.
    Chen, X., Mao, S.S.: Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107(7), 2891–2959 (2007)CrossRefGoogle Scholar
  12. 12.
    Fujishima, A., Rao, T.N., Tryk, D.A.: Titanium dioxide photocatalysis. J. Photochem. Photobiol. C 1(1), 1–21 (2000)CrossRefGoogle Scholar
  13. 13.
    Winkler, J.: Nano‐scaled titanium dioxide–properties and use in coatings with special functionality. In: Macromolecular Symposia, pp. 317–324. Wiley‐VCH, Verlag (2002)Google Scholar
  14. 14.
    Zhang, Q., Joo, J.B., Lu, Z., Dahl, M., Oliveira, D.Q., Ye, M., Yin, Y.: Self-assembly and photocatalysis of mesoporous TiO2 nanocrystal clusters. Nano Res. 4(1), 103–114 (2011)CrossRefGoogle Scholar
  15. 15.
    Pranaitytė, B., Padarauskas, A., Naujalis, E.: Application of ICP-MS for the determination of trace metals in textiles. Chemija 18, 16–19 (2007)Google Scholar
  16. 16.
    Koziej, D., Fischer, F., Kranzlin, N., Caseri, W.R., Niederberger, M.: Nonaqueous TiO2 nanoparticle synthesis: a versatile basis for the fabrication of self-supporting, transparent and UV-absorbing composite films. ACS Appl. Mater. Interfaces 1(5), 1097–1104 (2009)CrossRefGoogle Scholar
  17. 17.
    Akpan, U.G., Hameed, B.H.: Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J. Hazard. Mater. 170, 520–529 (2009)CrossRefGoogle Scholar
  18. 18.
    Mahmoodi, N.M., Arami, M., Limaee, N.Y., Tabrizi, N.S.: Kinetics of heterogeneous photocatalytic degradation of reactive dyes in an immobilized TiO2 photocatalytic reactor. J. Colloid Interface Sci. 295, 159–164 (2006)CrossRefGoogle Scholar
  19. 19.
    Hasnat, M.A., Siddiquey, I.A., Nuruddin, A.: Comparative photocatalytic studies of degradation of a cationic and an anionic dye. Dyes Pigm. 66(3), 185–188 (2005)CrossRefGoogle Scholar
  20. 20.
    Laid, N., Bouanimba, N., Zouaghi, R., Sehili, T.: Comparative study on photocatalytic decolorization of an anionic and a cationic dye using different TiO2 photocatalysts. Desalin. Water Treat. 57(41), 19357–19373 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Indian Institute of Carpet TechnologyBhadohiIndia
  2. 2.Indian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations