Skip to main content

Inherited Platelet Defects and Mutations in Hematopoietic Transcription Factor RUNX1

  • Chapter
  • First Online:
Hematopathology
  • 1298 Accesses

Abstract

Increasing evidence implicates mutations in hematopoietic transcription factors (TFs) as an important cause for inherited defects in platelet production, morphology, and function. TFs are proteins that bind to specific DNA sequences and regulate gene expression, with each TF regulating numerous genes. They act in a combinatorial manner to bind sequence-specific DNA within promoter regions to regulate lineage-specific gene expression, either as activators or repressors. The hematopoietic TFs associated with impaired platelet function and number include the runt related transcription factor 1 (RUNX1), Fli-1 proto-oncogene, ETS transcription factor (FLI1), GATA-binding protein 1 (GATA1), growth factor independent 1B transcriptional repressor (GFI1B), ETS variant 6 (ETV6), ecotropic viral integration site 1 (EVI1), and homeobox A11 (HOXA11). Mutations involving these TFs affect diverse aspects of megakaryocyte and platelet biology, leading to thrombocytopenia, platelet dysfunction, and often both. Some are associated with predisposition to hematologic malignancies. This review focuses on the inherited platelet abnormalities associated with mutations in RUNX1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eto K, Kunishima S. Linkage between the mechanisms of thrombocytopenia and thrombopoiesis. Blood. 2016;127(10):1234–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tijssen MR, Cvejic A, Joshi A, Hannah RL, Ferreira R, Forrai A, et al. Genome-wide analysis of simultaneous GATA1/2, RUNX1, FLI1, and SCL binding in megakaryocytes identifies hematopoietic regulators. Dev Cell. 2011;20(5):597–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dore LC, Crispino JD. Transcription factor networks in erythroid cell and megakaryocyte development. Blood. 2011;118(2):231–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rabbolini DJ, Ward CM, Stevenson WS. Thrombocytopenia caused by inherited haematopoietic transcription factor mutation: clinical phenotypes and diagnostic considerations. EMJ Hematology. 2016;4(1):100–9.

    CAS  Google Scholar 

  5. Tijssen MR, Ghevaert C. Transcription factors in late megakaryopoiesis and related platelet disorders. J Thromb Haemost. 2013;11(4):593–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Songdej N, Rao AK. Hematopoietic transcription factor mutations: important players in inherited platelet defects. Blood. 2017;129(21):2873–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. de Bruijn MF, Speck NA. Core-binding factors in hematopoiesis and immune function. Oncogene. 2004;23(24):4238–48.

    Article  PubMed  Google Scholar 

  8. Levanon D, Groner Y. Structure and regulated expression of mammalian RUNX genes. Oncogene. 2004;23(24):4211–9.

    Article  CAS  PubMed  Google Scholar 

  9. Coffman JA. Runx transcription factors and the developmental balance between cell proliferation and differentiation. Cell Biol Int. 2003;27(4):315–24.

    Article  CAS  PubMed  Google Scholar 

  10. Sood R, Kamikubo Y, Liu P. Role of RUNX1 in hematological malignancies. Blood. 2017;129(15):2070–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cantor AB. Choosing wisely: RUNX1 alternate promoter use. Blood. 2017;130(3):236–7.

    Article  CAS  PubMed  Google Scholar 

  12. Wang Q, Stacy T, Binder M, Marin-Padilla M, Sharpe AH, Speck NA. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci U S A. 1996;93(8):3444–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dowton SB, Beardsley D, Jamison D, Blattner S, Li FP. Studies of a familial platelet disorder. Blood. 1985;65(3):557–63.

    CAS  PubMed  Google Scholar 

  14. Gerrard JM, Israels ED, Bishop AJ, Schroeder ML, Beattie LL, McNicol A, et al. Inherited platelet-storage pool deficiency associated with a high incidence of acute myeloid leukaemia. Br J Haematol. 1991;79(2):246–55.

    Article  CAS  PubMed  Google Scholar 

  15. Ho CY, Otterud B, Legare RD, Varvil T, Saxena R, DeHart DB, et al. Linkage of a familial platelet disorder with a propensity to develop myeloid malignancies to human chromosome 21q22.1-22.2. Blood. 1996;87(12):5218–24.

    CAS  PubMed  Google Scholar 

  16. Arepally G, Rebbeck TR, Song W, Gilliland G, Maris JM, Poncz M. Evidence for genetic homogeneity in a familial platelet disorder with predisposition to acute myelogenous leukemia (FPD/AML) [letter]. Blood. 1998;92(7):2600–2.

    CAS  PubMed  Google Scholar 

  17. Song WJ, Sullivan MG, Legare RD, Hutchings S, Tan X, Kufrin D, et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet. 1999;23(2):166–75.

    Article  CAS  PubMed  Google Scholar 

  18. Preudhomme C, Warot-Loze D, Roumier C, Grardel-Duflos N, Garand R, Lai JL, et al. High incidence of biallelic point mutations in the Runt domain of the AML1/PEBP2 alpha B gene in Mo acute myeloid leukemia and in myeloid malignancies with acquired trisomy 21. Blood. 2000;96(8):2862–9.

    CAS  PubMed  Google Scholar 

  19. Michaud J, Wu F, Osato M, Cottles GM, Yanagida M, Asou N, et al. In vitro analyses of known and novel RUNX1/AML1 mutations in dominant familial platelet disorder with predisposition to acute myelogenous leukemia: implications for mechanisms of pathogenesis. Blood. 2002;99(4):1364–72.

    Article  CAS  PubMed  Google Scholar 

  20. Stockley J, Morgan NV, Bem D, Lowe GC, Lordkipanidze M, Dawood B, et al. Enrichment of FLI1 and RUNX1 mutations in families with excessive bleeding and platelet dense granule secretion defects. Blood. 2013;122(25):4090–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lentaigne C, Freson K, Laffan MA, Turro E, Ouwehand WH, Consortium B-B, et al. Inherited platelet disorders: toward DNA-based diagnosis. Blood. 2016;127(23):2814–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Simeoni I, Stephens JC, Hu F, Deevi SV, Megy K, Bariana TK, et al. A high-throughput sequencing test for diagnosing inherited bleeding, thrombotic, and platelet disorders. Blood. 2016;127(23):2791–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stevenson WS, Morel-Kopp MC, Chen Q, Liang HP, Bromhead CJ, Wright S, et al. GFI1B mutation causes a bleeding disorder with abnormal platelet function. J Thromb Haemost. 2013;11(11):2039–47.

    Article  CAS  PubMed  Google Scholar 

  24. Liew E, Owen C. Familial myelodysplastic syndromes: a review of the literature. Haematologica. 2011;96(10):1536–42.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Owen CJ, Toze CL, Koochin A, Forrest DL, Smith CA, Stevens JM, et al. Five new pedigrees with inherited RUNX1 mutations causing familial platelet disorder with propensity to myeloid malignancy (FPD/AML). Blood. 2008;112(12):4639–45.

    Article  CAS  PubMed  Google Scholar 

  26. Morgan NV, Daly ME. Gene of the issue: RUNX1 mutations and inherited bleeding. Platelets. 2017;28(2):208–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brown AL, Churpek JE, Malcovati L, Dohner H, Godley LA. Recognition of familial myeloid neoplasia in adults. Semin Hematol. 2017;54(2):60–8.

    Article  PubMed  Google Scholar 

  28. Antony-Debre I, Manchev VT, Balayn N, Bluteau D, Tomowiak C, Legrand C, et al. Level of RUNX1 activity is critical for leukemic predisposition but not for thrombocytopenia. Blood. 2015;125(6):930–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sun W, Downing JR. Haploinsufficiency of AML1 results in a decrease in the number of LTR-HSCs while simultaneously inducing an increase in more mature progenitors. Blood. 2004;104(12):3565–72.

    Article  CAS  PubMed  Google Scholar 

  30. Ichikawa M, Asai T, Saito T, Seo S, Yamazaki I, Yamagata T, et al. AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat Med. 2004;10(3):299–304.

    Article  CAS  PubMed  Google Scholar 

  31. Bluteau D, Glembotsky AC, Raimbault A, Balayn N, Gilles L, Rameau P, et al. Dysmegakaryopoiesis of FPD/AML pedigrees with constitutional RUNX1 mutations is linked to myosin II deregulated expression. Blood. 2012;120(13):2708–18.

    Article  CAS  PubMed  Google Scholar 

  32. Lordier L, Bluteau D, Jalil A, Legrand C, Pan J, Rameau P, et al. RUNX1-induced silencing of non-muscle myosin heavy chain IIB contributes to megakaryocyte polyploidization. Nat Commun. 2012;3:717.

    Article  PubMed  Google Scholar 

  33. Antony-Debre I, Bluteau D, Itzykson R, Baccini V, Renneville A, Boehlen F, et al. MYH10 protein expression in platelets as a biomarker of RUNX1 and FLI1 alterations. Blood. 2012;120(13):2719–22.

    Article  CAS  PubMed  Google Scholar 

  34. Sun L, Mao G, Rao AK. Association of CBFA2 mutation with decreased platelet PKC-θ and impaired receptor-mediated activation of GPIIb-IIIa and pleckstrin phosphorylation: proteins regulated by CBFA2 play a role in GPIIb-IIIa activation. Blood. 2004;103(3):948–54.

    Article  CAS  PubMed  Google Scholar 

  35. Rao AK. Inherited platelet function disorders: overview and disorders of granules, secretion, and signal transduction. Hematol Oncol Clin North Am. 2013;27(3):585–611.

    Article  PubMed  Google Scholar 

  36. Kaur G, Jalagadugula G, Mao G, Rao AK. RUNX1/core binding factor A2 regulates platelet 12-lipoxygenase gene (ALOX12): studies in human RUNX1 haplodeficiency. Blood. 2010;115(15):3128–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Glembotsky A, Sliwa D, Bluteau D, Balayn N, Marin Oyarzun CP, Raimbault A, et al. Downregulation of TREM-like transcript (TLT)-1 and collagen receptor 2 subunit, two novel RUNX1-targets, contribute to platelet dysfunction in familial platelet disorder with predisposition to acute myelogenous leukemia. Haematologica. 2019;104(6):1244–55. https://doi.org/10.3324/haematol.2018.188904.

    Article  PubMed  Google Scholar 

  38. Monteferrario D, Bolar NA, Marneth AE, Hebeda KM, Bergevoet SM, Veenstra H, et al. A dominant-negative GFI1B mutation in the gray platelet syndrome. N Engl J Med. 2014;370(3):245–53.

    Article  CAS  PubMed  Google Scholar 

  39. Weiss HJ, Chervenick PA, Zalusky R, Factor A. A familial defect in platelet function associated with impaired release of adenosine diphosphate. N Engl J Med. 1969;281:1264–70.

    Article  CAS  PubMed  Google Scholar 

  40. Weiss HJ, Witte LD, Kaplan KL, Lages BA, Chernoff A, Nossel HL, et al. Heterogeneity in storage pool deficiency: studies on granule-bound substances in 18 patients including variants deficient in alpha-granules, platelet factor 4, beta-thromboglobulin, and platelet-derived growth factor. Blood. 1979;54(6):1296–319.

    CAS  PubMed  Google Scholar 

  41. Tubman VN, Levine JE, Campagna DR, Monahan-Earley R, Dvorak AM, Neufeld EJ, et al. X-linked gray platelet syndrome due to a GATA1 Arg216Gln mutation. Blood. 2007;109(8):3297–9.

    Article  CAS  PubMed  Google Scholar 

  42. Aneja K, Jalagadugula G, Mao G, Singh A, Rao AK. Mechanism of platelet factor 4 (PF4) deficiency with RUNX1 haplodeficiency: RUNX1 is a transcriptional regulator of PF4. J Thromb Haemost. 2011;9(2):383–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Huang L, Kuo YM, Gitschier J. The pallid gene encodes a novel, syntaxin 13-interacting protein involved in platelet storage pool deficiency. Nat Genet. 1999;23(3):329–32.

    Article  CAS  PubMed  Google Scholar 

  44. Cullinane AR, Curry JA, Carmona-Rivera C, Summers CG, Ciccone C, Cardillo ND, et al. A BLOC-1 mutation screen reveals that PLDN is mutated in Hermansky-Pudlak syndrome type 9. Am J Hum Genet. 2011;88(6):778–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mao GF, Goldfinger LE, Fan DC, Lambert MP, Jalagadugula G, Freishtat R, et al. Dysregulation of PLDN (Pallidin) is a mechanism for platelet dense granule deficiency in RUNX1 haplodeficiency. J Thromb Haemost. 2017;15:792–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jalagadugula G, Goldfinger LE, Mao G, Lambert MP, Rao AK. Defective RAB1B-related megakaryocytic ER-to-Golgi transport in RUNX1 haplodeficiency: impact on von Willebrand factor. Blood Adv. 2018;2(7):797–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jalagadugula G, Mao G, Goldfinger L, Wurtzel J, Lambert M, Rao A. RAB31-mediated endosomal trafficking is defective in RUNX1 haplodeficiency. Blood. 2018;132:519.

    Google Scholar 

  48. Rao AK. Spotlight on FLI1, RUNX1, and platelet dysfunction. Blood. 2013;122(25):4004–6.

    Article  CAS  PubMed  Google Scholar 

  49. Gabbeta J, Yang X, Sun L, McLane M, Niewiarowski S, Rao AK. Abnormal inside-out signal transduction-dependent activation of GPIIb-IIIa in a patient with impaired pleckstrin phosphorylation. Blood. 1996;87:1368–76.

    CAS  PubMed  Google Scholar 

  50. Rao AK, Poncz MP. Defective acid hydrolase secretion in RUNX1haplodeficiency: evidence for a global platelet secretory defect. Haemophilia. 2017;23:784–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Michaud J, Simpson KM, Escher R, Buchet-Poyau K, Beissbarth T, Carmichael C, et al. Integrative analysis of RUNX1 downstream pathways and target genes. BMC Genomics. 2008;9:363.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sun L, Gorospe JR, Hoffman EP, Rao AK. Decreased platelet expression of myosin regulatory light chain polypeptide (MYL9) and other genes with platelet dysfunction and CBFA2/RUNX1 mutation: insights from platelet expression profiling. J Thromb Haemost. 2007;5(1):146–54.

    Article  CAS  PubMed  Google Scholar 

  53. Jalagadugula G, Mao G, Kaur G, Goldfinger LE, Dhanasekaran DN, Rao AK. Regulation of platelet myosin light chain (MYL9) by RUNX1: implications for thrombocytopenia and platelet dysfunction in RUNX1 haplodeficiency. Blood. 2010;116(26):6037–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jalagadugula G, Mao G, Kaur G, Dhanasekaran DN, Rao AK. Platelet PKC-θ deficiency with human RUNX1 mutation: PRKCQ is a transcriptional target of RUNX1. Arterioscler Thromb Vasc Biol. 2011;31(4):921–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Heller PG, Glembotsky AC, Gandhi MJ, Cummings CL, Pirola CJ, Marta RF, et al. Low Mpl receptor expression in a pedigree with familial platelet disorder with predisposition to acute myelogenous leukemia and a novel AML1 mutation. Blood. 2005;105(12):4664–70.

    Article  CAS  PubMed  Google Scholar 

  56. Mao G, Songdej N, Voora D, Goldfinger LE, Del Carpio-Cano FE, Myers RA, et al. Transcription factor RUNX1 regulates platelet PCTP (phosphatidylcholine transfer protein): implications for cardiovascular events. Circulation. 2017;136(10):927–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Edelstein LC, Simon LM, Montoya RT, Holinstat M, Chen ES, Bergeron A, et al. Racial differences in human platelet PAR4 reactivity reflect expression of PCTP and miR-376c. Nat Med. 2013;19(12):1609–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Glembotsky AC, Bluteau D, Espasandin YR, Goette NP, Marta RF, Marin Oyarzun CP, et al. Mechanisms underlying platelet function defect in a pedigree with familial platelet disorder with a predisposition to acute myelogenous leukemia: potential role for candidate RUNX1 targets. J Thromb Haemost. 2014;12(5):761–72.

    Article  CAS  PubMed  Google Scholar 

  59. Li Y, Jin C, Bai H, Gao Y, Sun S, Chen L, et al. Human NOTCH4 is a key target of RUNX1 in megakaryocytic differentiation. Blood. 2018;131(2):191–201.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Connelly JP, Kwon EM, Gao Y, Trivedi NS, Elkahloun AG, Horwitz MS, et al. Targeted correction of RUNX1 mutation in FPD patient-specific induced pluripotent stem cells rescues megakaryopoietic defects. Blood. 2014;124(12):1926–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sakurai M, Kunimoto H, Watanabe N, Fukuchi Y, Yuasa S, Yamazaki S, et al. Impaired hematopoietic differentiation of RUNX1-mutated induced pluripotent stem cells derived from FPD/AML patients. Leukemia. 2014;28(12):2344–54.

    Article  CAS  PubMed  Google Scholar 

  62. Iizuka H, Kagoya Y, Kataoka K, Yoshimi A, Miyauchi M, Taoka K, et al. Targeted gene correction of RUNX1 in induced pluripotent stem cells derived from familial platelet disorder with propensity to myeloid malignancy restores normal megakaryopoiesis. Exp Hematol. 2015;43(10):849–57.

    Article  CAS  PubMed  Google Scholar 

  63. Westman JS, Stenfelt L, Vidovic K, Moller M, Hellberg A, Kjellstrom S, et al. Allele-selective RUNX1 binding regulates P1 blood group status by transcriptional control of A4GALT. Blood. 2018;131(14):1611–6.

    Article  CAS  PubMed  Google Scholar 

  64. Voora D, Rao AK, Jalagadugula GS, Myers R, Harris E, Ortel TL, et al. Systems pharmacogenomics finds RUNX1 is an aspirin-responsive transcription factor linked to cardiovascular disease and colon cancer. EBioMedicine. 2016;11:157–64.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Voora D, Cyr D, Lucas J, Chi JT, Dungan J, McCaffrey TA, et al. Aspirin exposure reveals novel genes associated with platelet function and cardiovascular events. J Am Coll Cardiol. 2013;62(14):1267–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kang HW, Wei J, Cohen DE. PC-TP/StARD2: of membranes and metabolism. Trends Endocrinol Metab. 2010;21(7):449–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bellissimo DC, Speck NA. RUNX1 mutations in inherited and sporadic leukemia. Front Cell Dev Biol. 2017;5:111.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Godley LA. Inherited predisposition to acute myeloid leukemia. Semin Hematol. 2014;51(4):306–21.

    Article  PubMed  Google Scholar 

  69. Genovese G, Kahler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371(26):2477–87.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371(26):2488–98.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Xie M, Lu C, Wang J, McLellan MD, Johnson KJ, Wendl MC, et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med. 2014;20(12):1472–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yoshimi A, Toya T, Kawazu M, Ueno T, Tsukamoto A, Iizuka H, et al. Recurrent CDC25C mutations drive malignant transformation in FPD/AML. Nat Commun. 2014;5:4770.

    Article  CAS  PubMed  Google Scholar 

  73. Sakurai M, Kasahara H, Yoshida K, Yoshimi A, Kunimoto H, Watanabe N, et al. Genetic basis of myeloid transformation in familial platelet disorder/acute myeloid leukemia patients with haploinsufficient RUNX1 allele. Blood Cancer J. 2016;6:e392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Churpek JE, Pyrtel K, Kanchi KL, Shao J, Koboldt D, Miller CA, et al. Genomic analysis of germ line and somatic variants in familial myelodysplasia/acute myeloid leukemia. Blood. 2015;126(22):2484–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Antony-Debre I, Duployez N, Bucci M, Geffroy S, Micol JB, Renneville A, et al. Somatic mutations associated with leukemic progression of familial platelet disorder with predisposition to acute myeloid leukemia. Leukemia. 2016;30(4):999–1002.

    Article  CAS  PubMed  Google Scholar 

  76. The University of Chicago Hematopoietic Malignancies Cancer Risk Team, Drazer MW, Feurstein S, West AH, Jones MF, Churpek JE, et al. How I diagnose and manage individuals at risk for inherited myeloid malignancies. Blood. 2016;128(14):1800–13.

    Article  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by research funding from NIH (NHLBI) R01HL109568 and RO1HL137376.

Authorship: NS and AKR co-wrote the paper.

Conflict-of-interest Declaration: The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Koneti Rao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Songdej, N., Rao, A.K. (2019). Inherited Platelet Defects and Mutations in Hematopoietic Transcription Factor RUNX1. In: Saxena, R., Pati, H. (eds) Hematopathology. Springer, Singapore. https://doi.org/10.1007/978-981-13-7713-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7713-6_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7712-9

  • Online ISBN: 978-981-13-7713-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics