Skip to main content

Part of the book series: Springer Series in Computational Mathematics ((SSCM,volume 53))

  • 878 Accesses

Abstract

This chapter is devoted to describing basic tools and related topics necessary to numerical verification and computer-assisted proofs. We introduce fixed-point approaches, some surprising pitfalls in numerical computation, interval arithmetic, and verification methods for finite-dimensional problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that, in order to compute with rational number arithmetic, input data in Mathematica should be rational numbers such as 418695205/10 (not 41869520.5).

  2. 2.

    MATLAB R2019a returns different results.

  3. 3.

    In Part I we define ρ and \(\hat \rho \) (in the next subsection) as an upper bound corresponding to the 2-norm.

  4. 4.

    In some cases, when intvalinit( ’SharpIVmult’) is active, isequal judges that the given interval matrix is not symmetric.

References

  1. Alefeld, G., Herzberger, J.: Introduction to Interval Computations. Computer Science and Applied Mathematics. Academic [Harcourt Brace Jovanovich, Publishers], New York (1983). Translated from the German by Jon Rokne

    Chapter  Google Scholar 

  2. Alefeld, G., Mayer, G.: The Cholesky method for interval data. Linear Algebra Appl. 194, 161–182 (1993)

    Article  MathSciNet  Google Scholar 

  3. Alefeld, G., Mayer, G.: New criteria for the feasibility of the Cholesky method with interval data. SIAM J. Matrix Anal. Appl. 30(4), 1392–1405 (2008/2009)

    Article  MathSciNet  Google Scholar 

  4. Breuer, B., Plum, M., McKenna, P.J.: Inclusions and existence proofs for solutions of a nonlinear boundary value problem by spectral numerical methods. In: Topics in Numerical Analysis. Volume 15 of Computing Supplementum, pp. 61–77. Springer, Vienna (2001)

    Chapter  Google Scholar 

  5. Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68(3), 209–243 (1979)

    Article  MathSciNet  Google Scholar 

  6. Kahan, W.M.: The regrettable failure of automated error analysis, June, 13th 1989. A mini-course prepared for the conference at Massachusetts Institute of Technology on Computers and Mathematics

    Google Scholar 

  7. Kulisch, U.W., Miranker, W.L.: The arithmetic of the digital computer: a new approach. SIAM Rev. 28(1), 1–40 (1986)

    Article  MathSciNet  Google Scholar 

  8. Loh, E., William Walster, G.: Rump’s example revisited. Reliab. Comput. 8(3), 245–248 (2002)

    Article  MathSciNet  Google Scholar 

  9. Moore, R.E., Baker Kearfott, R., Cloud, M.J.: Introduction to Interval Analysis. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2009)

    Google Scholar 

  10. Neumaier, A.: Interval Methods for Systems of Equations. Volume 37 of Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  11. Rump, S.M.: Linear systems in matlab with zero residual. Reliab. Comput. 26, 56–66 (2018)

    MathSciNet  Google Scholar 

  12. Rump, S.M.: Verification methods for dense and sparse systems of equations. In: Topics in Validated Computations, Oldenburg, 1993. Volume 5 of Studies in Computational Mathematics, pp. 63–135. North-Holland, Amsterdam (1994)

    Google Scholar 

  13. Rump, S.M.: Verification of positive definiteness. BIT 46(2), 433–452 (2006)

    Article  MathSciNet  Google Scholar 

  14. Rump, S.M.: A note on epsilon-inflation. Reliab. Comput. 4(4), 371–375 (1998)

    Article  MathSciNet  Google Scholar 

  15. Rump, S.M.: Verification methods: rigorous results using floating-point arithmetic. Acta Numer. 19, 287–449 (2010)

    Article  MathSciNet  Google Scholar 

  16. Rump, S.M.: Verified bounds for singular values, in particular for the spectral norm of a matrix and its inverse. BIT 51(2), 367–384 (2011)

    Article  MathSciNet  Google Scholar 

  17. Rump, S.M.: Validated solution of large linear systems. In: Validation Numerics: Theory and Applications. Volume 9 of Computing Supplementum, pp. 191–212. Springer, Vienna (1993)

    Google Scholar 

  18. Yamamoto, N.: A simple method for error bounds of eigenvalues of symmetric matrices. Linear Algebra Appl. 324(1–3), 227–234 (2001) Special issue on linear algebra in self-validating methods

    Article  MathSciNet  Google Scholar 

  19. Zeidler, E.: Nonlinear Functional Analysis and Its Applications. I. Springer, New York (1986). Fixed-point theorems, Translated from the German by Peter R. Wadsack

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nakao, M.T., Plum, M., Watanabe, Y. (2019). Basic Tools. In: Numerical Verification Methods and Computer-Assisted Proofs for Partial Differential Equations. Springer Series in Computational Mathematics, vol 53. Springer, Singapore. https://doi.org/10.1007/978-981-13-7669-6_12

Download citation

Publish with us

Policies and ethics