Abstract
Oral application of therapeutic enzymes is a promising and non-invasive administration that improves patient compliance. However, the gastrointestinal tract poses several challenges to the oral delivery of proteins, including harsh pH conditions and digestive proteases. A promising way to stabilise enzymes during their gastrointestinal route is by modification with polymers that can provide both steric shielding and selective interaction in different digestive compartments. We give an overview of modification technologies for oral enzymes ranging from functionalisation of native proteins, to site-specific mutation and protein-polymer engineering. We specifically focus on enzymes that are active directly in the gastrointestinal lumen and not systemically absorbed. In addition, we discuss examples of microparticle and nanoparticle encapsulated enzymes for improved oral delivery. The modification of orally administered enzymes offers a broad chemical variability and may be a promising tool for enhancing their gastrointestinal stability.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- 2-BIBB:
-
2-bromoisobutyryl bromide
- AP:
-
Alkaline phosphatase
- ATRP:
-
Atom transfer radical polymerization
- BCA:
-
Bicinchoninic acid
- BTpNA:
-
Benzoyl-l-tyrosine p-nitroanilide
- CAP:
-
Cellulose acetate phthalate
- CD:
-
Circular dichroism
- CLSM:
-
Confocal laser scanning microscopy
- CM:
-
Carboxymethyl
- CT:
-
α1-antichymotrypsin
- DLS:
-
Dynamic light scattering
- DSC:
-
Differential scanning calorimetry
- EDC:
-
1-ethyl-3-(3-dimethyl-aminopropyl) carbodiimide
- FDA:
-
Food and drug administration USA
- FITC-BSA:
-
Fluorescein isothiocyanate conjugate - bovine serum albumin
- FTIR:
-
Fourier-transform infrared spectroscopy
- GI:
-
Gastrointestinal
- GPC:
-
Gel permeation chromatography
- H/D:
-
Hydrogen/deuterium
- HA:
-
Hyaluronic acid
- HAP:
-
Hydroxyapatite
- HPLC:
-
High performance liquid chromatography
- HPMCP:
-
Hydroxyl propyl methyl cellulose phthalate
- HRP:
-
Horseradish peroxidase
- LC-MS:
-
Liquid chromatography–mass spectrometry
- LCST:
-
Lower critical solution temperature
- MALDI-TOF-MS:
-
Matrix assisted laser desorption ionization time-of-flight mass spectrometry
- MP:
-
Microparticle
- mPEG2-NHS:
-
Branched PEG N-hydroxysuccinimide
- MW:
-
Molecular weight
- NCC:
-
Nanoceramic cores
- NHS:
-
N-hydroxysuccinimide
- NHS-Br:
-
N-Hydroxysuccinimide-bromide
- NMR:
-
Nuclear magnetic resonance
- o-NP:
-
Ortho-nitrophenol
- o-NPG:
-
Ortho-nitrophenyl-β-galactoside
- PAMAM:
-
Poly(amidoamine)
- PBPE:
-
Polymer-based protein engineering
- pCBAm:
-
Poly (carboxybetaine acrylamide)
- PDMAEMA:
-
Poly(2-(dimethylamino)ethyl methacrylate)
- pDMAPS:
-
Poly[N,N′-dimethyl (methacryloylethyl) ammonium propane sulfonate]
- PEG:
-
Polyethylene glycol
- PEP:
-
Proline-specific endopeptidase
- pNIPAm:
-
Poly (N-isopropylacry-lamide)
- pOEGMA:
-
Poly(oligoethylene glycol monomethylether methacry-late)
- pQA:
-
Poly-(quarternary ammonium methacrylate
- pSMA:
-
Poly-(sulfonate methac-rylate)
- RT:
-
Room temperature
- SDS-PAGE:
-
Sodium dodecyl sulfate–polyacrylamide gel electrophoresis
- SEC:
-
Size exclusion chromatography
- SEM:
-
Scanning electron microscopy
- SGC:
-
Simulated gastric conditions
- SGF:
-
Simulated gastric fluid
- SIC:
-
Simulated intestinal tract conditions
- SIF:
-
Simulated intestinal fluid
- Suc-Ala-Ala-Pro-Phe-pNA:
-
N-succinyl-L-alanyl-L-alanyl-L-prolyl-L-phenyla-lanine4-nitroanilide
- TEM:
-
Transmission electron microscopy
- Tm :
-
Denaturation midpoint
- TM-AvPAL:
-
Triple mutant-Anabaena variabilis phenylalanine ammonia lyase
- TNBSA:
-
2,4,6-trinitrobenzene sulfonic acid
- UCST:
-
Upper critical solution temperature
- UV-vis:
-
Ultraviolet-visible α1-anti
- α-CT:
-
α-chymotrypsin
References
Aguado BA, Grim JC, Rosales AM, Watson-Capps JJ, Anseth KS (2018) Engineering precision biomaterials for personalized medicine. Sci Transl Med 10(424)
Aloulou A, Schué M, Puccinelli D, Milano S, Delchambre C, Leblond Y, Laugier R, Carriere F (2015) Yarrowia Lipolytica lipase 2 is stable and highly active in test meals and increases fat absorption in an animal model of pancreatic exocrine insufficiency. Gastroenterology 149(7):1910–1919.e5
Bansil R, Turner BS (2018) The biology of mucus: composition, synthesis and organization. Adv Drug Deliv Rev 12:43–15
Bélanger-Quintana A, Burlina A, Harding CO, Muntau AC (2011) Up to date knowledge on different treatment strategies for phenylketonuria. Mol Genet Metab 104(0):S19–S25
Blau N, Van Spronsen FJ, Levy HL (2010) Phenylketonuria. Lancet 376(9750):1417–1427
Blocher M, Walde P, Dunn IJ (1999) Modeling of enzymatic reactions in vesicles: the case of alpha-chymotrypsin. Biotechnol Bioeng 62(1):36–43
Brock A, Aldag I, Edskes S, Hartmann M, Herzog T, Uhl W, Schnekenburger J (2016) Novel ciliate lipases for enzyme replacement during exocrine pancreatic insufficiency. Eur J Gastroenterol Hepatol 28(11):1305–1312
Chopra S, Bertrand N, Lim J-M, Wang A, Farokhzad OC, Karnik R (2017) Design of insulin-loaded nanoparticles enabled by multistep control of nanoprecipitation and zinc chelation. ACS Appl Mater Interfaces 9(13):11440–11450
Clardy-James S, Allis DG, Fairchild TJ, Doyle RP (2012) Examining the effects of vitamin B12 conjugation on the biological activity of insulin: a molecular dynamic and in vivo oral uptake investigation. MedChemComm 3(9):1054–1058
Cook MT, Tzortzis G, Charalampopoulos D, Khutoryanskiy VV (2012) Microencapsulation of probiotics for gastrointestinal delivery. J Control Release 162(1):56–67
Couvreur P, Puisieux F (1993) Nano- and microparticles for the delivery of polypeptides and proteins. Adv Drug Deliv Rev 10(2):141–162
Cummings C, Murata H, Koepsel R, Russell AJ (2013) Tailoring enzyme activity and stability using polymer-based protein engineering. Biomaterials 34(30):7437–7443
Cummings CS, Campbell AS, Baker SL, Carmali S, Murata H, Russell AJ (2017) Design of stomach acid-stable and mucin-binding enzyme polymer conjugates. Biomacromolecules 18(2):576–586
Dean SN, Turner KB, Medintz IL, Walper SA (2017) Targeting and delivery of therapeutic enzymes. Ther Deliv 8(7):577–595
Donaldson GP, Lee SM, Mazmanian SK (2015) Gut biogeography of the bacterial microbiota. Nat Rev Microbiol 14:20
Eek D, Krohe M, Mazar I, Horsfield A, Pompilus F, Friebe R, Shields AL (2016) Patient-reported preferences for oral versus intravenous administration for the treatment of cancer: a review of the literature. Patient Prefer Adherence 10:1609–1621
Ehren J, Govindarajan S, Moron B, Minshull J, Khosla C (2008) Protein engineering of improved prolyl endopeptidases for celiac sprue therapy. Protein Eng Des Sel 21(12):699–707
Frizzell H, Ohlsen TJ, Woodrow KA (2017) Protein-loaded emulsion electrospun fibers optimized for bioactivity retention and Ph-controlled release for peroral delivery of biologic therapeutics. Int J Pharm 533(1):99–110
Fuhrmann G (2018) Luminal coating of the intestine. Nat Mater 17:754–755
Fuhrmann K, Fuhrmann G (2017) Recent advances in oral delivery of macromolecular drugs and benefits of polymer conjugation. Curr Opin Colloid Interface Sci 31:67–74
Fuhrmann G, Leroux J-C (2011) In vivo fluorescence imaging of exogenous enzyme activity in the gastrointestinal tract. Proc Natl Acad Sci U S A 108(22):9032–9037
Fuhrmann G, Leroux J-C (2014) Improving the stability and activity of oral therapeutic enzymes – recent advances and perspectives. Pharm Res 31(5):1099–1105
Fuhrmann G, Grotzky A, Lukic R, Matoori S, Luciani P, Yu H, Walde P, Schlüter AD, Gauthier MA, Leroux J-C (2013) Sustained gastrointestinal activity of dendronized polymer-enzyme conjugates. Nat Chem 5:582–589
Fuhrmann G, Chandrawati R, Pamar PA, Keane TJ, Maynard SA, Bertazzo S, Stevens MM (2018) Engineering extracellular vesicles with the tools of enzyme prodrug therapy. Adv Mater 30:1706616
Gauthier MA, Klok H-A (2010) Polymer-protein conjugates: an enzymatic activity perspective. Polym Chem 1(9):1352–1373
Graham ML (2003) Pegaspargase: a review of clinical studies. Adv Drug Deliv Rev 55(10):1293–1302
Grotzky A, Nauser T, Erdogan H, Schlüter AD, Walde P (2012) A fluorescently-labeled dendronized polymer-enzyme conjugate carrying multiple copies of two different types of active enzymes. J Am Chem Soc 134:11392–11395
Gupta V, Hwang BH, Doshi N, Mitragotri S (2013) A permeation enhancer for increasing transport of therapeutic macromolecules across the intestine. J Control Release 172(2):541–549
Hafner A, Lovrić J, Lakoš GP, Pepić I (2014) Nanotherapeutics in the Eu: an overview on current state and future directions. Int J Nanomed 9:1005–1023
Hamuro Y, Coales SJ, Molnar KS, Tuske SJ, Morrow JA (2008) Specificity of immobilized porcine pepsin in H/D exchange compatible conditions. Rapid Commun Mass Spectrom 22(7):1041–1046
Ishida T, Maeda R, Ichihara M, Irimura K, Kiwada H (2003) Accelerated clearance of pegylated liposomes in rats after repeated injections. J Control Release 88(1):35–42
Kang TS, Wang L, Sarkissian CN, Gámez A, Scriver CR, Stevens RC (2010) Converting an injectable protein therapeutic into an oral form: phenylalanine ammonia lyase for phenylketonuria. Mol Genet Metab 99(1):4–9
Kim W, Erlandsen H, Surendran S, Stevens RC, Gamez A, Michols-Matalon K, Tyring SK, Matalon R (2004) Trends in enzyme therapy for phenylketonuria. Mol Ther 10(2):220–224
Klinger D, Landfester K (2011) Dual stimuli-responsive poly(2-hydroxyethyl methacrylate-co-methacrylic acid) microgels based on photo-cleavable cross-linkers: Ph-dependent swelling and light-induced degradation. Macromolecules 44(24):9758–9772
Kumar A, Montemagno C, Choi H-J (2017) Smart microparticles with a Ph-responsive macropore for targeted oral drug delivery. Sci Rep 7(1):3059
Lee Y, Deelman TE, Chen K, Lin DSY, Tavakkoli A, Karp JM (2018) Therapeutic luminal coating of the intestine. Nat Mater 17:834–842
Leeds JS, Oppong K, Sanders DS (2011) The role of fecal elastase-1 in detecting exocrine pancreatic disease. Nat Rev Gastroenterol Hepatol 8(7):405–415
Leonard F, Ali H, Collnot EM, Crielaard BJ, Lammers T, Storm G, Lehr CM (2012) Screening of budesonide nanoformulations for treatment of inflammatory bowel disease in an inflamed 3d cell-culture model. Altex 29(3):275–285
Liu M, Tirino P, Radivojevic M, Phillips D, Gibson M, Leroux J-C, Gauthier MA (2012) Molecular sieving on the surface of a protein provides protection without loss of activity. Adv Funct Mater 23(16):2007–2015
Liu Y, Lee J, Mansfield KM, Ko JH, Sallam S, Wesdemiotis C, Maynard HD (2017) Trehalose glycopolymer enhances both solution stability and pharmacokinetics of a therapeutic protein. Bioconjug Chem 28(3):836–845
Lomer MCE, Parkes GC, Sanderson JD (2008) Review article: lactose intolerance in clinical practice – myths and realities. Aliment Pharmacol Ther 27(2):93–103
Lundh G (1957) Determination of trypsin and chymotrypsin in human intestinal content. Scand J Clin Lab Invest 9(3):229–232
Mitragotri S, Burke PA, Langer R (2014) Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat Rev Drug Discov 13(9):655–672
Moroz E, Matoori S, Leroux J-C (2016) Oral delivery of macromolecular drugs: where we are after almost 100 years of attempts. Adv Drug Deliv Rev 101:108–121
Murata H, Cummings CS, Koepsel RR, Russell AJ (2013) Polymer-based protein engineering can rationally tune enzyme activity, Ph-dependence, and stability. Biomacromolecules 14(6):1919–1926
Murgia X, Loretz B, Hartwig O, Hittinger M, Lehr C-M (2018) The role of mucus on drug transport and its potential to affect therapeutic outcomes. Adv Drug Deliv Rev 124:82–97
Naikwade SR, Meshram RN, Bajaj AN (2009) Preparation and in vivo efficacy study of pancreatin microparticles as an enzyme replacement therapy for pancreatitis. Drug Dev Ind Pharm 35(4):417–432
Parihar AKS, Srivastava S, Patel S, Singh MR, Singh D (2017) Novel catalase loaded nanocores for the treatment of inflammatory bowel diseases. Artif Cells Nanomed Biotechnol 45(5):981–989
Parmar PA, Chow LW, St-Pierre J-P, Horejs C-M, Peng YY, Werkmeister JA, Ramshaw JAM, Stevens MM (2015) Collagen-mimetic peptide-modifiable hydrogels for articular cartilage regeneration. Biomaterials 54:213–225
Pascucci T, Rossi L, Colamartino M, Gabucci C, Carducci C, Valzania A, Sasso V, Bigini N, Pierigè F, Viscomi MT, Ventura R, Cabib S, Magnani M, Puglisi-Allegra S, Leuzzi V (2018) A new therapy prevents intellectual disability in mouse with phenylketonuria. Mol Genet Metab 124(1):39–49
Pashuck ET, Stevens MM (2012) Designing regenerative biomaterial therapies for the clinic. Sci Transl Med 4(160):160sr4
Pinier M, Fuhrmann G, Verdu E, Leroux J-C (2010) Prevention measures and exploratory pharmacological treatments of celiac disease. Am J Gastroenterol 105:2551–2561
Regan PT, Malagelada J-R, Dimagno EP, Glanzman SL, Go VLW (1977) Comparative effects of antacids, cimetidine and enteric coating on the therapeutic response to oral enzymes in severe pancreatic insufficiency. N Engl J Med 297(16):854–858
Robic S (2007) Pegylated glutenase polypeptides. USA patent application WO/2007/047303. 26.04.2007
Rodríguez-Martínez JA, Solá RJ, Castillo B, Cintrón-Colón HR, Rivera-Rivera I, Barletta G, Griebenow K (2008) Stabilization of Α-chymotrypsin upon pegylation correlates with reduced structural dynamics. Biotechnol Bioeng 101(6):1142–1149
Rodríguez-Martínez JA, Rivera-Rivera I, Solá RJ, Griebenow K (2009) Enzymatic activity and thermal stability of Peg-Α-chymotrypsin conjugates. Biotechnol Lett 31(6):883–887
Sarkissian CN, Shao Z, Blain F, Peevers R, Su H, Heft R, Chang TMS, Scriver CR (1999) A different approach to treatment of phenylketonuria: phenylalanine degradation with recombinant phenylalanine ammonia lyase. Proc Natl Acad Sci U S A 96(5):2339–2344
Sarkissian CN, Gámez A, Wang L, Charbonneau M, Fitzpatrick P, Lemontt JF, Zhao B, Vellard M, Bell SM, Henschell C, Lambert A, Tsuruda L, Stevens RC, Scriver CR (2008) Preclinical evaluation of multiple species of pegylated recombinant phenylalanine ammonia lyase for the treatment of phenylketonuria. Proc Natl Acad Sci U S A 105(52):20894–20899
Schulz JD, Gauthier MA, Leroux J-C (2015a) Improving oral drug bioavailability with polycations? Eur J Pharm Biopharm 97(Part B):427–437
Schulz JD, Patt M, Basler S, Kries H, Hilvert D, Gauthier MA, Leroux J-C (2015b) Site-specific polymer conjugation stabilizes therapeutic enzymes in the gastrointestinal tract. Adv Mater 28(7):1455–1460
Shan L, Marti T, Sollid LM, Gray GM, Khosla C (2004) Comparative biochemical analysis of three bacterial prolyl endopeptidases: implications for coeliac sprue. Biochem J 383(2):311–318
Tack GJ, Verbeek WHM, Schreurs MWJ, Mulder CJJ (2010) The spectrum of celiac disease: epidemiology, clinical aspects and treatment. Nat Rev Gastroenterol Hepatol 7:204–213
Tack GJ, Van De Water JMW, Bruins MJ, Kooy-Winkelaar EMC, Van Bergen J, Bonnet P, Vreugdenhil ACE, Korponay-Szabo I, Edens L, Von Blomberg BME, Schreurs MWJ, Mulder CJ, Koning F (2013) Consumption of gluten with gluten-degrading enzyme by celiac patients: a pilot-study. World J Gastroenterol 19(35):5837–5847
Tang BC, Dawson M, Lai SK, Wang Y-Y, Suk JS, Yang M, Zeitlin P, Boyle MP, Fu J, Hanes J (2009) Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier. Proc Natl Acad Sci 106(46):19268–19273
Tang D-W, Yu S-H, Wu W-S, Hsieh H-Y, Tsai Y-C, Mi F-L (2014) Hydrogel microspheres for stabilization of an antioxidant enzyme: effect of emulsion cross-linking of a dual polysaccharide system on the protection of enzyme activity. Colloids Surf B: Biointerfaces 113:59–68
Turner JR (2009) Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 9(11):799–809
Turner KM, Pasut G, Veronese FM, Boyce A, Walsh G (2011) Stabilization of a supplemental digestive enzyme by post-translational engineering using chemically-activated polyethylene glycol. Biotechnol Lett 33(3):617–621
Veronese FM, Pasut G (2005) Pegylation, successful approach to drug delivery. Drug Discov Today 10(21):1451–1458
Vllasaliu D, Thanou M, Stolnik S, Fowler R (2018) Recent advances in oral delivery of biologics: nanomedicine and physical modes of delivery. Expert Opin Drug Deliv 15(8):759–770
Vorselen D, Van Dommelen SM, Sorkin R, Piontek MC, Schiller J, Döpp ST, Kooijmans SAA, Van Oirschot BA, Versluijs BA, Bierings MB, Van Wijk R, Schiffelers RM, Wuite GJL, Roos WH (2018) The fluid membrane determines mechanics of erythrocyte extracellular vesicles and is softened in hereditary spherocytosis. Nat Commun 9(1):4960
Zelikin AN, Ehrhardt C, Healy AM (2016) Materials and methods for delivery of biological drugs. Nat Chem 8(11):997–1007
Zhang S, Bellinger AM, Glettig DL, Barman R, Lee Y-AL, Zhu J, Cleveland C, Montgomery VA, Gu L, Nash LD, Maitland DJ, Langer R, Traverso G (2015) A Ph-responsive supramolecular polymer gel as an enteric elastomer for use in gastric devices. Nat Mater 14:1065–1071. advance online publication
Zhang Z, Zhang R, Mcclements DJ (2017) Lactase (Β-galactosidase) encapsulation in hydrogel beads with controlled internal Ph microenvironments: impact of bead characteristics on enzyme activity. Food Hydrocoll 67:85–93
Zhao Y, Wang C, Wang L, Yang Q, Tang W, She Z, Deng Y (2012) A frustrating problem: accelerated blood clearance of pegylated solid lipid nanoparticles following subcutaneous injection in rats. Eur J Pharm Biopharm 81(3):506–513
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Lapuhs, P., Fuhrmann, G. (2019). Engineering Strategies for Oral Therapeutic Enzymes to Enhance Their Stability and Activity. In: Labrou, N. (eds) Therapeutic Enzymes: Function and Clinical Implications. Advances in Experimental Medicine and Biology, vol 1148. Springer, Singapore. https://doi.org/10.1007/978-981-13-7709-9_8
Download citation
DOI: https://doi.org/10.1007/978-981-13-7709-9_8
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-13-7708-2
Online ISBN: 978-981-13-7709-9
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)