Skip to main content

Inherited Bone Marrow Failure Syndromes

  • Chapter
  • First Online:
Hematopathology

Abstract

The inherited bone marrow failure syndromes are a heterogeneous group of disorders characterized by bone marrow failure which may or may not be associated with one or more somatic abnormality. The bone marrow failure can involve all or a single cell lineage resulting in pancytopenia or single cytopenias, respectively. Their true incidence is not clear since most of them are misdiagnosed as cases of acquired aplastic anemia. These syndromes often present in childhood but may not do so until adulthood in some cases. Inherited marrow failure syndromes need to be considered in the differential diagnosis of patients with characteristic physical abnormalities when present, along with idiopathic aplastic anemia, myelodysplastic syndrome, acute myeloid leukemia, or other characteristic solid cancers at an unusually early age. Diagnosis is confirmed by the identification of pathogenic mutations associated with each syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alter BP. Inherited bone marrow failure syndromes. In: Nathan DG, Orkin SH, Ginsburg D, Look AT, editors. Nathan and Oski’s hematology of infancy and childhood. Philadelphia: W.B. Saunders; 2003.

    Google Scholar 

  2. Verlander PC, Kaporis A, Liu Q, Zhang Q, Seligsohn U, Auerbach AD. Carrier frequency of the IVS4 + 4 AT mutation of the Fanconi anemia gene FANC in the Ashkenazi Jewish population. Blood. 1995;86:4034–8.

    CAS  PubMed  Google Scholar 

  3. Timmers C, Taniguchi T, Hejna J, Reifsteck C, Lucas L, Bruun D, et al. Positional cloning of a novel Fanconi anemia gene, FANCD2. Mol Cell. 2001;7:241–8.

    Article  CAS  Google Scholar 

  4. Lobitz S, Velleuer E. Guido Fanconi (1892-1979): a jack of all trades. Nat Rev Cancer. 2006;6(11):893–8.

    Article  CAS  Google Scholar 

  5. Faivre L, Guardiola P, Lewis C, et al. Association of complementation group and mutation type with clinical outcome in fanconi anemia. European Fanconi Anemia Research Group. Blood. 2000;96:4064.

    CAS  PubMed  Google Scholar 

  6. D'Andrea AD, Grompe M. The Fanconi anaemia/BRCA pathway. Nat Rev Cancer. 2003;3:23.

    Article  CAS  Google Scholar 

  7. Litman R, Peng M, Jin Z, et al. BACH1 is critical for homologous recombination and appears to be the Fanconi anemia gene product FANCJ. Cancer Cell. 2005;8:255.

    Article  CAS  Google Scholar 

  8. Reid S, Schindler D, Hanenberg H, et al. Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer. Nat Genet. 2007;39:162.

    Article  CAS  Google Scholar 

  9. De Rocco D, Bottega R, Cappelli E, et al. Molecular analysis of Fanconi anemia: the experience of the Bone Marrow Failure Study Group of the Italian Association of Pediatric Onco-Hematology. Haematologica. 2014;99:1022.

    Article  Google Scholar 

  10. Hira A, Yoshida K, Sato K, et al. Mutations in the gene encoding the E2 conjugating enzyme UBE2T cause Fanconi anemia. Am J Hum Genet. 2015;96:1001.

    Article  CAS  Google Scholar 

  11. Dong H, Nebert DW, Bruford EA, et al. Update of the human and mouse Fanconi anemia genes. Hum Genomics. 2015;9:32.

    Article  Google Scholar 

  12. Rickman KA, Lach FP, Abhyankar A, et al. Deficiency of UBE2T, the E2 ubiquitin ligase necessary for FANCD2 and FANCI ubiquitination, causes FA-T subtype of Fanconi anemia. Cell Rep. 2015;12:35.

    Article  CAS  Google Scholar 

  13. Virts EL, Jankowska A, Mackay C, et al. AluY-mediated germline deletion, duplication and somatic stem cell reversion in UBE2T defines a new subtype of Fanconi anemia. Hum Mol Genet. 2015;24:5093.

    Article  CAS  Google Scholar 

  14. Sawyer SL, Tian L, Kähkönen M, et al. Biallelic mutations in BRCA1 cause a new Fanconi anemia subtype. Cancer Discov. 2015;5:135.

    Article  CAS  Google Scholar 

  15. Wang AT, Kim T, Wagner JE, et al. A dominant mutation in human RAD51 reveals its function in DNA interstrand crosslink repair independent of homologous recombination. Mol Cell. 2015;59:478.

    Article  CAS  Google Scholar 

  16. Ameziane N, May P, Haitjema A, et al. A novel Fanconi anaemia subtype associated with a dominant-negative mutation in RAD51. Nat Commun. 2015;6:8829.

    Article  CAS  Google Scholar 

  17. Park JY, Virts EL, Jankowska A, et al. Complementation of hypersensitivity to DNA interstrand crosslinking agents demonstrates that XRCC2 is a Fanconi anaemia gene. J Med Genet. 2016;53:672.

    Article  CAS  Google Scholar 

  18. Wang W. Emergence of a DNA-damage response network consisting of Fanconianaemia and BRCA proteins. Nat Rev Genet. 2007;8:735.

    Article  CAS  Google Scholar 

  19. Meetei AR, Levitus M, Xue Y, et al. X-linked inheritance of Fanconi anemia complementation group B. Nat Genet. 2004;36:1219.

    Article  CAS  Google Scholar 

  20. Kottemann MC, Smogorzewska A. Fanconi anaemia and the repair of Watson and Crick DNA crosslinks. Nature. 2013 Jan 17;493(7432):356–63.

    Article  CAS  Google Scholar 

  21. Giampietro PF, Adler-Brecher B, Verlander PC, Pavlakis SG, Davis JG, Auerbach AD. The need for more accurate and timely diagnosis in Fanconi anemia. A report from the International Fanconi Anemia Registry. Paediatrics. 1993;91:1116–20.

    CAS  Google Scholar 

  22. Alter BP. Fanconi anemia and the development of leukemia. Best Pract Res Clin Haematol. 2014;27:214.

    Article  CAS  Google Scholar 

  23. Alter BP. Cancer in Fanconi anemia, 1927-2001. Cancer. 2003;97:425.

    Article  Google Scholar 

  24. Oostra AB, Nieuwint AWM, Joenje H, de Winter JP. Diagnosis of Fanconi anemia: chromosomal breakage analysis. Anemia. 2012;2012:238731.

    Article  Google Scholar 

  25. Bertuch AA. The molecular genetics of the telomere biology disorders. RNA Biol. 2016;13:696.

    Article  Google Scholar 

  26. https://www.dcoutreach.org/

  27. Horiguchi N, Kakizaki S, Iizuka K, et al. Hepatic angiosarcoma with dyskeratosis congenita. Intern Med. 2015;54:2867.

    Article  CAS  Google Scholar 

  28. Woloszynek JR, Rothbaum RJ, Rawls AS, et al. Mutations of the SBDS gene are present in most patients with Shwachman-Diamond syndrome. Blood. 2004;104:3588.

    Article  CAS  Google Scholar 

  29. Dror Y, Donadieu J, Koglmeier J, et al. Draft consensus guidelines for diagnosis and treatment of syndrome. Ann N Y Acad Sci. 2011;1242:40.

    Article  Google Scholar 

  30. King S, Germeshausen M, Strauss G, Welte K, Ballmaier M. Congenital amegakaryocytic thrombocytopenia (CAMT): a detailed clinical analysis of 21 cases reveal different types of CAMT. Blood/ASH Annual Meeting abstracts 2004; abstract 740; 2005. Dec, 2004. American Society of Hematology.

    Google Scholar 

  31. Rose MJ, Nicol KK, Skeens MA, Gross TG, Kerlin BA. Congenital amegakaryocytic thrombocytopenia: the diagnostic importance of combining pathology with molecular genetics. Pediatr Blood Cancer. 2008;50:1263–5.

    Article  Google Scholar 

  32. Gazda HT, Zhong R, Long L, Niewiadomska E, Lipton JM, Ploszynska A, et al. RNA and protein evidence for haplo-insufficiency in Diamond-Blackfan anaemia patients with RPS19 mutations. Br J Haematol. 2004;127:105–13.

    Article  CAS  Google Scholar 

  33. Gazda HT, Grabowska A, Merida-Long LB, Latawiec E, Schneider HE, Lipton JM, et al. Ribosomal protein S24 gene is mutated in Diamond-Blackfan anemia. Am J Hum Genet. 2006;79:1110–8.

    Article  CAS  Google Scholar 

  34. Vlachos A, Ball S, Niklas D, Alter BP, Sheth S, Ugo R, et al. Diagnosing and treating Diamond Blackfan anaemia: results of an International Clinical Consensus Conference; 2008. p. 1365–2141.

    Google Scholar 

  35. Lipton JM, Ellis SR. Diamond Blackfan anemia: diagnosis, treatment and molecular pathogenesis. Hematol Oncol Clin North Am. 2009;23(2):261–82.

    Article  Google Scholar 

  36. Welte K, Zeidler C, Dale DC. Severe congenital neutropenia. Semin Hematol. 2006;43(3):189–95.

    Article  CAS  Google Scholar 

  37. Dale DC, Person RE, Bolyard AA, Aprikyan AG, Bos C, Bonilla MA, et al. Mutations in the gene encoding neutrophil elastase in congenital and cyclic neutropenia. Blood. 2000;96(7):2317–22.

    CAS  PubMed  Google Scholar 

  38. Ward AC. The role of the granulocyte colony-stimulating factor receptor (G-CSF-R) in disease. Front Biosci. 2007;12:608–18.

    Article  CAS  Google Scholar 

  39. Klein C, Grudzien M, Appaswamy G, Germeshausen M, Sandrock I, Schaffer AA, et al. HAX1 deficiency causes autosomal recessive severe congenital neutropenia (Kostmann disease). Nat Genet. 2007;39(1):86–92.

    Article  CAS  Google Scholar 

  40. Alter BP, D’Andrea AD. Inherited bone marrow failure syndromes. In: Handin RI, Lux SE, Stossel TP, editors. Blood: principles and practice of hematology. 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 2003. p. 209–72.

    Google Scholar 

  41. Bonsi L, Marchionni C, Alviano F, Lanzoni G, Franchini M, Costa R. Thrombocytopenia with absent radii (TAR) syndrome: from hemopoietic progenitor to mesenchymal stromal cell disease? Exp Hematol. 2009;37:1–7.

    Article  CAS  Google Scholar 

  42. Letestu R, Vitrat N, Massé A. Existence of a differentiation blockage at the stage of a megakaryocyte precursor in the thrombocytopenia and absent radii (TAR) syndrome. Blood. 2000;95:1633–41.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karthika, K.V., Mishra, P., Pati, H.P. (2019). Inherited Bone Marrow Failure Syndromes. In: Saxena, R., Pati, H. (eds) Hematopathology. Springer, Singapore. https://doi.org/10.1007/978-981-13-7713-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7713-6_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7712-9

  • Online ISBN: 978-981-13-7713-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics