Skip to main content

Dual Role of Microalgae: Phycoremediation Coupled with Biomass Generation for Biofuel Production

  • Chapter
  • First Online:

Abstract

Environmental pollution has become a worldwide concern for developing as well as developed nation. During the last two decades, a serious attention has been given in the management of environment pollution caused by hazardous material. Currently, water pollution is a serious threat for mankind which continuously deteriorated due to industrial revolution. Various physicochemical processes such as precipitation, evaporation, ion exchange, filtration, etc. are being used in the treatment of wastewater. However, several disadvantages are associated with these processes. Algae are the photosynthetic microorganism having potential to grow in both fresh and marine water bodies and can be safely utilized for contaminant removal from wastewater without imposing any hazard to the environment. The term “phycoremediation” is now being used for the process which involves algae for the removal or biotransformation of pollutants from wastewater. Apart from removal of contaminants, they also reduce biological and chemical oxygen demand of water bodies. Therefore, algae are now emerging as a desirable treatment option and could be a sustainable biomass feedstock for biofuel production. So, the dual use of microalgae, i.e., phycoremediation, as well as biomass production is a feasible option. Therefore, this chapter provides a detailed account regarding the wastewater, phycoremediation, nutrients and heavy metal uptake mechanism, and potential benefit and limitation of using wastewater as a source of nutrients for cost-effective biofuel production from microalgae.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agarwal SK (2005) Water pollution. APH Publishing

    Google Scholar 

  • Ajjabi LC, Chouba L (2009) Biosorption of Cu+2 and Zn2+ from aqueous solutions by dried marine green macroalga Chaetomorphalinum. J Environ Manag 90:3485–3489

    Article  CAS  Google Scholar 

  • Amin S (2009) Review on biofuel oil and gas production processes from microalgae. Energy Convers Manag 50:1834–1840

    Article  CAS  Google Scholar 

  • Armaroli N, Balzani V (2007) The future of energy supply: challenges and opportunities. Angew Chem Int Ed 46:52–66

    Article  CAS  Google Scholar 

  • Aslan S, Kapdan IK (2006) Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol Eng 28:64–70

    Article  Google Scholar 

  • Babu BV, Gupta S (2008) Adsorption of Cr (VI) using activated neem leaves: kinetic studies. Adsorption 14:85–92

    Article  CAS  Google Scholar 

  • Barsanti L, Gualtieri P (2006) Algae: anatomy, biochemistry, and biotechnology. CRC Press, Boca Raton

    Google Scholar 

  • Benemann JR (2008) Open ponds and closed photobioreactors – comparative economics 5th annual world congress on industrial biotechnology and bioprocessing. Chicago, April 30

    Google Scholar 

  • Bennett EM, Carpenter R, Caraco NF (2001) Human impact on erodable phosphorus and eutrophication: a global perspective. Biomed Sci 51:227–234

    Google Scholar 

  • Borowitzka MA, Moheimani NR (2013) Sustainable biofuels from algae. Mitig Adapt Strateg Glob Chang 18:13–25

    Article  Google Scholar 

  • Cai T, Park SY, Li Y (2013) Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sust Energ Rev 19:360–369

    Article  CAS  Google Scholar 

  • Chinnasamy S, Bhatnagar A, Hunt RW, Das KC (2010) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol 101:3097–3105

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294

    Article  CAS  Google Scholar 

  • Colak O, Kaya Z (1988) A study on the possibilities of biological wastewater treatment using algae. Doga Biyolji Serisi 12:18–29

    Google Scholar 

  • Conley DJ, Paerl HW, Howarth RW, Boesch DF, Seitzinger SP, Havens KE (2009) Controlling eutrophication: nitrogen and phosphorus. Science 323:1014–1015

    Article  CAS  Google Scholar 

  • Craggs RJ, Smith VJ, McAuley PJ (1995) Wastewater nutrient removal by marine microalgae cultured under ambient conditions in mini-ponds. Water Sci Technol 31:151–160

    Article  CAS  Google Scholar 

  • Craggs RJ, McAuley PJ, Smith VJ (1997) Wastewater nutrient removal by marine microalgae grown on a corrugated raceway. Water Res 31:1701–1707

    Article  CAS  Google Scholar 

  • Daroch M, Geng S, Wang G (2013) Recent advances in liquid biofuel production from algal feedstocks. Appl Energy 102:1371–1381

    Article  Google Scholar 

  • De La Torre Ugarte GD (2000) The economic impacts of bioenergy crop production on US Agriculture. United States Department of Agriculture, Washington, DC

    Google Scholar 

  • De Philippis R, Colica G, Micheletti E (2011) Exopolysaccharide-producing cyanobacteria in heavy metal removal from water: molecular basis and practical applicability of the biosorption process. Appl Microbiol Biotechnol 92:697–708

    Article  CAS  Google Scholar 

  • Dean AP, Sigee DC, Estrada B, Pittman JK (2010) Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae. Bioresour Technol 101:4499–4507

    Article  CAS  Google Scholar 

  • Demirbas A (2009) Biofuels securing the planet’s future energy needs. Energy Convers Manag 50:2239–2249

    Article  CAS  Google Scholar 

  • Demirbas MF (2011) Biofuels from algae for sustainable development. Appl Energy 88:3473–3480

    Article  CAS  Google Scholar 

  • Dismukes GC, Carrieri D, Bennette N, Ananyev GM, Posewitz MC (2008) Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr Opin Biotechnol 19:235–240

    Article  CAS  Google Scholar 

  • Dominic VJ, Murali S, Nisha MC (2009) Phycoremediation efficiency of three micro algae chlorella vulgaris, Synechocystis Salina and Gloeocapsa gelatinosa. SB Acad Rev XVI(1&2):138–146

    Google Scholar 

  • Dortch Q, Clayton JR, Thoresen SS, Ahmed SI (1984) Species differences in accumulation of nitrogen pools in phytoplankton. Mar Biol 81:237–250

    Article  CAS  Google Scholar 

  • Elimelech M, Phillip WA (2011) The future of seawater desalination: energy, technology and the environment. Science 333:712–717

    Article  CAS  Google Scholar 

  • Flynn KJ, Fasham MJR, Hipkin CR (1997) Modelling the interactions between ammonium and nitrate uptake in marine phytoplankton. Philos Trans Bio Sci 352:1625–1645

    Article  CAS  Google Scholar 

  • Gale NL (1986) The role of algae and other microorganisms in metal detoxification and environmental clean-up. Biotechnol Bioeng Symp 16:171–180

    CAS  Google Scholar 

  • García J, Mujeriego R, Hernández-Mariné M (2000) High rate algal pond operating strategies for urban wastewater nitrogen removal. J Appl Phycol 12:331–339

    Article  Google Scholar 

  • Ghirardi ML, Zhang L, Lee JW, Flynn T, Seibert M, Greenbaum E, Melis A (2000) Microalgae: a green source of renewable H2. Trends Biotechnol 18:506

    Article  CAS  Google Scholar 

  • Gonzalez LE, Canizares RO, Baena S (1997) Efficiency of ammonia and phosphorus removal from a Colombian agro industrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus. Bioresour Technol 60:259–262

    Article  CAS  Google Scholar 

  • Gotaas HB, Oswald WJ (1955) Photosynthesis in sewage treatment. J Sanit Eng Div Ame Soc Civ Engrs 81:686–893

    Google Scholar 

  • Gupta RB, Demirbas A (2010) Gasoline, diesel, and ethanol biofuels from grasses and plants. Cambridge University Press, New York

    Book  Google Scholar 

  • Gupta VK, Rastogi A, Saini VK, Jain N (2006) Biosorption of copper (II) from aqueous solutions by Spirogyra species. J Colloid Interface Sci 296:59–63

    Article  CAS  Google Scholar 

  • Gupta SK, Kumar M, Guldhe A, Ansari FA, Rawat I, Kanney K, Bux F (2014) Design and development of polyamine polymer for harvesting microalgae for biofuels production. Energy Convers Manag 85:537–544

    Article  CAS  Google Scholar 

  • Gupta SK, Ansari FA, Shriwastav A, Sahoo NK, Rawat I, Bux F (2016) Dual role of Chlorella sorokiniana and Scenedesmus obliquus for comprehensive wastewater treatment and biomass production for bio-fuels. J Clean Prod 115:255–264

    Article  CAS  Google Scholar 

  • Han X, Wong YS, Wong MH, Tam NFY (2007) Biosorption and bioremedation of Cr (VI) by a microalgal isolate, Chlorella miniata. J Hazard Mater 146:65–72

    Article  CAS  Google Scholar 

  • Hazra M, Avishek K, Pathak G (2011) Developing an artificial wetland system for wastewater treatment: a designing perspective. Int J Environ Pollut 1:8–18

    Google Scholar 

  • Herath I, Vithangen M (2015) Phytoremediation in constructed wetlands. In: Ansari AA, Gill SS, Gill R, Lanza G, Newman L (eds) Phytoremediation: management of environmental contaminants, vol 2. Springer International Publishing Switzerland, ISBN 978-3-319-10969-5

    Google Scholar 

  • Hernandez JP, de-Bashan LE, Bashan Y (2006) Starvation enhances phosphorus removal from wastewater by the microalga Chlorella spp. co-immobilized with Azospirillum brasilense. Enzym Microb Technol 38:190–198

    Article  CAS  Google Scholar 

  • Hongyang S, Yalei Z, Chunmin W, Xuefei Z, Jinpeng L (2011) Cultivation of Chlorella pyrenoidosa in soybean processing wastewater. Bioresour Technol 102:9884–9890

    Article  CAS  Google Scholar 

  • John J (2000) A self-sustainable remediation system for acidic mine voids. In: 4th international conference of diffuse pollution 506–11

    Google Scholar 

  • Ju J, Masek JG (2016) The vegetation greenness trend in Canada and US Alaska from 1984–2012 Landsat data. Remote Sens Environ 176:1–16

    Article  Google Scholar 

  • Judkins RR, Fulkerson W, Sanghvi MK (1993) The dilemma of fossil-fuel use and global climate change. Energy Fuel 7:14–22

    Article  CAS  Google Scholar 

  • Kadam KL (2002) Environmental implications of power generation via coal– microalgae cofiring. Energy 27:905–922

    Article  CAS  Google Scholar 

  • Kadlec RH, Knight RL (1996) Treatment wetlands. Lewis Publishers/CRC Press, Boca Raton, p 893

    Google Scholar 

  • Kay RA, Barton LL (1991) Microalgae as food and supplement. Crit Rev Food Sci Nutr 30:555–573

    Article  CAS  Google Scholar 

  • Khan M, Yoshida N (2008) Effect of L-glutamic acid on the growth and ammonium removal from ammonium solution and natural wastewater by Chlorella vulgaris NTM06. Bioresour Technol 99:575–582

    Article  CAS  Google Scholar 

  • Kiran B, Thanasekaran K (2011) Copper biosorption on Lyngbyaputealis: application of response surface methodology (RSM). Int Biodeterior Biodegrad 65:840–845

    Article  CAS  Google Scholar 

  • Kong QX, Li L, Martinez B, Chen P, Ruan R (2010) Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Appl Biochem Biotechnol 160:9–18

    Article  CAS  Google Scholar 

  • Lee K, Lee CG (2008) Effect of light/dark cycles on wastewater treatments by microalgae. Biotechnol Bioprocess Eng 6:194–199

    Article  Google Scholar 

  • Leung HM, Leung AOW, Wang HS, Ma KK, Liang Y, Ho KC, Cheung KC, Tohidi F, Yung KKL (2014) Assessment of heavy metals/metalloid (As, Pb, Cd, Ni, Zn, Cr, Cu, Mn) concentrations in edible fish species tissue in the Pearl River Delta (PRD). China Mar Pollut Bull 78:235–245

    Article  CAS  Google Scholar 

  • Ma CH, You K, Ji DC, Ma WW, Li FQ (2015) Primary discussion of a carbon sink in the oceans. J Ocean Univ China 14:284–292

    Article  CAS  Google Scholar 

  • Madigan MT, Martinko JM, Parker J (1997) Brock: biology of microorganisms. Prentice-Hall, New Jersey

    Google Scholar 

  • Maier RM, Pepper IL, Gerba CP (2000) Environmental microbiology. Academic

    Google Scholar 

  • McHardy BM, George JJ (1990) Bioaccumulation and toxicity of zinc in green alga Cladophora glomerata. Environ Pollut 66:55–66

    Article  CAS  Google Scholar 

  • McKendry P (2002a) Energy production from biomass (part 2): conversion technologies. Bioresour Technol 83:47–54

    Article  CAS  Google Scholar 

  • McKendry P (2002b) Energy production from biomass (part 3): gasification technologies. Bioresour Technol 83:55–63

    Article  CAS  Google Scholar 

  • Melis A (2002) Green alga hydrogen production: progress, challenges and prospects. Int J Hydrogen Energy 27:1217–1228

    Article  CAS  Google Scholar 

  • Miao XL, Wu QY (2004) High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J Biotechnol 110:85–93

    Article  CAS  Google Scholar 

  • Mohr A, Raman S (2013) Lessons from first generation biofuels and implications for the sustainability appraisal of second generation biofuels. Energy Policy 63:114–122

    Article  Google Scholar 

  • Munoz R, Guieysse B (2006) Algal–bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40:2799–2815

    Article  CAS  Google Scholar 

  • Munoz R, Guieysse B (2008) Algal bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40:799–815

    Google Scholar 

  • Nurdogan Y, Oswald WJ (1995) Enhanced nutrient removal in high-rate ponds. Water Sci Technol 31:33–43

    Article  CAS  Google Scholar 

  • Olguın EJ (2003) Phycoremediation: key issues for cost-effective nutrient removal processes. Biotechnol Adv 22:81–91

    Article  CAS  Google Scholar 

  • Olguín EJ, Galicia S, Mercado G, Pérez T (2003) Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycling process under tropical conditions. J Appl Phycol 15:249–257

    Article  Google Scholar 

  • Oswald WJ (1963) High rate ponds in waste disposal. Dev Ind Microbiol 4:112–119

    CAS  Google Scholar 

  • Oswald WJ (1988) The role of micro algae in liquid waste treatment and reclamation. In: Lembi CA, Waaland JR (eds) Algae and human affairs. Cambridge University Press, Cambridge, pp 225–281

    Google Scholar 

  • Oswald WJ, Gotaas HB (1957) Photosynthesis in sewage treatment. Trans Am Soc Civ Eng 122:73–105

    Google Scholar 

  • Phang SM, Miah MS, Yeoh BG, Hashim MA (2000) Spirulina cultivation indigested sago starch factory wastewater. J Appl Phycol 12:395–400

    Google Scholar 

  • Powell N, Shilton A, Chisti Y, Pratt S (2009) Towards a luxury uptake process via microalgae – defining the polyphosphate dynamics. Water Res 43:4207–4213

    Article  CAS  Google Scholar 

  • Rajfur M, Klos A, Waclawek M (2012) Sorption of copper (II) ions in the biomass of alga Spirogyra sp. Bioelectrochemistry 87:65–70

    Article  CAS  Google Scholar 

  • Raouf NA, Al-Homaidan AA, Ibraheem IBM (2012) Microalgae and wastewater treatment. Saudi J Biol Sci 19:257–275

    Article  CAS  Google Scholar 

  • Rasoul-amini S, Montazeri-najafabady N, Shaker S, Safari A, Kazemi A, Mousavi P (2014) Removal of nitrogen and phosphorus from wastewater using microalgae free cells in bath culture system. Biocatalysis Agric Biotechnol 3:126–131

    Article  Google Scholar 

  • Rawat I, Kumar RR, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88:3411–3424

    Article  CAS  Google Scholar 

  • Rawat I, Kumar R, Mutanda T, Bux F (2013) Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Appl Energy 103:444–467

    Article  CAS  Google Scholar 

  • Rittmann BE (2008) Opportunities for renewable bioenergy using microorganisms. Biotechnol Bioeng 100:203–212

    Article  CAS  Google Scholar 

  • Rodolf L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    Article  CAS  Google Scholar 

  • Ruiz Marin A, Mendoza-Espinosa LG, Stephenson T (2010) Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresour Technol 101:58–64

    Article  CAS  Google Scholar 

  • Sandau E, Sandau P, Pulz O (1996) Heavy metal sorption by microalgae. Acta Biotechnol 16:227–235

    Article  CAS  Google Scholar 

  • Sarkar B, Chakrabarti, PP, Vijaykumar A, Kale V (2006) Wastewater treatment in dairy industries-possibility of reuse. Desalination, 195(1–3):141–152

    Article  CAS  Google Scholar 

  • Schindler DW (1977) Evolution of phosphorus limitation in lakes. Science 195:260–262

    Article  CAS  Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the U.S. Department of Energy’s Aquatic Species Program Biodiesel from Algae. National Renewable Energy Laboratory 580-24190, Golden

    Book  Google Scholar 

  • Singh J, Gu S (2010) Commercialization potential of microalgae for biofuels production. Renew. Sustain Energy Rev 14:2596–2610

    Article  CAS  Google Scholar 

  • Singh AK, Pandey AK (2018a) In: Gupta SK, Bux F (eds). (Accepted) Potential biotechnological application of microalgae grown in wastewater: a holistic approach in: application of microalgae in wastewater treatment: domestic and industrial wastewater treatment. Springer International Publishing AG, Cham

    Google Scholar 

  • Singh AK, Pandey AK (2018b) Microalgae: an eco-friendly tools for the treatment of industrial wastewater and biofuel production. In: Bhargava RN (ed) Recent advances in phytochemical management. CRC Press Taylor and Francis Group, Boca Raton, pp 167–197

    Google Scholar 

  • Singh AK, Ganguly R, Kumar S, Pandey AK (2017) Microalgae: a source of nutraceuticals and industrial product. In: Abidi MM, Ansari MI, Maheshwari RK (eds) Molecular biology and pharmacognosy of beneficial plant. Lenin Media Private Limited, Delhi, pp 37–51

    Google Scholar 

  • Singh R, Upadhyay AK, Chandra P, Singh DP (2018) Sodium chloride incites reactive oxygen species in green algae Chlorococcum humicola and Chlorella vulgaris: implication on lipid synthesis, mineral nutrients and antioxidant system. Bioresour Technol 270:489–497

    Article  CAS  Google Scholar 

  • Sivakumar G, Xu J, Thompson RW, Yang Y, Randol-Smith P, Weathers PJ (2012) Integrated green algal technology for bioremediation and biofuel. Bioresour Technol 107:1–9

    Article  CAS  Google Scholar 

  • Soeder CJ, Payer HD, Runkel KH, Beine J, Briele E (1978) Sorption and concentration of toxic minerals by mass cultures of Chlorococcales. Mitt Int Verein Limnol 21:575–584

    CAS  Google Scholar 

  • Soranno PA, Hubler L, Carpenter SR, Lathrop RC (1996) Phosphorus loads to surface waters: a simple model to account for spatial pattern of land use. Ecol Appl 6:865–878

    Article  Google Scholar 

  • Tabatabaei MM, Tohidfar GS, Jouzani M, Safarnejad M, Pazouki (2011) Biodiesel production from genetically engineered microalgae: future of bioenergy in Iran. Renew Sust Energ Rev 15:1918–1927

    Article  CAS  Google Scholar 

  • Tampier M (2009) Microalgae technologies and processes for biofuels/bioenergy production in British Columbia: current technology, suitability and barriers to implementation prepared for The British Columbia Innovation Council

    Google Scholar 

  • Tiessen H (1995) Phosphorus in the global environment: transfers, cycles, and management. Wiley, New York

    Google Scholar 

  • Tuzen, Sari A (2010) Biosorption of selenium from aqueous solution by green algae (Cladophora hutchinsiae) biomass: equilibrium, thermodynamic and kinetic studies. Chem Eng J 158:200–206

    Article  CAS  Google Scholar 

  • Upadhyay AK, Singh NK, Singh R, Rai UN (2016) Amelioration of arsenic toxicity in rice: comparative effect of inoculation of Chlorella vulgaris and Nannochloropsis sp. on growth, biochemical changes and arsenic uptake. Ecotoxicol Environ Saf 124:68–73

    Article  CAS  Google Scholar 

  • Upadhyay AK, Singh NK, Bankoti NS, Rai UN (2017) Designing and construction of simulated constructed wetland for treatment of sewage containing metals. Environ Technol 38:2691–2699

    Article  CAS  Google Scholar 

  • Upadhyay AK, Singh R, Singh DP (2019) Phycotechnological approaches toward wastewater management. In: Emerging and eco-friendly approaches for waste management. Springer, Singapore, pp 423–435

    Chapter  Google Scholar 

  • Velenzuala E, Millan NR, Nunez CF (1999) Biomass production and nutrient uptake by Isochrysisaff galbana (Clone T-ISO) cultured with a low-cost alternative to the f/2medium. Aquac Eng 20:135–147

    Article  Google Scholar 

  • Verma AK, Dash RR, Bhunia P (2012) A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J Environ Manag 93:154–168

    Article  CAS  Google Scholar 

  • Wang L, Li YC, Chen P, Min M, Chen YF, Zhu J (2011) Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresour Technol 101:2623–2628

    Article  CAS  Google Scholar 

  • Winkelmann R, Levermann A, Ridgwell A, Caldeira K (2015) Combustion of available fossil fuel resources sufficient to eliminate the Antarctic Ice Sheet. Sci Adv 1:1500589

    Article  CAS  Google Scholar 

  • Wu LF, Chen PC, Huang AP, Lee CM (2012) The feasibility of biodiesel production by microalgae using industrial wastewater. Bioresour Technol 113:14–18

    Article  CAS  Google Scholar 

  • Yee N, Benning LG, Phoenix VR, Grant FF (2004) Characterization of metal-cyanobacteria sorption reactions: a combined macroscopic and infrared spectroscopic investigation. Environ Sci Technol 38:775–782

    Article  CAS  Google Scholar 

  • Yuce M, Nazir H, Donmez G (2010) An advanced investigation on a new algal sensor determining Pb (II) ions from aqueous media. Biosens Bioelectron 26:321–326

    Article  CAS  Google Scholar 

  • Zhang ED, Wang B, Wang QH, Zhang SB, Zhao BD (2008) Ammonia-nitrogen and orthophosphate removal by immobilized Scenedesmus spp. isolated from municipal wastewater for potential use in tertiary treatment. Bioresour Technol 99:3787–3793

    Article  CAS  Google Scholar 

Download references

Acknowledgments

AKS acknowledges financial support from CSIR New Delhi in the form of Senior Research Fellowship. The authors also acknowledge DST-FIST and UGC-SAP facilities of the Department of Biochemistry, University of Allahabad, Allahabad.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, A.K., Rana, H.K., Yadav, R.K., Pandey, A.K. (2020). Dual Role of Microalgae: Phycoremediation Coupled with Biomass Generation for Biofuel Production. In: Upadhyay, A., Singh, R., Singh, D. (eds) Restoration of Wetland Ecosystem: A Trajectory Towards a Sustainable Environment. Springer, Singapore. https://doi.org/10.1007/978-981-13-7665-8_11

Download citation

Publish with us

Policies and ethics