Advertisement

Contributions of Drug Transporters to Blood-Brain Barriers

  • Li Liu
  • Xiaodong LiuEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1141)

Abstract

Blood-brain interfaces comprise the cerebral microvessel endothelium forming the blood-brain barrier (BBB) and the epithelium of the choroid plexuses forming the blood-cerebrospinal fluid barrier (BCSFB). Their main functions are to impede free diffusion between brain fluids and blood; to provide transport processes for essential nutrients, ions, and metabolic waste products; and to regulate the homeostasis of central nervous system (CNS), all of which are attributed to absent fenestrations, high expression of tight junction proteins at cell-cell contacts, and expression of multiple transporters, receptors, and enzymes. Existence of BBB is an important reason that systemic drug administration is not suitable for the treatment of CNS diseases. Some diseases, such epilepsy, Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and diabetes, alter BBB function via affecting tight junction proteins or altering expression and function of these transporters. This chapter will illustrate function of BBB, expression of transporters, as well as their alterations under disease status.

Keywords

Blood-brain barrier Drug transporter Alzheimer’s disease Amyotrophic lateral sclerosis Epilepsy Parkinson’s disease 

Notes

Acknowledgments

The project was in part supported by the National Natural Science Foundation of China (No. 81872930; 81573490) and “Double First-Class” University project (No. CPU2018GY22).

References

  1. Abbott NJ (2000) Inflammatory mediators and modulation of blood-brain barrier permeability. Cell Mol Neurobiol 20:131–147PubMedCrossRefPubMedCentralGoogle Scholar
  2. Abdullahi W, Davis TP, Ronaldson RT (2017) Functional expression of P-glycoprotein and organic anion transporting polypeptides at the blood-brain barrier: understanding transport mechanisms for improved CNS drug delivery? AAPS J 19:931–939PubMedPubMedCentralCrossRefGoogle Scholar
  3. Abuznait AH, Kaddoumi A (2012) Role of ABC transporters in the pathogenesis of Alzheimer’s disease. ACS Chem Neurosci 3:820–831PubMedPubMedCentralCrossRefGoogle Scholar
  4. Abuznait AH, Qosa H, Busnena BA, El Sayed KA, Kaddoumi A (2013) Olive-oil-derived oleocanthal enhances β-amyloid clearance as a potential neuroprotective mechanism against Alzheimer’s disease: in vitro and in vivo studies. ACS Chem Neurosci 4:973–982PubMedPubMedCentralCrossRefGoogle Scholar
  5. Agarwal S, Sane R, Gallardo JL, Ohlfest JR, Elmquist WF (2010) Distribution of gefitinib to the brain is limited by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2)-mediated active efflux. J Pharmacol Exp Ther 334:147–155PubMedPubMedCentralCrossRefGoogle Scholar
  6. Agarwal S, Sane R, Ohlfest JR, Elmquist WF (2011a) The role of the breast cancer resistance protein (ABCG2) in the distribution of sorafenib to the brain. J Pharmacol Exp Ther 336:223–233PubMedPubMedCentralCrossRefGoogle Scholar
  7. Agarwal S, Hartz AMS, Elmquist WF, Bauer B (2011b) Breast cancer resistance protein and P-glycoprotein in brain cancer: two gatekeepers team up. Curr Pharm Des 17:2793–2802PubMedPubMedCentralCrossRefGoogle Scholar
  8. Agarwal S, Uchida Y, Mittapalli RK, Sane R, Terasaki T, Elmquist WF (2012) Quantitative proteomics of transporter expression in brain capillary endothelial cells isolated from P-glycoprotein (P-GP), breast cancer resistance protein (Bcrp), and P-GP/Bcrp knockout mice. Drug Metab Dispos 40:1164–1169PubMedPubMedCentralCrossRefGoogle Scholar
  9. Aggarwal A, Khera A, Singh I, Sandhir R (2015) S-nitrosoglutathione prevents blood-brain barrier disruption associated with increased matrix metalloproteinase-9 activity in experimental diabetes. J Neurochem 132:595–608PubMedCrossRefPubMedCentralGoogle Scholar
  10. Ahmed SSSJ, Husain RSA, Kumar S, Ramakrishnan V (2016) Association between MDR1 gene polymorphisms and Parkinson’s disease in Asian and Caucasian populations: a meta-analysis. J Neurol Sci 368:255–262PubMedCrossRefPubMedCentralGoogle Scholar
  11. Akanuma S, Ohtsuki S, Doi Y, Tachikawa M, Ito S, Hori S et al (2008) ATP-binding cassette transporter A1 (ABCA1) deficiency does not attenuate the brain-to-blood efflux transport of human amyloid-beta peptide (1−40) at the blood-brain barrier. Neurochem Int 52:956–961PubMedCrossRefPubMedCentralGoogle Scholar
  12. Akanuma S, Hosoya K, Ito S, Tachikawa M, Terasaki T, Ohtsuki S (2010) Involvement of multidrug resistance-associated protein 4 in efflux transport of prostaglandin E(2) across mouse blood-brain barrier and its inhibition by intravenous administration of cephalosporins. J Pharmacol Exp Ther 333:912–919PubMedCrossRefPubMedCentralGoogle Scholar
  13. Akanuma S, Uchida Y, Ohtsuki S, Tachikawa M, Terasaki T, Hosoya K (2011) Attenuation of prostaglandin E2 elimination across the mouse blood-brain barrier in lipopolysaccharide-induced inflammation and additive inhibitory effect of cefmetazole. Fluids Barriers CNS 8:24PubMedPubMedCentralCrossRefGoogle Scholar
  14. Al Ahmad A, Taboada CB, Gassmann M, Ogunshola OO (2011) Astrocytes and pericytes differentially modulate blood-brain barrier characteristics during development and hypoxic insult. J Cereb Blood Flow Metab 31:693–705PubMedCrossRefPubMedCentralGoogle Scholar
  15. Alexianu ME, Kozovska M, Appel SH (2001) Immune reactivity in a mouse model of familial ALS correlates with disease progression. Neurology 57:1282–1289PubMedPubMedCentralCrossRefGoogle Scholar
  16. Algotsson A, Winblad B (2007) The integrity of the blood-brain barrier in Alzheimer’s disease. Acta Neurol Scand 115:403–408PubMedCrossRefPubMedCentralGoogle Scholar
  17. Allen CL, Bayraktutan U (2009) Antioxidants attenuate hyperglycaemia-mediated brain endothelial cell dysfunction and blood-brain barrier hyperpermeability. Diabetes Obes Metab 11:480–490PubMedCrossRefPubMedCentralGoogle Scholar
  18. Amphoux A, Vialou V, Drescher E, Brüss M, Mannoury La Cour C, Rochat C, Millan MJ et al (2006) Differential pharmacological in vitro properties of organic cation transporters and regional distribution in at brain. Neuropharmacology 50:941–952PubMedCrossRefPubMedCentralGoogle Scholar
  19. Angelov L, Doolittle ND, Kraemer DF, Siegal T, Barnett GH, Peereboom DM (2009) Blood-brain barrier disruption and intra-arterial methotrexate-based therapy for newly diagnosed primary CNS lymphoma: a multi-institutional experience. J Clin Oncol 27:3503–3509PubMedPubMedCentralCrossRefGoogle Scholar
  20. Arancio O, Zhang HP, Chen X, Lin C, Trinchese F, Puzzo D et al (2004) RAGE potentiates Abeta-induced perturbation of neuronal function in transgenic mice. EMBO J 23:4096–4105PubMedPubMedCentralCrossRefGoogle Scholar
  21. Arendash GW, Holtzman DM, Potter H (2009) Caffeine suppresses amyloid-beta levels in plasma and brain of Alzheimer’s disease transgenic mice. J Alzheimers Dis 17:681–697PubMedPubMedCentralCrossRefGoogle Scholar
  22. Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C et al (2010) Pericytes regulate the blood-brain barrier. Nature 468:557–561PubMedCrossRefPubMedCentralGoogle Scholar
  23. Aronica E, Gorter JA, Ramkema M, Redeker S, Oezbas-Gercerer F, van Vliet EA et al (2004) Expression and cellular distribution of multidrug resistance-related proteins in the hippocampus of patients with mesial temporal lobe epilepsy. Epilepsia 45:441–451PubMedCrossRefPubMedCentralGoogle Scholar
  24. Attems J, Jellinger KA, Lintner F (2005) Alzheimer’s disease pathology influences severity and topographical distribution of cerebral amyloid angiopathy. Acta Neuropathol 110:222–231PubMedCrossRefPubMedCentralGoogle Scholar
  25. Attems J, Quass M, Jellinger KA, Lintner F (2007) Topographical distribution of cerebral amyloid angiopathy and its effect on cognitive decline are influenced by Alzheimer disease pathology. J Neurol Sci 257:49–55PubMedCrossRefPubMedCentralGoogle Scholar
  26. Awad AS (2006) Role of AT1 receptors in permeability of the blood-brain barrier in diabetic hypertensive rats. Vascul Pharmacol 45:141–147PubMedCrossRefPubMedCentralGoogle Scholar
  27. Bartels AL, Willemsen AT, Kortekaas R, de Jong BM, de Vries R, de Klerk O et al (2008a) Blood-brain barrier P-glycoprotein function is not impaired in early Parkinson’s disease. Parkinsonism Relat Disord 14:505–508PubMedCrossRefPubMedCentralGoogle Scholar
  28. Bartels AL, Willemsen AT, Kortekaas R, de Jong BM, de Vries R et al (2008b) Decreased blood-brain barrier P-glycoprotein function in the progression of Parkinson’s disease, PSP and MSA. Neural Transm (Vienna) 115:1001–1009CrossRefGoogle Scholar
  29. Bates CA, Zheng W (2014) Brain disposition of α-Synuclein: roles of brain barrier systems and implications for Parkinson’s disease. Fluids Barriers CNS 11:17PubMedPubMedCentralCrossRefGoogle Scholar
  30. Beers DR, Zhao W, Liao B, Kano O, Wang J, Huang A et al (2011) Neuroinflammation modulates distinct regional and temporal clinical responses in ALS mice. Brain Behav Immun 25:1025–1035PubMedCrossRefPubMedCentralGoogle Scholar
  31. Behl M, Zhang Y, Monnot AD, Jiang W, Zheng W (2009) Increased β-amyloid levels in the choroid plexus following lead exposure and the involvement of low-density lipoprotein receptor protein-1. Toxicol Appl Pharmacol 240:245–254PubMedPubMedCentralCrossRefGoogle Scholar
  32. Behl M, Zhang Y, Shi Y, Cheng J, Du Y, Zheng W (2010) Lead-induced accumulation of β-amyloid in the choroid plexus: role of low density lipoprotein receptor protein-1 and protein kinase C. Neurotoxicology 31:524–532PubMedPubMedCentralCrossRefGoogle Scholar
  33. Belinsky MG, Guo P, Lee K, Zhou F, Kotova E, Grinberg A (2007) Multidrug resistance protein 4 protects bone marrow, thymus, spleen, and intestine from nucleotide analogue-induced damage. Cancer Res 67:262–268PubMedCrossRefPubMedCentralGoogle Scholar
  34. Bell RD, Zlokovic BV (2009) Neurovascular mechanisms and blood-brain barrier disorder in Alzheimer’s disease. Acta Neuropathol 118:103–113PubMedPubMedCentralCrossRefGoogle Scholar
  35. Bell RD, Deane R, Chow N, Long X, Sagare A, Singh I et al (2009) SRF and myocardin regulate LRP-mediated amyloid-beta clearance in brain vascular cells. Nat Cell Biol 11:143–153PubMedCrossRefPubMedCentralGoogle Scholar
  36. Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B, Deane R et al (2010) Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68:409–427PubMedPubMedCentralCrossRefGoogle Scholar
  37. Bellavance MA, Blanchette M, Fortin D (2008) Recent advances in blood-brain barrier disruption as a CNS delivery strategy. AAPS J 10:166–177PubMedPubMedCentralCrossRefGoogle Scholar
  38. Ben-Menachem E, Johansson BB, Svensson TH (1982) Increased vulnerability of the blood-brain barrier to acute hypertension following depletion of brain noradrenaline. J Neural Transm 53:159–167PubMedCrossRefPubMedCentralGoogle Scholar
  39. Bihorel S, Camenisch G, Lemaire M, Scherrmann JM (2007) Influence of breast cancer resistance protein (Abcg2) and P-glycoprotein (Abcb1a) on the transport of imatinib mesylate (Gleevec) across the mouse blood–brain barrier. J Neurochem 102:1749–1757PubMedCrossRefPubMedCentralGoogle Scholar
  40. Blakeley JO, Olson J, Grossman SA, He X, Weingart J, Supko JG (2009) Effect of blood brain barrier permeability in recurrent high grade gliomas on the intratumoral pharmacokinetics of methotrexate: a microdialysis study. J Neurooncol 91:51–58PubMedCrossRefPubMedCentralGoogle Scholar
  41. Boillée S, Vande Velde C, Cleveland DW (2006) ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 2:39–59CrossRefGoogle Scholar
  42. Boockvar JA, Tsiouris AJ, Hofstetter CP, Kovanlikaya I, Fralin S, Kesavabhotla K et al (2011) Safety and maximum tolerated dose of superselective intraarterial cerebral infusion of bevacizumab after osmotic blood-brain barrier disruption for recurrent malignant glioma. Clinical article. J Neurosurg 114:624–632PubMedCrossRefPubMedCentralGoogle Scholar
  43. Boston-howes W, Williams EO, Bogush A, Scolere M, Pasinelli P, Trotti D (2008) Nordihydroguaiaretic acid increases glutamate uptake in vitro and in vivo: therapeutic implications for amyotrophic lateral sclerosis. Exp Neurol 213:229–237PubMedPubMedCentralCrossRefGoogle Scholar
  44. Bowman GL, Kaye JA, Moore M, Waichunas D, Carlson NE, Quinn JF (2007) Blood-brain barrier impairment in Alzheimer disease: stability and functional significance. Neurology 68:1809–1814PubMedPubMedCentralCrossRefGoogle Scholar
  45. Brandt C, Bethmann K, Gastens AM, Loscher W (2006) The multidrug transporter hypothesis of drug resistance in epilepsy: proof-of-principle in a rat model of temporal lobe epilepsy. Neurobiol Dis 24:202–211PubMedCrossRefPubMedCentralGoogle Scholar
  46. Brenn A, Grube M, Jedlitschky G, Fischer A, Strohmeier B, Eiden M et al (2014) St. John’s Wort reduces beta-amyloid accumulation in a double transgenic Alzheimer’s disease mouse model-role of P-glycoprotein. Brain Pathol 24:18–24PubMedCrossRefPubMedCentralGoogle Scholar
  47. Brettschneider J, Petzold A, Süssmuth SD, Ludolph AC, Tumani H (2006) Axonal damage markers in cerebrospinal fluid are increased in ALS. Neurology 66:852–856PubMedCrossRefPubMedCentralGoogle Scholar
  48. Brettschneider J, Toledo JB, Van Deerlin VM, Elman L, McCluskey L, Lee VM et al (2012) Microglial activation correlates with disease progression and upper motor neuron clinical symptoms in amyotrophic lateral sclerosis. PLoS One 7:e39216PubMedPubMedCentralCrossRefGoogle Scholar
  49. Brooks TA, Hawkins BT, Huber JD, Egleton RD, Davis TP (2005) Chronic inflammatory pain leads to increased blood-brain barrier permeability and tight junction protein alteration. Am J Physiol Heart Circ Physiol 289:H738–H743PubMedPubMedCentralCrossRefGoogle Scholar
  50. Brooks TA, Ocheltree SM, Seelbach MJ, Charles RA, Nametz N, Egleton RD et al (2006) Biphasic cytoarchitecture and functional changes in the BBB induced by chronic inflammatory pain. Brain Res 1120:172–182PubMedPubMedCentralCrossRefGoogle Scholar
  51. Buonerba C, Di Lorenzo G, Marinelli A, Federico P, Palmieri G, Imbimbo M et al (2011) A comprehensive outlook on intracerebral therapy of malignant gliomas. Crit Rev Oncol Hematol 80:54–68PubMedCrossRefPubMedCentralGoogle Scholar
  52. Burkhardt JK, Riina H, Shin BJ, Christos P, Kesavabhotla K, Hofstetter CP et al (2012) Intra-arterial delivery of bevacizumab after blood-brain barrier disruption for the treatment of recurrent glioblastoma: progression-free survival and overall survival. World Neurosurg 77:130–134PubMedCrossRefPubMedCentralGoogle Scholar
  53. Butterfield DA, Castegna A, Lauderback CM, Drake J (2002) Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiol Aging 23:655–664PubMedCrossRefPubMedCentralGoogle Scholar
  54. Campos CR, Ocheltree SM, Hom S, Egleton RD, Davis TP (2008) Nociceptive inhibition prevents inflammatory pain induced changes in the blood-brain barrier. Brain Res 1221:6–13PubMedPubMedCentralCrossRefGoogle Scholar
  55. Cannon RE, Peart JC, Hawkins BT, Campos CR, Miller DS (2012) Targeting blood brain barrier sphingolipid signaling reduces basal P-glycoprotein activity and improves drug delivery to the brain. Proc Natl Acad Sci USA 109:15930–15935PubMedCrossRefPubMedCentralGoogle Scholar
  56. Carcaboso AM, Elmeliegy MA, Shen J, Juel SJ, Zhang ZM, Calabrese C et al (2010) Tyrosine kinase inhibitor gefitinib enhances topotecan penetration of gliomas. Cancer Res 70:4499–4508PubMedPubMedCentralCrossRefGoogle Scholar
  57. Carrano A, Snkhchyan H, Kooij G, van der Pol S, Horssen J, Veerhuis R et al (2014) ATP-binding cassette transporters P-glycoprotein and breast cancer related protein are reduced in capillary cerebral amyloid angiopathy. Neurobiol Aging 35:565–575PubMedCrossRefPubMedCentralGoogle Scholar
  58. Cartwright TA, Campos CR, Cannon RE, Miller DS (2013) Mrp1 is essential for sphingolipid signaling to P-glycoprotein in mouse blood–brain and blood–spinal cord barriers. J Cereb Blood Flow Metab 33:381–388PubMedCrossRefPubMedCentralGoogle Scholar
  59. Carvey PM, Zhao CH, Hendey B, Lum H, Trachtenberg J, Desai BS et al (2005) 6-Hydroxydopamine-induced alterations in blood-brain barrier permeability. Eur J Neurosci 22:1158–1168PubMedCrossRefPubMedCentralGoogle Scholar
  60. Cen J, Liu L, Li MS, He L, Wang LJ, Liu YQ et al (2013) Alteration in P-glycoprotein at the blood-brain barrier in the early period of MCAO in rats. J Pharm Pharmacol 65:665–672PubMedCrossRefPubMedCentralGoogle Scholar
  61. Chakraborty S, Filippi CG, Burkhardt JK, Fralin S, Ray A, Wong T et al (2016) Durability of single dose intra-arterial bevacizumab after blood/brain barrier disruption for recurrent glioblastoma. J Exp Ther Oncol 11:261–267PubMedCrossRefPubMedCentralGoogle Scholar
  62. Chan GN, Evans RA, Banks DB, Mesev EV, Miller DS, Cannon RE (2017) Selective induction of P-glycoprotein at the CNS barriers during symptomatic stage of an ALS animal model. Neurosci Lett 639:103–113PubMedCrossRefPubMedCentralGoogle Scholar
  63. Chehade JM, Haas MJ, Mooradian AD (2002) Diabetes-related changes in rat cerebral occludin and zonula occludens-1 (ZO-1) expression. Neurochem Res 27:249–252PubMedCrossRefPubMedCentralGoogle Scholar
  64. Chen Y, Agarwal S, Shaik NM, Chen C, Yang Z, Elmquist WF (2009) P-glycoprotein and breast cancer resistance protein influence brain distribution of dasatinib. J Pharmacol Exp Ther 330:956–963PubMedCrossRefPubMedCentralGoogle Scholar
  65. Chen X, Loryan I, Payan M, Keep RF, Smith DE, Hammarlund-Udenaes M (2014) Effect of transporter inhibition on the distribution of cefadroxil in rat brain. Fluids Barriers CNS 11:25PubMedPubMedCentralCrossRefGoogle Scholar
  66. Chen X, Keep RF, Liang Y, Zhu HJ, Hammarlund-Udenaes M, Hu Y et al (2017) Influence of peptide transporter 2 (PEPT2) on the distribution of cefadroxil in mouse brain: a microdialysis study. Biochem Pharmacol 131:89–97PubMedPubMedCentralCrossRefGoogle Scholar
  67. Chiu C, Miller MC, Monahan R, Osgood DP, Stopa EG, Silverberg GD (2015) P-glycoprotein expression and amyloid accumulation in human aging and Alzheimer’s disease: preliminary observations. Neurobiol Aging 36:2475–2482PubMedCrossRefPubMedCentralGoogle Scholar
  68. Cho HJ, Son SM, Jin SM, Hong HS, Shin DH, Kim SJ et al (2009) RAGE regulates BACE1 and Abeta generation via NFAT1 activation in Alzheimer’s disease animal model. FASEB J 23:2639–2649PubMedCrossRefPubMedCentralGoogle Scholar
  69. Choi BR, Cho WH, Kim J, Lee HJ, Chung C, Jeon WK et al (2014) Increased expression of the receptor for advanced glycation end products in neurons and astrocytes in a triple transgenic mouse model of Alzheimer’s disease. Exp Mol Med 46:e75PubMedPubMedCentralCrossRefGoogle Scholar
  70. Chung YC, Kim YS, Bok E, Yune TY, Maeng S, Jin BK (2013) MMP-3 contributes to nigrostriatal dopaminergic neuronal loss, BBB damage, and neuroinflammation in an MPTP mouse model of Parkinson’s disease. Mediators Inflamm 2013:370526PubMedPubMedCentralCrossRefGoogle Scholar
  71. Cirrito JR, Deane R, Fagan AM, Spinner ML, Parsadanian M, Finn MB et al (2005) P-glycoprotein deficiency at the blood-brain barrier increases amyloid-β deposition in an Alzheimer disease mouse model. J Clin Invest 115:3285–3290PubMedPubMedCentralCrossRefGoogle Scholar
  72. Cisternino S, Mercier C, Bourasset F, Roux F, Scherrmann JM (2004) Expression, up-regulation, and transport activity of the multidrug-resistance protein Abcg2 at the mouse blood-brain barrier. Cancer Res 64:3296–3301PubMedCrossRefPubMedCentralGoogle Scholar
  73. Coatti GC, Frangini M, Valadares MC, Gomes JP, Lima NO, Cavaçana N et al (2017) Pericytes extend survival of ALS SOD1 mice and induce the expression of antioxidant enzymes in the murine model and in IPSCs derived neuronal cells from an ALS patient. Stem Cell Rev 13:686–698CrossRefGoogle Scholar
  74. Cole SP (2014) Multidrug resistance protein 1 (MRP1, ABCC1), a “multitasking” ATP-binding cassette (ABC) transporter. J Biol Chem 289:30880–30888PubMedPubMedCentralCrossRefGoogle Scholar
  75. Cooray HC, Blackmore CG, Maskell L, Barrand MA (2002) Localisation of breast cancer resistance protein in microvessel endothelium of human brain. Neuroreport 13:2059–2063PubMedCrossRefPubMedCentralGoogle Scholar
  76. Corcia P, Tauber C, Vercoullie J, Arlicot N, Prunier C, Praline J et al (2012) Molecular imaging of microglial activation in amyotrophic lateral sclerosis. PLoS One 7:e52941PubMedPubMedCentralCrossRefGoogle Scholar
  77. Cordonnier C (2011) Brain microbleeds: more evidence, but still a clinical dilemma. Curr Opin Neurol 24:69–74PubMedCrossRefPubMedCentralGoogle Scholar
  78. Couroussé T, Gautron S (2015) Role of organic cation transporters (OCTs) in the brain. Pharmacol Ther 146:94–103.  https://doi.org/10.1016/j.pharmthera.2014.09.008CrossRefPubMedPubMedCentralGoogle Scholar
  79. Dai JP, Vrensen GFJM, Schlingemann RO (2002) Blood–brain barrier integrity is unaltered in human brain cortex with diabetes mellitus. Brain Res 954:311–316PubMedCrossRefPubMedCentralGoogle Scholar
  80. Daneman R, Zhou L, Kebede AA, Barres BA (2010) Pericytes are required for blood brain barrier integrity during embryogenesis. Nature 468:562–566PubMedPubMedCentralCrossRefGoogle Scholar
  81. Dauchy S, Dutheil F, Weaver RJ, Chassoux F, Daumas-Duport C, Couraud PO et al (2008) ABC transporters, cytochromes P450 and their main transcription factors: expression at the human blood-brain barrier. J Neurochem 107:1518–1528PubMedCrossRefPubMedCentralGoogle Scholar
  82. de Vries NA, Zhao J, Kroon E, Buckle T, Beijnen JH, van Tellingen O (2007) P-glycoprotein and breast cancer resistance protein: two dominant transporters working together in limiting the brain penetration of topotecan. Clin Cancer Res 13:6440–6449.  https://doi.org/10.1158/1078-0432.CCR-07-1335CrossRefPubMedPubMedCentralGoogle Scholar
  83. De Vries NA, Buckle T, Zhao J, Beijnen JH, Schellens JH, van Tellingen O (2012) Restricted brain penetration of the tyrosine kinase inhibitor erlotinib due to the drug transporters P-GP and BCRP. Invest New Drugs 30:443–449PubMedCrossRefPubMedCentralGoogle Scholar
  84. Deane R, Du Yan S, Submamaryan RK, LaRue B, Jovanovic S, Hogg E et al (2003) RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat Med 9:907–913PubMedCrossRefPubMedCentralGoogle Scholar
  85. Deane R, Wu Z, Sagare A, Davis J, Du Yan S, Hamm K et al (2004) LRP/amyloid beta-peptide interaction mediates differential brain efflux of Abeta isoforms. Neuron 43:333–344PubMedCrossRefPubMedCentralGoogle Scholar
  86. Deane R, Bell RD, Sagare A, Sagare A, Zlokovic BV (2009) Clearance of amyloid-beta peptide across the blood-brain barrier: implication for therapies in Alzheimer’s disease. CNS Neurol Disord Drug Targets 8:16–30PubMedPubMedCentralCrossRefGoogle Scholar
  87. Deane R, Singh I, Sagare AP, Bell RD, Ross NT, LaRue B et al (2012) A multimodal RAGE-specific inhibitor reduces amyloid β-mediated brain disorder in a mouse model of Alzheimer disease. J Clin Invest 122:1377–1392PubMedPubMedCentralCrossRefGoogle Scholar
  88. Deo AK, Borson S, Link JM, Domino K, Eary JF, Ke B et al (2014) Activity of P-glycoprotein, a β-amyloid transporter at the blood-brain barrier, is compromised in patients with mild Alzheimer disease. J Nucl Med 55:1106–1111PubMedPubMedCentralCrossRefGoogle Scholar
  89. Di Marco LY, Venneri A, Farkas E, Evans PC, Marzo A, Frangi AF (2015) Vascular dysfunction in the pathogenesis of Alzheimer’s disease – a review of endothelium-mediated mechanisms and ensuing vicious circles. Neurobiol Dis 82:593–606PubMedCrossRefPubMedCentralGoogle Scholar
  90. Do TM, Noel-Hudson MS, Ribes S, Besengez C, Smirnova M, Cisternino S et al (2012) ABCG2- and ABCG4-mediated efflux of amyloid-β peptide 1-40 at the mouse blood-brain barrier. J Alzheimers Dis 30:155–166PubMedCrossRefPubMedCentralGoogle Scholar
  91. Do TM, Alata W, Dodacki A, Traversy MT, Chacun H, Pradier L et al (2014) Altered cerebral vascular volumes and solute transport at the blood-brain barriers of two transgenic mouse models of Alzheimer’s disease. Neuropharmacology 81:311–317PubMedCrossRefPubMedCentralGoogle Scholar
  92. Do TM, Dodacki A, Alata W, Calon F, Nicolic S, Scherrmann JM et al (2016) Age-dependent regulation of the blood-brain barrier influx/efflux equilibrium of amyloid-β peptide in a mouse model of Alzheimer’s disease (3xTg-AD). J Alzheimers Dis 49:287–300PubMedCrossRefPubMedCentralGoogle Scholar
  93. Dombrowski SM, Desai SY, Marroni M, Cucullo L, Goodrich K, Bingaman W et al (2001) Overexpression of multiple drug resistance genes in endothelial cells from patients with refractory epilepsy. Epilepsia 42:1501–1506PubMedCrossRefPubMedCentralGoogle Scholar
  94. Donahue J, Flaherty S, Johanson C, Duncan J, Silverberg G, Miller M et al (2006) RAGE, LRP-1, and amyloid-β protein in Alzheimer’s disease. Acta Neuropathol 112:405–415PubMedCrossRefPubMedCentralGoogle Scholar
  95. Doran A, Obach RS, Smith BJ, Hosea NA, Becker S, Callegari E et al (2005) The impact of P-glycoproteinon the disposition of drugs targeted for indications of the central nervous system: evaluation using the MDR1A/1B knockout mouse model. Drug Metab Dispo 33:165–174CrossRefGoogle Scholar
  96. Droździk M, Białecka M, Myśliwiec K, Honczarenko K, Stankiewicz J, Sych Z (2003) Polymorphism in the P-glycoprotein drug transporter MDR1 gene: a possible link between environmental and genetic factors in Parkinson’s disease. Pharmacogenetics 13:259–263PubMedCrossRefPubMedCentralGoogle Scholar
  97. Duda JE, Lee VMY, Trojanowski JQ (2000) Neuropathy of synuclein aggregates: new insights into mechanisms of neurodegenerative diseases. J Neurosci Res 61:121–127PubMedCrossRefPubMedCentralGoogle Scholar
  98. Durk MR, Han K, Chow EC, Ahrens R, Henderson JT, Fraser PE et al (2014) 1α,25-Dihydroxyvitamin D3 reduces cerebral amyloid-β accumulation and improves cognition in mouse models of Alzheimer’s disease. J Neurosci 34:7091–7101PubMedPubMedCentralCrossRefGoogle Scholar
  99. Durmus S, Xu N, Sparidans RW, Wagenaar E, Beijnen JH, Schinkel AH (2013) P-glycoprotein (MDR1/ABCB1) and breast cancer resistance protein (BCRP/ABCG2) restrict brain accumulation of the JAK1/2 inhibitor, CYT387. Pharmacol Res 76:9–16PubMedCrossRefPubMedCentralGoogle Scholar
  100. Durmus S, Sparidans RW, van Esch A, Wagenaar E, Beijnen JH, Schinkel AH (2015) Breast cancer resistance protein (BCRP/ABCG2) and P-glycoprotein (P-GP/ABCB1) restrict oral availability and brain accumulation of the PARP inhibitor rucaparib (AG-014699). Pharm Res 32:37–46PubMedCrossRefPubMedCentralGoogle Scholar
  101. Dutheil F, Beaune P, Tzourio C, Loriot MA, Elbaz A (2010) Interaction between ABCB1 and professional exposure to organochlorine insecticides in Parkinson disease. Arch Neurol 67:739–745PubMedCrossRefPubMedCentralGoogle Scholar
  102. Eisenblatter T, Huwel S, Galla HJ (2003) Characterisation of the brain multidrug resistance protein (BMDP/ABCG2/BCRP) expressed at the blood-brain barrier. Brain Res 971:221–231PubMedCrossRefPubMedCentralGoogle Scholar
  103. Erickson MA, Banks WA (2013) Blood–brain barrier dysfunction as a cause and consequence of Alzheimer’s disease. J Cereb Blood Flow Metab 33:1500–1513PubMedPubMedCentralCrossRefGoogle Scholar
  104. Fan Y, Liu X (2018) Alterations in expression and function of ABC family transporters at blood-brain barrier under liver failure and their clinical significances. Pharmaceutics 10(3):E102.  https://doi.org/10.3390/pharmaceutics10030102CrossRefPubMedPubMedCentralGoogle Scholar
  105. Faucheux BA, Bonnet AM, Agid Y, Hirsch EC (1999) Blood vessels change in the mesencephalon of patients with Parkinson’s disease. Lancet 353:981–982PubMedCrossRefPubMedCentralGoogle Scholar
  106. Fellner S, Bauer B, Miller DS, Schaffrik M, Fankhanel M, Spruss T et al (2002) Transport of paclitaxel (Taxol) across the blood-brain barrier in vitro and in vivo. J Clin Invest 110:1309–1318PubMedPubMedCentralCrossRefGoogle Scholar
  107. Fortin D, Salamé JA, Desjardins A, Benko A (2004) Technical modification in the intracarotid chemotherapy and osmotic blood-brain barrier disruption procedure to prevent the relapse of carboplatin-induced orbital pseudotumor. AJNR Am J Neuroradiol 25:830–834PubMedPubMedCentralGoogle Scholar
  108. Fortin D, Desjardins A, Benko A, Niyonsega T, Boudrias M (2005) Enhanced chemotherapy delivery by intraarterial infusion and blood-brain barrier disruption in malignant brain tumors: the Sherbrooke experience. Cancer 103:2606–2615PubMedCrossRefPubMedCentralGoogle Scholar
  109. Fredriksson L, Li H, Fieber C, Li X, Eriksson U (2004) Tissue plasminogen activator is a potent activator of PDGF-CC. EMBO J 23:3793–3802PubMedPubMedCentralCrossRefGoogle Scholar
  110. Frigerio F, Frasca A, Weissberg I, Parrella S, Friedman A, Vezzani A et al (2012) Long-lasting pro-ictogenic effects induced in vivo by rat brain exposure to serum albumin in the absence of concomitant pathology. Epilepsia 53:1887–1897PubMedPubMedCentralCrossRefGoogle Scholar
  111. Fukuda S, Fini CA, Mabuchi T, Koziol JA, Eggleston LL Jr, del Zoppo GJ (2004) Focal cerebral ischemia induces active proteases that degrade microvascular matrix. Stroke 35:998–1004PubMedPubMedCentralCrossRefGoogle Scholar
  112. Fukumoto H, Deng A, Irizarry MC, Fitzgerald ML, Rebeck GW (2002) Induction of the cholesterol transporter ABCA1 in central nervous system cells by liver X receptor agonists increases secreted Abeta levels. J Biol Chem 277:48508–48513PubMedCrossRefPubMedCentralGoogle Scholar
  113. Funke C, Soehn AS, Tomiuk J, Riess O, Berg D (2009) Genetic analysis of coding SNPs in blood–brain barrier transporter MDR1 in European Parkinson’s diseasepatients. J Neural Transm 116:443–450PubMedCrossRefPubMedCentralGoogle Scholar
  114. Furuno T, Landi MT, Ceroni M, Caporaso N, Bernucci I, Nappi G et al (2002) Expression polymorphism of the blood–brain barrier component P-glycoprotein (MDR1) in relation to Parkinson’s disease. Pharmacogenetics 12:529–534PubMedCrossRefPubMedCentralGoogle Scholar
  115. Garbuzova-Davis S, Sanberg PR (2014) Blood–CNS barrier impairment in ALS patients versus an animal model. Front Cell Neurosci 8:21PubMedPubMedCentralCrossRefGoogle Scholar
  116. Garbuzova-Davis S, Haller E, Saporta S, Kolomey I, Nicosia SV, Sanberg PR (2007a) Ultrastructure of blood–brain barrier and blood–spinal cord barrier in SOD1 mice modeling ALS. Brain Res 1157:126–137PubMedCrossRefPubMedCentralGoogle Scholar
  117. Garbuzova-Davis S, Saporta S, Haller E, Kolomey I, Bennett SP, Potter H et al (2007b) Evidence of compromised blood–spinal cord barrier in early and late symptomatic SOD1 mice modeling ALS. PLoS One 2:e1205PubMedPubMedCentralCrossRefGoogle Scholar
  118. Garbuzova-Davis S, Rodrigues MCO, Hernandez-Ontiveros DG, Louis MK, Willing AE, Borlongan CV et al (2011) Amyotrophic lateral sclerosis: a neurovascular disease. Brain Res 1398:113–125PubMedCrossRefPubMedCentralGoogle Scholar
  119. Garro A, Chodobski A, Szmydynger-Chodobska J, Shan R, Bialo SR, Bennett J et al (2017) Circulating matrix metalloproteinases in children with diabetic ketoacidosis. Pediatr Diabetes 18:95–102PubMedCrossRefPubMedCentralGoogle Scholar
  120. Gasser PJ, Lowry CA, Orchinik M (2006) Corticosterone-sensitive monoamine transport in the rat dorsomedial hypothalamus: potential role for organic cation transporter 3 in stress-induced modulation of monoaminergic neurotransmission. J Neurosci 26:8758–8766PubMedPubMedCentralCrossRefGoogle Scholar
  121. Gasser PJ, Orchinik M, Raju I, Lowry CA (2009) Distribution of organic cation transporter 3, a corticosterone-sensitive monoamine transporter, in the rat brain. J Comp Neurol 512:529–555PubMedCrossRefPubMedCentralGoogle Scholar
  122. Ghiso J, Frangione B (2002) Amyloidosis and Alzheimer’s disease. Adv Drug Deliv Rev 54:1539–1551PubMedCrossRefPubMedCentralGoogle Scholar
  123. Giannoni P, Arango-Lievano M, Neves ID, Rousset MC, Baranger K, Rivera S et al (2016) Cerebrovascular pathology during the progression of experimental Alzheimer’s disease. Neurobiol Dis 88:107–117PubMedCrossRefPubMedCentralGoogle Scholar
  124. Goralski KB, Hartmann G, Piquette-Miller M, Renton KW (2003) Downregulation of mdr1a expression in the brain and liver during CNS inflammation alters the in vivo disposition of digoxin. Br J Pharmacol 139:35–48PubMedPubMedCentralCrossRefGoogle Scholar
  125. Greenberg SM, Gurol ME, Rosand J, Smith EE (2004) Amyloid angiopathy-related vascular cognitive impairment. Stroke 35:2616–2619PubMedCrossRefPubMedCentralGoogle Scholar
  126. Guillaume DJ, Doolittle ND, Gahramanov S, Hedrick NA, Delashaw JB, Neuwelt EA (2010) Intra-arterial chemotherapy with osmotic blood-brain barrier disruption for aggressive oligodendroglial tumors: results of a phase I study. Neurosurgery 66:48–58PubMedPubMedCentralCrossRefGoogle Scholar
  127. Gupta A, Agarwal R, Shukla GS (1999) Functional impairment of blood-brain barrier following pesticide exposure during early development in rats. Hum Exp Toxicol 18:174–179PubMedPubMedCentralGoogle Scholar
  128. Haidet-Phillips AM, Hester ME, Miranda CJ, Meyer K, Braun L, Frakes A et al (2011) Astrocytes from familial and sporadic ALS patients are toxic to motor neurons. Nat Biotechnol 29:824–828PubMedPubMedCentralCrossRefGoogle Scholar
  129. Hall WA, Doolittle ND, Daman M, Bruns PK, Muldoon L, Fortin D et al (2006) Osmotic blood-brain barrier disruption chemotherapy for diffuse pontine gliomas. J Neurooncol 77:279–884PubMedCrossRefPubMedCentralGoogle Scholar
  130. Hartz AM, Bauer B, Fricker G, Miller DS (2006) Rapid modulation of P-glycoprotein-mediated transport at the blood-brain barrier by tumor necrosis factor-alpha and lipopolysaccharide. Mol Pharmacol 69:462–470PubMedCrossRefPubMedCentralGoogle Scholar
  131. Hartz AM, Miller DS, Bauer B (2010) Restoring blood-brain barrier P-glycoprotein reduces brain amyloid-β in a mouse model of Alzheimer’s disease. Mol Pharmacol 77:715–723PubMedPubMedCentralCrossRefGoogle Scholar
  132. Hawkins BT, Lundeen TF, Norwood KM, Brooks HL, Egleton RD (2007a) Increased blood-brain barrier permeability and altered tight junctions in experimental diabetes in the rat: contribution of hyperglycaemia and matrix metalloproteinases. Diabetologia 50:202–211PubMedCrossRefPubMedCentralGoogle Scholar
  133. Hawkins BT, Ocheltree SM, Norwood KM, Egleton RD (2007b) Decreased blood–brain barrier permeability to fluorescein in streptozotocin-treated rats. Neurosci Lett 411:1–5PubMedCrossRefPubMedCentralGoogle Scholar
  134. Hayashi K, Nakao S, Nakaoke R, Nakagawa S, Kitagawa N, Niwa M (2004) Effects of hypoxia on endothelial/pericytic co-culture model of the blood-brain barrier. Regul Pept 123:77–83PubMedCrossRefPubMedCentralGoogle Scholar
  135. Hayashi T, Deguchi K, Nagotani S, Zhang H, Sehara Y, Tsuchiya A et al (2006) Cerebral ischemia and angiogenesis. Curr Neurovasc Res 3:119–129PubMedCrossRefPubMedCentralGoogle Scholar
  136. Henkel JS, Engelhardt JI, Siklós L, Simpson EP, Kim SH, Pan T et al (2004) Presence of dendritic cells, MCP-1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue. Ann Neurol 55:221–235PubMedCrossRefPubMedCentralGoogle Scholar
  137. Henkel JS, Beers DR, Wen S, Bowser R, Appel SH (2009) Decreased mRNA expression of tight junction proteins in lumbar spinal cords of patients with ALS. Neurology 72:1614–1616PubMedCrossRefPubMedCentralGoogle Scholar
  138. Hill J, Rom S, Ramirez SH, Persidsky Y (2014) Emerging roles of pericytes in the regulation of the neurovascular unit in health and disease. J Neuroimmune Pharmacol 9:591–605PubMedPubMedCentralCrossRefGoogle Scholar
  139. Hirsch-Reinshagen V, Zhou S, Burgess BL, Bernier L, McIsaac SA, Chan JY et al (2004) Deficiency of ABCA1 impairs apolipoprotein E metabolism in brain. J Biol Chem 279:41197–41207PubMedCrossRefPubMedCentralGoogle Scholar
  140. Hoffman WH, Cheng C, Passmore GG, Carroll JE, Hess D (2002) Acetoacetate increases expression of intercellular adhesion molecule-1 (ICAM-1) in human brain microvascular endothelial cells. Neurosci Lett 334:71–74PubMedCrossRefPubMedCentralGoogle Scholar
  141. Hoffman WH, Stamatovic SM, Jelkovic AV (2009) Inflammatory mediators and blood brain barrier disruption in fatal brain edema of diabetic ketoacidosis. Brain Res 254:138–148CrossRefGoogle Scholar
  142. Hoffmann K, Löscher W (2007) Upregulation of brain expression of P-glycoprotein in MRP2-deficient TR−Rats resembles seizure-induced up-regulation of this drug efflux transporter in normal rats. Epilepsia 48:631–645PubMedCrossRefPubMedCentralGoogle Scholar
  143. Hofrichter J, Krohn M, Schumacher T, Lange C, Feistel B, Walbroel B et al (2013) Reduced Alzheimer’s disease pathology by St. John’s Wort treatment is independent of hyperforin and facilitated by ABCC1 and microglia activation in mice. Curr Alzheimer Res 10:1057–1069PubMedPubMedCentralCrossRefGoogle Scholar
  144. Hong Z, Shi M, Chung KA, Quinn JF, Peskind ER, Galasko D et al (2010) DJ-1 and alpha-synuclein in human cerebrospinal fluid as biomarkers of Parkinson’s disease. Brain 133:713–726PubMedPubMedCentralCrossRefGoogle Scholar
  145. Hong Y, Shen C, Yin Q, Sun M, Ma Y, Liu X (2016) Effects of RAGE-specific inhibitor FPS-ZM1 on amyloid-β metabolism and AGEs-induced inflammation and oxidative stress in rat hippocampus. Neurochem Res 41:1192–1199PubMedCrossRefPubMedCentralGoogle Scholar
  146. Hooijmans CR, Graven C, Dederen PJ, Tanila H, van Groen T, Kiliaan AJ (2007) Amyloid beta deposition is related to decreased glucose transporter-1 levels and hippocampal atrophy in brains of aged APP/PS1 mice. Brain Res 1181:93–103PubMedCrossRefPubMedCentralGoogle Scholar
  147. Hu Y, Shen H, Keep RF, Smith DE (2007) Peptide transporter 2 (PEPT2) expression in brain protects against 5-aminolevulinic acid neurotoxicity. J Neurochem 103:2058–2065PubMedCrossRefPubMedCentralGoogle Scholar
  148. Hubensack M, Muller C, Hocherl P, Fellner S, Spruss T, Bernhardt G et al (2008) Effect of the ABCB1modulators elacridar and tariquidar on the distribution of paclitaxel in nude mice. J Cancer Res Clin Oncol 134:597–607PubMedCrossRefPubMedCentralGoogle Scholar
  149. Huber RD, Gao B, Sidler Pfandler MA, Zhang-Fu W, Leuthold S, Hagenbuch B et al (2007) Characterization of two splice variants of human organic anion transporting polypeptide 3A1 isolated from human brain. Am J Physiol Cell Physiol 292:C795–C806PubMedCrossRefPubMedCentralGoogle Scholar
  150. Inano A, Sai Y, Nikaido H, Hasimoto N, Asano M, Tsuji A et al (2003) Acetyl-Lcarnitine permeability across the blood-brain barrier and involvement of carnitine transporter OCTN2. Biopharm Drug Dispos 24:357–365PubMedCrossRefPubMedCentralGoogle Scholar
  151. Isales CM, Min L, Hoffman WH (1999) Acetoacetate and beta-hydroxybutyrate differentially regulate endothelin-1 and vascular endothelial growth factor in mouse brain microvascular endothelial cells. J Diab Comp 13:91–97CrossRefGoogle Scholar
  152. Ishikawa T, Morita M, Nakano I (2007) Constant blood flow reduction in premotor frontal lobe regions in ALS with dementia – a SPECT study with 3D-SSP. Acta Neurol Scand 116:340–344PubMedCrossRefPubMedCentralGoogle Scholar
  153. Jablonski MR, Jacob MA, Campos C, Miller DS, Maragakis NJ, Piera Pasinelli P et al (2012) Selective increase of two ABC drug efflux transporters at the blood-spinal cord barrier suggests induced pharmacoresistance in ALS. Neurobiol Dis 47:194–200PubMedPubMedCentralCrossRefGoogle Scholar
  154. Jablonski MR, Markandaiah SS, Jacob D, Meng NJ, Li K, Gennaro V et al (2014) Inhibiting drug efflux transporters improves efficacy of ALS therapeutics. Ann Clin Transl Neurol 1:996–1005PubMedPubMedCentralCrossRefGoogle Scholar
  155. Jaeger LB, Dohgu S, Hwang MC, Farr SA, Murphy MP, Fleegal-DeMotta MA et al (2009) Testing the neurovascular hypothesis of Alzheimer’s disease: LRP-1 antisense reduces blood-brain barrier clearance, increases brain levels of amyloid-beta protein, and impairs cognition. J Alzheimers Dis 17:553–570PubMedPubMedCentralCrossRefGoogle Scholar
  156. Jagust WJ, Landau SM, Alzheimer’s Disease Neuroimaging Initiative (2012) Apolipoprotein E, not fibrillar beta amyloid, reduces cerebral glucose metabolism in normal aging. J Neurosci 32:18227–18233PubMedPubMedCentralCrossRefGoogle Scholar
  157. Jellinger KA (2010) Prevalence and impact of cerebrovascular lesions in Alzheimer and lewy body diseases. Neurodegen Dis 7:112–115CrossRefGoogle Scholar
  158. Jeynes B, Provias J (2011) An investigation into the role of P-glycoprotein in Alzheimer’s disease lesion pathogenesis. Neurosci Lett 487:389–393PubMedCrossRefPubMedCentralGoogle Scholar
  159. Jiang H, Hu Y, Keep RF, Smith DE (2009) Enhanced antinociceptive response to intracerebroventricular kyotorphin in Pept2 null mice. J Neurochem 109:1536–1543PubMedPubMedCentralCrossRefGoogle Scholar
  160. Jing X, Liu X, Wen T, Xie S, Yao D, Liu X et al (2010) Combined effects of epileptic seizure and phenobarbital induced overexpression of P-glycoprotein in brain of chemically kindled rats. Brit J Pharmacol 159:1511–1522CrossRefGoogle Scholar
  161. Jonker JW, Wagenaar E, van Deemter L, Gottschlich R, Bender HM, Dasenbrock J et al (1999) Role of blood-brain barrier P-glycoprotein in limiting brain accumulation and sedative side-effects of asimadoline, aperipherally acting analgaesic drug. Brit J Pharmacol 127:43–50CrossRefGoogle Scholar
  162. Joo KM, Park K, Kong DS, Song SY, Kim MH, Lee GS et al (2008) Oral paclitaxel chemotherapy for brain tumors: ideal combination treatment of paclitaxel and P-glycoprotein inhibitor. Oncol Rep 19:17–23PubMedPubMedCentralGoogle Scholar
  163. Ju C, Ye M, Li F (2015) Plasma brain natriuretic peptide, endothelin-1, and matrix metalloproteinase 9 expression and significance in type 2 diabetes mellitus patients with ischemic heart disease. Med Sci Monit 21:2094–2099PubMedPubMedCentralCrossRefGoogle Scholar
  164. Kamal MA, Jiang H, Hu Y, Keep RF, Smith DE (2009) Influence of genetic knockout of Pept2 on the in vivo disposition of endogenous and exogenous carnosine in wild-type and Pept2 null mice. Am J Physiol Regul Integr Comp Physiol 296:R986–R991PubMedPubMedCentralCrossRefGoogle Scholar
  165. Kamei J, Hirano S, Miyata S, Saito A, Onodera K (2005) Effects of first- and second-generation histamine-H1-receptor antagonists on the pentobarbital-induced loss of the righting reflex in streptozotocin-induced diabetic mice. J Pharmacol Sci 97:266–272PubMedCrossRefPubMedCentralGoogle Scholar
  166. Kamel F (2013) Epidemiology. Paths from pesticides to Parkinson’s. Science 341:722–723PubMedCrossRefPubMedCentralGoogle Scholar
  167. Kamiie J, Ohtsuki S, Iwase R, Ohmine K, Katsukura Y, Yanai K et al (2008) Quantitative atlas of membrane transporter proteins: development and application of a highly sensitive simultaneous LC/MS/MS method combined with novel in-silico peptide selection criteria. Pharm Res 25:1469–1483PubMedCrossRefPubMedCentralGoogle Scholar
  168. Kanaan NM, Manfredsson FP (2012) Loss of functional alpha-synuclein: A toxic event in Parkinson’s disease? J Parkinsons Dis 2:249–267PubMedPubMedCentralGoogle Scholar
  169. Kanamitsu K, Kusuhara H, Schuetz JD, Takeuchi K, Sugiyama Y (2017) Investigation of the importance of multidrug resistance-associated protein 4 (Mrp4/Abcc4) in the active efflux of anionic drugs across the blood-brain barrier. J Pharm Sci 106:2566–2575PubMedPubMedCentralCrossRefGoogle Scholar
  170. Kania KD, Wijesuriya HC, Hladky SB, Barrand MA (2011) Beta amyloid effects on expression of multidrug efflux transporters in brain endothelial cells. Brain Res 1418:1–11PubMedCrossRefPubMedCentralGoogle Scholar
  171. Kaya M, Kalayci R, Kücük M, Arican N, Elmas I, Kudat H et al (2003) Effect of losartan on the blood-brain barrier permeability in diabetic hypertensive rats. Life Sci 73:3235–3244PubMedCrossRefPubMedCentralGoogle Scholar
  172. Kemper EM, van Zandbergen AE, Cleypool C, Mos HA, Boogerd W, Beijnen JH et al (2003) Increased penetration of paclitaxel into the brain by inhibition of P-Glycoprotein. Clin Cancer Res 9:2849–2855PubMedPubMedCentralGoogle Scholar
  173. Kemper EM, Cleypool C, Boogerd W, Beijnen JH, van Tellingen O (2004a) The influence of the P-glycoprotein inhibitor zosuquidar trihydrochloride (LY335979) on the brain penetration of paclitaxel in mice. Cancer Chemother Pharmacol 53:173–178PubMedCrossRefPubMedCentralGoogle Scholar
  174. Kemper EM, Verheij M, Boogerd W, Beijnen JH, van Tellingen O (2004b) Improved penetration of docetaxel into the brain by co-administration of inhibitors of P-glycoprotein. Eur J Cancer 40:1269–1274PubMedCrossRefPubMedCentralGoogle Scholar
  175. Khuth ST, Strazielle N, Giraudon P, Belin MF, Ghersi-Egea JF (2005) Impairment of blood-cerebrospinal fluid barrier properties by retrovirus-activated T lymphocytes: reduction in cerebrospinal fluid-to-blood efflux of prostaglandin E2. J Neurochem 94:1580–1593PubMedCrossRefPubMedCentralGoogle Scholar
  176. Kido Y, Tamai I, Ohnari A, Sai Y, Kagami T, Nezu J et al (2001) Functional relevance of carnitine transporter OCTN2 to brain distribution of L-carnitine and acetyl-Lcarnitine across the blood brain barrier. J Neurochem 79:959–969PubMedCrossRefPubMedCentralGoogle Scholar
  177. Kim HC, Yamada K, Nitta A, Olariu A, Tran MH, Mizuno M et al (2003) Immunocytochemical evidence that amyloid beta (1–42) impairs endogenous antioxidant systems in vivo. Neuroscience 19:399–419CrossRefGoogle Scholar
  178. Kimbrough IF, Robel S, Roberson ED, Sontheimer H (2015) Vascular amyloidosis impairs the gliovascular unit in a mouse model of Alzheimer’s disease. Brain 138:3716–3733PubMedPubMedCentralCrossRefGoogle Scholar
  179. Kis B, Isse T, Snipes JA, Chen L, Yamashita H, Ueta Y et al (2006) Effects of LPS stimulation on the expression of prostaglandin carriers in the cells of the blood brain and blood-cerebrospinal fluid barriers. J Appl Physiol 100:1392–1399PubMedCrossRefPubMedCentralGoogle Scholar
  180. Klinge PM, Samii A, Niescken S, Brinker T, Silverberg GD (2006) Brain amyloid accumulates in aged rats with kaolin-induced hydrocephalus. Neuroreport 17:657–660PubMedCrossRefPubMedCentralGoogle Scholar
  181. Kodaira H, Kusuhara H, Ushiki J, Fuse E, Sugiyama Y (2010) Kinetic analysis of the cooperation of P-glycoprotein (P-GP/Abcb1) and breast cancer resistance protein (Bcrp/Abcg2) in limiting the brain and testis penetration of erlotinib, flavopiridol, and mitoxantrone. J Pharmacol Exp Ther 333:788–796PubMedCrossRefPubMedCentralGoogle Scholar
  182. Koldamova R, Staufenbiel M, Lefterov I (2005) Lack of ABCA1 considerably decreases brain ApoE level and increases amyloid deposition in APP23 mice. J Biol Chem 280:43224–43235PubMedCrossRefPubMedCentralGoogle Scholar
  183. Kort A, Sparidans RW, Wagenaar E, Beijnen JH, Schinkel AH (2015a) Brain accumulation of the EML4-ALK inhibitor ceritinib is restricted by P-glycoprotein (P-GP/ABCB1) and breast cancer resistance protein (BCRP/ABCG2). Pharmacol Res 102:200–207PubMedCrossRefPubMedCentralGoogle Scholar
  184. Kort A, Durmus S, Sparidans RW, Wagenaar E, Beijnen JH, Schinkel AH (2015b) Brain and testis accumulation of regorafenib is restricted by breast cancer resistance protein (BCRP/ABCG2) and P-glycoprotein (P-GP/ABCB1). Pharm Res 32:2205–2216PubMedCrossRefPubMedCentralGoogle Scholar
  185. Kortekaas R, Leenders KL, van Oostrom JC, Vaalburg W, Bart J, Willemsen AT et al (2005) Blood-brain barrier dysfunction in Parkinsonian midbrain in vivo. Ann Neurol 57:176–179PubMedCrossRefPubMedCentralGoogle Scholar
  186. Kriz J, Gowing G, Julien JP (2003) Efficient three-drug cocktail for disease induced by mutant superoxide dismutase. Ann Neurol 53:429–436PubMedCrossRefPubMedCentralGoogle Scholar
  187. Krohn M, Lange C, Hofrichter J, Scheffler K, Stenzel J, Steffen J et al (2011) Cerebral amyloid-beta proteostasis is regulated by the membrane transport protein ABCC1 in mice. J Clin Invest 121:3924–3931PubMedPubMedCentralCrossRefGoogle Scholar
  188. Kubota H, Ishihara H, Langmann T, Schmitz G, Stieger B, Wieser HG et al (2006) Distribution and functional activity of P-glycoprotein and multidrug resistance-associated proteins in human brain microvascular endothelial cells in hippocampal sclerosis. Epilepsy Res 68:213–228PubMedCrossRefPubMedCentralGoogle Scholar
  189. Lacher SE, Skagen K, Veit J, Dalton R, Woodahl EL (2015) P-glycoprotein transport of neurotoxic pesticides. J Pharmacol Exp Ther 355:99–107PubMedPubMedCentralCrossRefGoogle Scholar
  190. Lam FC, Liu R, Lu P, Shapiro AB, Renoir JM, Sharom FJ et al (2001) Beta-Amyloid efflux mediated by p-glycoprotein. J Neurochem 76:1121–1128PubMedCrossRefPubMedCentralGoogle Scholar
  191. Landau SM, Harvey D, Madison CM, Koeppe RA, Reiman EM, Foster NL et al (2011) Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI. Neurobiol Aging 32:1207–1278PubMedCrossRefPubMedCentralGoogle Scholar
  192. Larochelle C, Alvarez JI, Prat A (2011) How do immune cells overcome the blood-brain barrier in multiple sclerosis? FEBS Lett 585:3770–3780PubMedCrossRefPubMedCentralGoogle Scholar
  193. Lécuyer MA, Kebir H, Prat A (2016) Glial influences on BBB functions and molecular players in immune cell trafficking. Bioch Biophy Acta 1862:472–482Google Scholar
  194. Lee TH, Avraham H, Lee SH, Avraham S (2002) Vascular endothelial growth factor modulates neutrophil transendothelial migration via up-regulation of interleukin-8 in human brain microvascular endothelial cells. J Biol Chem 277:10445–10451PubMedCrossRefPubMedCentralGoogle Scholar
  195. Lee CG, Tang K, Cheung YB, Wong LP, Tan C, Shen H et al (2004) MDR1, the blood–brain barrier transporter, is associated with Parkinson’s disease in ethnic Chinese. J Med Genet 41:e60PubMedPubMedCentralCrossRefGoogle Scholar
  196. Lee YJ, Kusuhara H, Jonker JW, Schinkel AH, Sugiyama Y (2005a) Investigation of efflux transport of dehydroepiandrosterone sulfate and mitoxantrone at the mouse blood-brain barrier: a minor role of breast cancer resistance protein. J Pharmacol Exp Ther 312:44–52PubMedCrossRefPubMedCentralGoogle Scholar
  197. Lee W, Glaeser H, Smith LH, Roberts RL, Moeckel GW, Gervasini G et al (2005b) Polymorphisms in human organic anion-transporting polypeptide 1A2 (OATP1A2): implications for altered drug disposition and central nervous system drug entry. J Biol chem 280:9610–9617PubMedCrossRefPubMedCentralGoogle Scholar
  198. Lefterov I, Fitz NF, Cronican A, Lefterov P, Staufenbiel M, Koldamova R (2009) Memory deficits in APP23/Abca1+/− mice correlate with the level of Aβ oligomers. ASN Neuro 1. pii:e00006.  https://doi.org/10.1042/AN20090015CrossRefPubMedPubMedCentralGoogle Scholar
  199. Leggas M, Adachi M, Scheffer GL, Sun D, Wielinga P, Du G et al (2004) Mrp4 confers resistance to topotecan and protects the brain from chemotherapy. Mol Cell Biol 24:7612–7621PubMedPubMedCentralCrossRefGoogle Scholar
  200. Lehmann M, Ghosh PM, Madison C, Karydas A, Coppola G, O’Neil JP et al (2014) Greater medial temporal hypometabolism and lower cortical amyloid burden in ApoE4-positive AD patients. J Neurol Neurosurg Psychiatry 85:266–273.  https://doi.org/10.1136/jnnp-2013-305858CrossRefPubMedPubMedCentralGoogle Scholar
  201. Lenz QF, Arroyo DS, Temp FR, Poersch AB, Masson CJ, Jesse AC et al (2014) Cysteinyl leukotriene receptor (CysLT) antagonists decrease pentylenetetrazol-induced seizures and blood-brain barrier dysfunction. Neuroscience 277:859–871PubMedCrossRefPubMedCentralGoogle Scholar
  202. Lewandowski SA, Nilsson I, Fredriksson L, Lönnerberg P, Muhl L, Zeitelhofer M et al (2016) Presymptomatic activation of the PDGF-CC pathway accelerates onset of ALS neurodegeneration. Acta Neuropathol 131:453–464PubMedCrossRefPubMedCentralGoogle Scholar
  203. Li L, Agarwal S, Elmquist WF (2013a) Brain efflux index to investigate the influence of active efflux on brain distribution of pemetrexed and methotrexate. Drug Metab Dispos 41:659–667PubMedPubMedCentralCrossRefGoogle Scholar
  204. Li YJ, Wang ZH, Zhang B, Zhe X, Wang MJ, Shi ST et al (2013b) Disruption of the blood-brain barrier after generalized tonic-clonic seizures correlates with cerebrospinal fluid MMP-9 levels. J Neuroinflammation 10:80PubMedPubMedCentralCrossRefGoogle Scholar
  205. Li Y, Li Y, Pang S, Huang W, Zhang A, Hawley RG et al (2014) Novel and functional ABCB1 gene variant in sporadic Parkinson’s disease. Neurosci Lett 566:61–66PubMedCrossRefPubMedCentralGoogle Scholar
  206. Liao B, Zhao W, Beers DR, Henkel JS, Appel SH (2012) Transformation from a neuroprotective to a neurotoxic microglial phenotype in a mouse model of ALS. Exp Neurol 237:147–152PubMedPubMedCentralCrossRefGoogle Scholar
  207. Librizzi L, Noè F, Vezzani A, de Curtis M, Ravizza T (2012) Seizure-induced brain-borne inflammation sustains seizure recurrence and blood-brain barrier damage. Ann Neurol 72:82–90PubMedCrossRefPubMedCentralGoogle Scholar
  208. Lin CJ, Tai Y, Huang MT, Tsai YF, Hsu HJ, Tzen KY et al (2010) Cellular localization of the organic cation transporters, OCT1 and OCT2, in brain microvessel endothelial cells and its implication for MPTP transport across the blood-brain barrier and MPTP-induced dopaminergic toxicity in rodents. J Neurochem 114:717–727PubMedCrossRefPubMedCentralGoogle Scholar
  209. Liu L, Liu XD (2014) Alterations in function and expression of ABC transporters at blood-brain barrier under diabetes and the clinical significances. Front Pharmacol 5:273PubMedPubMedCentralCrossRefGoogle Scholar
  210. Liu XD, Pan GY, Xie L, Hou YY, Lan W, Su Q et al (2002) Cyclosporin A enhanced protection of nimodipine against brain damage induced by hypoxia-ischemia in mice and rats. Acta Pharmacol Sin 23:225–229PubMedPubMedCentralGoogle Scholar
  211. Liu XD, Zhang L, Xie L (2003) Effect of P-glycoprotein inhibitors erythromycin and cyclosporine A on brain pharmacokinetics of nimodipine in rats. Eur J Drug Metab Pharmacokinet 28:309–313PubMedCrossRefPubMedCentralGoogle Scholar
  212. Liu HY, Xu X, Yang ZH, Deng YX, Liu XD (2006) Impaired function and expression of P-glycoprotein in blood-brain barrier of streptozotocin-induced diabetic rats. Brain Res 1123:245–252PubMedCrossRefPubMedCentralGoogle Scholar
  213. Liu XD, Yang ZH, Yang JS, Yang HW (2007a) Increased P-glycoprotein expression and decreased Phenobarbital distribution in the brain of pentylenetetrazole-kindled rats. Neuropharmacology 53:657–663PubMedCrossRefPubMedCentralGoogle Scholar
  214. Liu H, Zhang D, Xu X, Liu X, Wang G, Xie L et al (2007b) Attenuated function and expression of P-glycoprotein at blood–brain barrier and increased brain distribution of phenobarbital in streptozotocin-induced diabetic mice. Eur J Pharmacol 561:226–232PubMedCrossRefPubMedCentralGoogle Scholar
  215. Liu YC, Liu HY, Yang HW, Wen T, Shang Y, Liu XD et al (2007c) Impaired expression and function of breast cancer resistance protein (Bcrp) in brain cortex of streptozocin-induced diabetic rats. Biochem Pharmacol 74:1766–1772PubMedCrossRefPubMedCentralGoogle Scholar
  216. Liu LB, Xue YX, Liu YH, Wang YB (2008a) Bradykinin increases blood-tumor barrier permeability by down-regulating the expression levels of ZO-1, occludin, and claudin-5 and rearranging actin cytoskeleton. J Neurosci Res 86:1153–1168PubMedCrossRefPubMedCentralGoogle Scholar
  217. Liu XD, Yang ZH, Yang HW (2008b) Repetitive/temporal hypoxia increased -glycoprotein expression in cultured rat brain microvascular endothelial cells in vitro. Neurosci Lett 432:184–187CrossRefGoogle Scholar
  218. Liu Y, Liu H, Yang J, Liu X, Lu S, Wen T et al (2008c) Increased amyloid beta-peptide (1-40) level in brain of streptozotocin-induced diabetic rats. Neurosicence 153:796–802CrossRefGoogle Scholar
  219. Liu H, Liu X, Jia L, Liu Y, Yang H, Wang G et al (2008d) Insulin therapy restores impaired function and expression of P-glycoprotein in blood-brain barrier of experimental diabetes. Biochem Pharmacol 75:1649–1658PubMedCrossRefPubMedCentralGoogle Scholar
  220. Liu HY, Yang HW, Wang DL, Liu LC, Liu XD, Li Y et al (2009) Insulin regulates P-glycoprotein in rat brain microvessel endothelial cells via an insulin receptor-mediated PKC/NF-B pathway but not a PI3K/Akt pathway. Eur J Pharmacol 602:277–282PubMedCrossRefPubMedCentralGoogle Scholar
  221. Liu X, Jing XY, Jin S, Li Y, Liu L, Yu YL et al (2011) Insulin suppresses the expression and function of breast cancer resistance protein in primary cultures of rat brain microvessel endothelial cells. Pharmacol Rep 63:487–493PubMedCrossRefPubMedCentralGoogle Scholar
  222. Liu L, Wan W, Xia S, Kalionis B, Li Y (2014) Dysfunctional Wnt/β-catenin signaling contributes to blood–brain barrier breakdown in Alzheimer’s disease. Neurochem Int 75:19–25PubMedCrossRefPubMedCentralGoogle Scholar
  223. Loeb MB, Molloy DW, Smieja M, Standish T, Goldsmith CH, Mahony J et al (2004) A randomized, controlled trial of doxycycline and rifampin for patients with Alzheimer’s disease. J Am Geriatr Soc 52:381–387PubMedCrossRefPubMedCentralGoogle Scholar
  224. Löscher W, Potschka H (2002) Role of multidrug transporters in pharmacoresistance to antiepileptic drugs. J Pharmacol Exp Ther 30:7–14CrossRefGoogle Scholar
  225. Lovell MA, Ehmann WD, Mattson MP, Markesbery WR (1997) Elevated 4-hydroxynonenal in ventricular fluid in Alzheimer’s disease. Neurobiol Aging 18:457–461PubMedCrossRefPubMedCentralGoogle Scholar
  226. Lue LF, Walker DG, Brachova L, Beach TG, Rogers J, Schmidt AM et al (2001) Involvement of microglial receptor for advanced glycation endproducts (RAGE) in Alzheimer’s disease: identification of a cellular activation mechanism. Exp Neurol 171:29–45PubMedCrossRefPubMedCentralGoogle Scholar
  227. Luna-Tortós C, Fedrowitz M, Löscher W (2008) Several major antiepileptic drugs are substrates for human P-glycoprotein. Neuropharmacology 55:1364–1375PubMedCrossRefPubMedCentralGoogle Scholar
  228. Maia L, de Mendonca A (2002) Does caffeine intake protect from Alzheimer’s disease? Eur J Neurol 9:377–382PubMedCrossRefPubMedCentralGoogle Scholar
  229. Marchi N, Oby E, Batra A, Uva L, De Curtis M, Hernande N et al (2007a) In vivo and in vitro effects of pilocarpine: relevance to ictogenesis. Epilepsia 48:1934–1946PubMedPubMedCentralCrossRefGoogle Scholar
  230. Marchi N, Angelov L, Masaryk T, Fazio V, Granata T, Hernandez N et al (2007b) Seizure-promoting effect of blood-brain barrier disruption. Epilepsia 48:732–742PubMedPubMedCentralCrossRefGoogle Scholar
  231. Matsumoto Y, Yanase D, Noguchi-Shinohara M, Ono K, Yoshita M, Yamada M (2007) Blood-brain barrier permeability correlates with medial temporal lobe atrophy but not with amyloid-beta protein transport across the blood-brain barrier in Alzheimer’s disease. Dement Geriatr Cogn Disord 23:241–245PubMedCrossRefPubMedCentralGoogle Scholar
  232. Matsumoto J, Dohgu S, Takata F, Nishioku T, Sumi N, Machida T et al (2012) Lipopolysaccharide-activated microglia lower P-glycoprotein function in brain microvascular endothelial cells. Neurosci Lett 524:45–48PubMedCrossRefPubMedCentralGoogle Scholar
  233. Matsumoto J, Stewart T, Sheng L, Li N, Bullock K, Song N (2017) Transmission of α-synuclein-containing erythrocyte-derived extracellular vesiclesacross the blood-brain barrier via adsorptive mediated transcytosis: another mechanism for initiation and progression of Parkinson’s disease? Acta Neuropathol Commun 5:71PubMedPubMedCentralCrossRefGoogle Scholar
  234. Mayer U, Wagenaar E, Dorobek B, Beijnen JH, Borst P, Schinkel AH (1997) Full blockade of intestinal P-glycoprotein and extensive inhibition of blood-brain barrier P-glycoprotein by oral treatment of mice with PSC833. J Clin Invest 100:2430–2436PubMedPubMedCentralCrossRefGoogle Scholar
  235. Mayerl S, Müller J, Bauer R, Richert S, Kassmann CM, Darras VM et al (2014) Transporters MCT8 and OATP1C1 maintain murine brain thyroid hormone homeostasis. J Clin Invest 124:1987–1999PubMedPubMedCentralCrossRefGoogle Scholar
  236. McCaffrey G, Seelbach MJ, Staatz WD, Nametz N, Quigley C, Campos CR et al (2008) Occludin oligomeric assembly at tight junctions of the blood-brain barrier is disrupted by peripheral inflammatory hyperalgesia. J Neurochem 106:2395–2409PubMedPubMedCentralCrossRefGoogle Scholar
  237. McGrath LT, McGleenon BM, Brennan S, McColl D, Mc IS, Passmore AP (2001) Increased oxidative stress in Alzheimer’s disease as assessed with 4-hydroxynonenal but not malondialdehyde. QJM 94:485–490PubMedCrossRefPubMedCentralGoogle Scholar
  238. Meyer K, Ferraiuolo L, Miranda CJ, Likhite S, McElroy S, Renusch S et al (2014) Direct conversion of patient fibroblasts demonstrates non-cell autonomous toxicity of astrocytes to motor neurons in familial and sporadic ALS. Proc Natl Acad Sci USA 111:829–832PubMedCrossRefPubMedCentralGoogle Scholar
  239. Milane A, Fernandez C, Dupuis L, Buyse M, Loeffler JP, Farinotti R et al (2010) P-glycoprotein expression and function are increased in an animal model of amyotrophic lateral sclerosis. Neurosci Lett 472:166–170PubMedCrossRefPubMedCentralGoogle Scholar
  240. Miller DS (2010) Regulation of P-glycoprotein and other ABC drug transporters at the blood-brain barrier. Trends Pharmacol Sci 31:246–254PubMedPubMedCentralCrossRefGoogle Scholar
  241. Miller MC, Tavares R, Johanson CE, Hovanesian V, Donahue JE, Gonzalez L et al (2008) Hippocampal RAGE immunoreactivity in early and advanced Alzheimer’s disease. Brain Res 1230:273–280PubMedPubMedCentralCrossRefGoogle Scholar
  242. Mitra P, Oskeritzian CA, Payne SG, Beaven MA, Milstien S, Spiegel S (2006) Role of ABCC1 in export of sphingosine-1-phosphate from mast cells. Proc Natl Acad Sci U S A 103:16394–16399PubMedPubMedCentralCrossRefGoogle Scholar
  243. Mittapalli RK, Vaidhyanathan S, Sane R, Elmquist WF (2012) Impact of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) on the brain distribution of a novel BRAF inhibitor: Vemurafenib (PLX 4032). J Pharmacol Exp Ther 342:33–40PubMedPubMedCentralCrossRefGoogle Scholar
  244. Miyazaki K, Ohta Y, Nagai M, Morimoto N, Kurata T, Takehisa Y et al (2011) Disruption of neurovascular unit prior to motor neuron degeneration in amyotrophic lateral sclerosis. J Neurosci Res 89:718–728PubMedCrossRefPubMedCentralGoogle Scholar
  245. Miyazaki K, Masamoto K, Morimoto N, Kurata T, Mimoto T, Obata T et al (2012) Early and progressive impairment of spinal blood flow–glucose metabolism coupling in motor neuron degeneration of ALS model mice. J Cereb Blood Flow Metab 32:456–446PubMedCrossRefPubMedCentralGoogle Scholar
  246. Mogi M, Horiuchi M (2011) Neurovascular coupling in cognitive impairment associated with diabetes mellitus. Circ J 75:1042–1048PubMedCrossRefPubMedCentralGoogle Scholar
  247. Molloy DW, Standish TI, Zhou Q, Guyatt G (2013) A multicenter, blinded, randomized, factorial controlled trial of doxycycline and rifampin for treatment of Alzheimer’s disease: the DARAD trial. Int J Geriatr Psychiatry 28:463–470PubMedCrossRefPubMedCentralGoogle Scholar
  248. Montesinos RN, Moulari B, Gromand J, Beduneau A, Lamprecht A, Pellequer Y (2014) Coadministration of P-glycoprotein modulators on loperamide pharmacokinetics and brain distribution. Drug Metab Dispos 42:700–706PubMedCrossRefPubMedCentralGoogle Scholar
  249. Mulak A, Bonaz B (2015) Brain-gut-microbiota axis in Parkinson’s disease. World J Gastroenterol 21:10609–10620PubMedPubMedCentralCrossRefGoogle Scholar
  250. Murakami T, Ilieva H, Shiote M, Nagata T, Nagano I, Shoji M, Abe K (2003) Hypoxic induction of vascular endothelial growth factor is selectively impaired in mice carrying the mutant SOD1 gene. Brain Res 989:231–237PubMedCrossRefPubMedCentralGoogle Scholar
  251. Nagai M, Re DB, Nagata T, Chalazonitis A, Jessell TM, Wichterle H et al (2007) Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci 10:615–622PubMedPubMedCentralCrossRefGoogle Scholar
  252. Najjar S, Pearlman DM, Devinsky O, Najjar A, Zagzag D (2013) Neurovascular unit dysfunction with blood-brain barrier hyperpermeability contributes to major depressive disorder: a review of clinical and experimental evidence. J Neuroinflammation 10:142PubMedPubMedCentralGoogle Scholar
  253. Najjar S, Pahlajani S, De Sanctis V, Stern JNH, Najjar A, Chong D (2017) Neurovascular unit dysfunction and blood-brain barrier hyperpermeability contribute to schizophrenia neurobiology: A theoretical integration of clinical and experimental evidence. Front Psychiatry 8:83PubMedPubMedCentralCrossRefGoogle Scholar
  254. Nakagawa S, Deli MA, Nakao S, Honda M, Hayashi K, Nakaoke R et al (2007) Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells. Cell Mol Neurobiol 27:687–694PubMedCrossRefPubMedCentralGoogle Scholar
  255. Nakanishi T, Shiozawa K, Hassel BA, Ross DD (2006) Complex interaction of BCRP/ABCG2 and imatinib in BCR-ABL-expressing cells: BCRP-mediated resistance to imatinib is attenuated byimatinib-induced reduction of BCRP expression. Blood 108:678–684PubMedCrossRefPubMedCentralGoogle Scholar
  256. Narayan S, Sinsheimer JS, Paul KC, Liew Z, Cockburn M, Bronstein JM et al (2015) Genetic variability in ABCB1, occupational pesticide exposure, and Parkinson’s disease. Environ Res 143:98–106PubMedPubMedCentralCrossRefGoogle Scholar
  257. Nicaise C, Mitrecic D, Demetter P, De Decker R, Authelet M, Boom A et al (2009a) Impaired blood–brain and blood–spinal cord barriers in mutant SOD1-linked ALS rat. Brain Res 1301:152–162PubMedCrossRefPubMedCentralGoogle Scholar
  258. Nicaise C, Soyfoo MS, Authelet M, De Decker R, Bataveljic D, Delporte C et al (2009b) Aquaporin-4 overexpression in rat ALS model. Anat Rec (Hoboken) 292:207–213CrossRefGoogle Scholar
  259. Nies AT, Jedlitschky G, König J, Herold-Mende C, Steiner HH, Schmitt HP et al (2004) Expression and immunolocalization of the multidrug resistance proteins, MRP1-MRP6 (ABCC1-ABCC6), in human brain. Neuroscience 129:349–360PubMedCrossRefPubMedCentralGoogle Scholar
  260. Noé FM, Bellistri E, Colciaghi F, Cipelletti B, Battaglia G et al (2016) Kainic acid–induced albumin leak across the blood–brain barrier facilitates epileptiform hyperexcitability in limbic regions. Epilepsia 57:967–976PubMedCrossRefPubMedCentralGoogle Scholar
  261. O’Brien FE, O’Connor RM, Clarke G, Dinan TG, Griffin BT, Cryan JF (2013) P-glycoprotein inhibition increases the brain distribution and antidepressant-like activity of escitalopram in rodents. Neuropsychopharmacology 38:2209–2219PubMedPubMedCentralCrossRefGoogle Scholar
  262. O’Brien FE, O’Connor RM, Clarke G, Donovan MD, Dinan TG, Griffin BT et al (2014) The P-glycoprotein inhibitor cyclosporin A differentially influences behavioural and neurochemical responses to the antidepressant escitalopram. Behav Brain Res 261:17–25PubMedCrossRefPubMedCentralGoogle Scholar
  263. Oberoi RK, Mittapalli RK, Elmquist WF (2013) Pharmacokinetic assessment of efflux transport in sunitinib distribution to the brain. J Pharmacol Exp Ther 347:755–764PubMedPubMedCentralCrossRefGoogle Scholar
  264. Ose A, Ito M, Kusuhara H, Yamatsugu K, Kanai M, Shibasaki M et al (2009) Limited brain distribution of [3R,4R,5S]-4-acetamido-5-amino-3-(1-ethylpropoxy)-1-cyclohexene- 1-carboxylate phosphate (Ro 64-0802), a pharmacologically active form of oseltamivir, by active efflux across the blood-brain barrier mediated by organic anion transporter 3 (Oat3/Slc22a8) and multidrug resistance-associated protein 4 (Mrp4/Abcc4). Drug Metab Dispos 37:315–321PubMedCrossRefPubMedCentralGoogle Scholar
  265. Owen JB, Sultana R, Aluise CD, Erickson MA, Price TO, Bu G et al (2010) Oxidative modification to LDL receptor-related protein 1 in hippocampus from subjects with Alzheimer disease: implications for Aβ accumulation in AD brain. Free Radic Biol Med 49:1798–1803PubMedPubMedCentralCrossRefGoogle Scholar
  266. Oztaş B, Kaya M, Küçük M, Tuğran N (2003) Influence of hypoosmolality on the blood-brain barrier permeability during epileptic seizures. Prog Neuropsychopharmacol Biol Psychiatry 27:701–704PubMedCrossRefPubMedCentralGoogle Scholar
  267. Pahnke J, Langer O, Krohn M (2014) Alzheimer’s and ABC transporters - new opportunities for diagnostics and treatment. Neurobiol Dis 72:54–60PubMedCrossRefPubMedCentralGoogle Scholar
  268. Park L, Koizumi K, El Jamal S, Zhou P, Previti ML, Van Nostrand WE et al (2014a) Age-dependent neurovascular dysfunction and damage in a mouse model of cerebral amyloid angiopathy. Stroke 45:1815–1821PubMedPubMedCentralCrossRefGoogle Scholar
  269. Park P, Kook SY, Park JC, Mook-Jung I (2014b) Ab1–42 reduces P-glycoprotein in the blood–brain barrier through RAGE–NF-κB signaling. Cell Death Dis 5:e1299PubMedPubMedCentralCrossRefGoogle Scholar
  270. Parks JK, Smith TS, Trimmer PA, Bennett JP Jr, Parker WD Jr (2001) Neurotoxic Abeta peptides increase oxidative stress in vivo through NMDA-receptor and nitric-oxide-synthase mechanisms, and inhibit complex IV activity and induce a mitochondrial permeability transition in vitro. J Neurochem 76:1050–1056PubMedCrossRefPubMedCentralGoogle Scholar
  271. Polavarapu R, Gongora MC, Winkles JA, Yepes M (2005) Tumor necrosis factor-like weak inducer of apoptosis increases the permeability of the neurovascular unit through nuclear factor-kappa B pathway activation. J Neurosci 25:10094–10100PubMedPubMedCentralCrossRefGoogle Scholar
  272. Poller B, Wagenaar E, Tang SC, Schinkel AH (2011) Double-transduced MDCKII cells to study human P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) interplay in drug transport across the blood-brain barrier. Mol Pharm 8:571–582PubMedCrossRefPubMedCentralGoogle Scholar
  273. Polli JW, Olson KL, Chism JP, John-Williams LS, Yeager RL, Woodard SM et al (2009) An unexpected synergist role of P-glycoprotein and breast cancer resistance protein on the central nervous system penetration of the tyrosine kinase inhibitor lapatinib (N-{3-chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2- (methylsulfonyl)ethyl]amino}methyl)-2-furyl]-4-quinazolinamine; GW572016). Drug Metab Dispos 37:439–442PubMedCrossRefPubMedCentralGoogle Scholar
  274. Potschka H, Fedrowitz M, Löscher W (2003) Multidrug resistance protein MRP2 contributes to blood-brain barrier function and restricts antiepileptic drug activity. J Pharmacol Exp Ther 306:124–131PubMedCrossRefPubMedCentralGoogle Scholar
  275. Prasad S, Sajja RK, Naik P, Cucullo L (2014) Diabetes mellitus and blood-brain barrier dysfunction: an overview. J Pharmacovigil 2:125PubMedPubMedCentralGoogle Scholar
  276. Qian K, Huang H, Peterson A, Hu B, Maragakis NJ, Ming GL et al (2017) Sporadic ALS astrocytes induce neuronal degeneration in vivo. Stem Cell Rep 8:843–855CrossRefGoogle Scholar
  277. Qosa A, Abuznait AH, Hill RH, Kaddoumi A (2012) Enhanced Brain Amyloid-β clearance by rifampicin and caffeine as a possible protective mechanism against Alzheimer’s Disease. J Alzheimers Dis 31:151–165PubMedPubMedCentralCrossRefGoogle Scholar
  278. Qosa H, Batarseh YS, Mohyeldin MM, El Sayed KA, Keller JN, Kaddoumi A (2015a) Oleocanthal enhances amyloid-β clearance from the brains of TgSwDI mice and in vitro across a human blood-brain barrier model. ACS Chem Neurosci 6:1849–1859PubMedPubMedCentralCrossRefGoogle Scholar
  279. Qosa H, Miller DS, Pasinelli P, Trotti D (2015b) Regulation of ABC efflux transporters at blood-brain barrier in health and neurological disorders. Brain Res 1628:298–316PubMedPubMedCentralCrossRefGoogle Scholar
  280. Quaegebeur A, Segura I, Carmeliet P (2010) Pericytes: blood-brain barrier safeguards against neurodegeneration? Neuron 68:321–323PubMedCrossRefPubMedCentralGoogle Scholar
  281. Raabe A, Schmitz AK, Pernhorst K, Grote A, von der Brelie C, Urbach H et al (2012) Cliniconeuropathologic correlations show astroglial albumin storage as a common factor in epileptogenic vascular lesions. Epilepsia 53:539–548PubMedPubMedCentralCrossRefGoogle Scholar
  282. Redzic (2011) Molecular biology of the blood-brain and the blood-cerebrospinal fluid barriers: similarities and differences. Fluids Barriers CNS 8:3PubMedPubMedCentralCrossRefGoogle Scholar
  283. Reitz C, Jun G, Naj A, Rajbhandary R, Vardarajan BN, Wang LS et al (2013) Variants in the ATP-binding cassette transporter (ABCA7), apolipoprotein E 4, and the risk of late-onset Alzheimer disease in African Americans. JAMA 309:1483–1492PubMedPubMedCentralCrossRefGoogle Scholar
  284. Rigau V, Morin M, Rousset MC, de Bock F, Lebrun A, Coubes P et al (2007) Angiogenesis is associated with blood-brain barrier permeability in temporal lobe epilepsy. Brain 130:1942–1956PubMedCrossRefPubMedCentralGoogle Scholar
  285. Ritchie K, Carrière I, de Mendonca A, Portet F, Dartigues JF, Rouaud O et al (2007) The neuroprotective effects of caffeine: a prospective population study (the Three City Study). Neurology 69:536–545PubMedCrossRefPubMedCentralGoogle Scholar
  286. Rite I, Machado A, Cano J, Venero JL (2007) Blood-brain barrier disruption induces in vivo degeneration of nigral dopaminergic neurons. J Neurochem 101:1567–1582PubMedCrossRefPubMedCentralGoogle Scholar
  287. Roberts LM, Black DS, Raman C, Woodford K, Zhou M, Haggerty JE et al (2008) Subcellular localization of transporters along the rat blood-brain barrier and blood-cerebral-spinal fluid barrier by in vivo biotinylation. Neuroscience 155:423–438PubMedCrossRefPubMedCentralGoogle Scholar
  288. Robey RW, To KK, Polgar O, Dohse M, Fetsch P, Dean M et al (2009) ABCG2: a perspective. Adv Drug Deliv Rev 61:3–13PubMedCrossRefPubMedCentralGoogle Scholar
  289. Ronaldson PT, Finch JD, Demarco KM, Quigley CE, Davis TP (2011) Inflammatory pain signals an increase in functional expression of organic anion transporting polypeptide 1a4 at the blood-brain barrier. J Pharmacol Exp Ther 336:827–839PubMedPubMedCentralCrossRefGoogle Scholar
  290. Rosenberg GA (2009) Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. Lancet Neurol 8:205–216PubMedCrossRefPubMedCentralGoogle Scholar
  291. Roth M, Obaidat A, Hagenbuch B (2012) OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br J Pharmacol 165:1260–1287PubMedPubMedCentralCrossRefGoogle Scholar
  292. Rule RR, Schuff N, Miller RG, Weiner MW (2010) Gray matter perfusion correlates with disease severity in ALS. Neuroloy 74:821–827CrossRefGoogle Scholar
  293. Sadowski M, Pankiewicz J, Scholtzova H, Ji Y, Quartermain D, Jensen CH et al (2004) Amyloid-beta deposition is associated with decreased hippocampal glucose metabolism and spatial memory impairment in APP/PS1 mice. J Neuropathol Exp Neurol 63:418–428PubMedCrossRefPubMedCentralGoogle Scholar
  294. Sagare A, Deane R, Bell RD, Johnson B, Hamm K, Pendu R et al (2007) Clearance of amyloid-beta by circulating lipoprotein receptors. Nat Med 13:1029–1031PubMedPubMedCentralCrossRefGoogle Scholar
  295. Sagare AP, Bell RD, Zlokovic BV (2012) Neurovascular dysfunction and faulty amyloid β-peptide clearance in Alzheimer disease. Cold Spring Harb Perspect Med 2:pii: a011452CrossRefGoogle Scholar
  296. Sagare AP, Bell RD, Zlokovic BV (2013) Neurovascular defects and faulty amyloid-β vascular clearance in Alzheimer’s disease. J Alzheimers Dis 33:S87–S100PubMedPubMedCentralCrossRefGoogle Scholar
  297. Sahin D, Ilbay G, Ates N (2003) Changes in the blood-brain barrier permeability and in the brain tissue trace element concentrations after single and repeated pentylenetetrazole-induced seizures in rats. Pharmacol Res 48:69–73PubMedPubMedCentralGoogle Scholar
  298. Sakae N, Liu CC, Shinohara M, Frisch-Daiello J, Ma L, Yamazaki Y et al (2016) ABCA7 deficiency accelerates amyloid-β generation and Alzheimer’s neuronal pathology. J Neurosci 36:3848–3859PubMedPubMedCentralCrossRefGoogle Scholar
  299. Salar S, Maslarova A, Lippmann K, Nichtweiss J, Weissberg I, Sheintuch L et al (2014) Blood-brain barrier dysfunction can contribute to pharmacoresistance of seizures. Epilepsia 55:1255–1263.  https://doi.org/10.1111/epi.12713CrossRefPubMedPubMedCentralGoogle Scholar
  300. Sanchez-Covarrubias L, Slosky LM, Thompson BJ, Davis TP, Ronaldson PT (2014) Transporters at CNS barrier sites: obstacles or opportunities for drug delivery? Curr Pharm Des 20:1422–1449PubMedPubMedCentralCrossRefGoogle Scholar
  301. Sane R, Agarwal S, Mittapalli RK, Elmquist WF (2013) Saturable active efflux by p-glycoprotein and breast cancer resistance protein at the blood-brain barrier leads to nonlinear distribution of elacridar to the central nervous system. J Pharmacol Exp Ther 345:111–124PubMedPubMedCentralCrossRefGoogle Scholar
  302. Sasaki S (2015) Alterations of the blood-spinal cord barrier in sporadic amyotrophic lateral sclerosis. Neuropathology 35:518–528PubMedCrossRefPubMedCentralGoogle Scholar
  303. Sasaki N, Toki S, Chowei H, Saito T, Nakano N, Hayashi Y et al (2001) Immunohistochemical distribution of the receptor for advanced glycation end products in neurons and astrocytes in Alzheimer’s disease. Brain Res 888:256–262PubMedCrossRefPubMedCentralGoogle Scholar
  304. Schinkel AH, Jonker JW (2012) Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev 64:138–153CrossRefGoogle Scholar
  305. Schinkel AH, Smit JJM, Vantellingen O, Beijnen JH, Wagenaar E, Vandeemter L et al (1994) Disruption of the mouse Mdr 1a P-glycoprotein gene leads to a deficiency in the blood-brain-barrier and to increased sensitivity to drugs. Cell 77:491–502PubMedCrossRefPubMedCentralGoogle Scholar
  306. Schmitz AK, Grote A, Raabe A, Urbach H, Friedman A, von Lehe M et al (2013) Albumin storage in neoplastic astroglial elements of gangliogliomas. Seizure 22:144–150PubMedCrossRefPubMedCentralGoogle Scholar
  307. Serlin Y, Levy J, Shalev H (2011) Vascular pathology and blood-brain barrier disruption in cognitive and psychiatric complications of type 2 diabetes mellitus. Cardiovasc Psychiatry Neurol 2011:609202PubMedPubMedCentralCrossRefGoogle Scholar
  308. Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I et al (2008) Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14:837–842PubMedPubMedCentralCrossRefGoogle Scholar
  309. Shao B, Bayraktutan U (2013) Hyperglycaemia promotes cerebral barrier dysfunction through activation of protein kinase C-β. Diabetes Obes Metab 15:993–999PubMedCrossRefPubMedCentralGoogle Scholar
  310. Shao B, Bayraktutan U (2014) Hyperglycaemia promotes human brain microvascular endothelial cell apoptosis via induction of protein kinase C-ßI and prooxidant enzyme NADPH oxidase. Redox Biol 2:694–701PubMedPubMedCentralCrossRefGoogle Scholar
  311. Shawahna R, Uchida Y, Declèves X, Ohtsuki S, Yousif S, Dauchy S et al (2011) Transcriptomic and quantitative proteomic analysis of transporters and drug metabolizing enzymes in freshly isolated human brain microvessels. Mol Pharm 8:1332–1341PubMedCrossRefPubMedCentralGoogle Scholar
  312. Shen S, Callaghan D, Juzwik C, Xiong H, Huang P, Zhang W (2010) ABCG2 reduces ROS-mediated toxicity and inflammation: a potential role in Alzheimer’s disease. J Neurochem 114:1590–1604PubMedCrossRefPubMedCentralGoogle Scholar
  313. Shi M, Liu C, Cook TJ, Bullock KM, Zhao Y, Ginghina C et al (2014) Plasma exosomal alpha-synuclein is likely CNS-derived and increased in Parkinson’s disease. Acta Neuropathol 128:639–650PubMedPubMedCentralCrossRefGoogle Scholar
  314. Shibata M, Yamada S, Kumar SR, Calero M, Bading J, Frangione B et al (2000) Clearance of Alzheimer’s amyloid-β (1-40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J Clin Invest 106:1489–1499PubMedPubMedCentralCrossRefGoogle Scholar
  315. Silverberg GD, Messier AA, Miller MC, Machan JT, Majmudar SS et al (2010) Amyloid efflux transporter expression at the blood-brain barrier declines in normal aging. J Neuropathol Exp Neurol 69:1034–1043PubMedCrossRefPubMedCentralGoogle Scholar
  316. Smith DE, Hu Y, Shen H, Nagaraja TN, Fenstermacher JD, Keep RF (2011) Distribution of glycylsarcosine and cefadroxil among cerebrospinal fluid, choroid plexus, and brain parenchyma after intracerebroventricular injection is markedly different between wild-type and Pept2 null mice. J Cereb Blood Flow Metab 31:250–261PubMedCrossRefPubMedCentralGoogle Scholar
  317. Soontornmalai A, Vlaming ML, Fritschy JM (2006) Differential, strain-specific cellular and subcellular distribution of multidrug transporters in murine choroid plexus and blood-brain barrier. Neuroscience 138:159–169PubMedCrossRefPubMedCentralGoogle Scholar
  318. Spudich A, Kilic E, Xing H, Kilic Ü, Rentsch KM, Wunderli-Allenspach H et al (2006) Inhibition of multidrug resistance transporter-1 facilitates neuroprotective therapies after focal cerebral ischemia. Nat Neurosci 9:487–488PubMedCrossRefPubMedCentralGoogle Scholar
  319. Starr JM, Wardlaw J, Ferguson K, Mac Lullich A, Deary IJ, Marshall I (2003) Increased blood–brain barrier permeability in type II diabetes demonstrated by gadolinium magnetic resonance imaging. J Neurol Neurosurg Psychiatry 74:70–76PubMedPubMedCentralCrossRefGoogle Scholar
  320. Stephan D, Sbai O, Wen J, Couraud PO, Putterman C, Khrestchatisky M et al (2013) TWEAK/Fn14 pathway modulates properties of a human microvascular endothelial cell model of blood brain barrier. J Neuroinflammation 10:9PubMedPubMedCentralCrossRefGoogle Scholar
  321. Stoica L, Todeasa SH, Cabrera GT, Salameh JS, ElMallah MK, Mueller C et al (2016) AAV delivered artificial microRNA extends survival and delays paralysis in an Amyotrophic Lateral Sclerosis mouse model. Ann Neurol 79:687–700PubMedPubMedCentralCrossRefGoogle Scholar
  322. Stolp HB, Dziegielewska KM (2009) Role of developmental inflammation and blood-brain barrier dysfunction in neurodevelopmental and neurodegenerative diseases. Neuropathol Appl Neurobiol 35:132–146PubMedCrossRefPubMedCentralGoogle Scholar
  323. Strazielle N, Ghersi-Egea JF (2013) Physiology of blood−brain interfaces in relation to brain disposition of small compounds and macromolecules. Mol Pharm 10:1473–1491PubMedCrossRefPubMedCentralGoogle Scholar
  324. Su W, Pasternak GW (2013) The role of multidrug resistance associated protein (Mrp) in the blood-brain barrier and opioid analgesia. Synapse 67:609–619PubMedPubMedCentralCrossRefGoogle Scholar
  325. Sui YT, Bullock KM, Erickson MA, Zhang J, Banks WA (2014) Alpha synuclein is transported into and out of the brain by the blood-brain barrier. Peptides 62:197–202PubMedPubMedCentralCrossRefGoogle Scholar
  326. Sultana R, Butterfield DA (2004) Oxidatively modified GST and MRP1 in Alzheimer’s disease brain: implications for accumulation of reactive lipid peroxidation products. Neurochem Res 29:2215–2220PubMedCrossRefPubMedCentralGoogle Scholar
  327. Sumi N, Nishioku T, Takata F, Matsumoto J, Watanabe T, Shuto H et al (2010) Lipopolysaccharide-activated microglia induce dysfunction of the blood-brain barrier in rat microvascular endothelial cells co-cultured with microglia. Cell Mol Neurobiol 30:247–253PubMedCrossRefPubMedCentralGoogle Scholar
  328. Sun JJ, Xie L, Liu XD (2006) Transport of carbamazepine and drug interactions at blood-brain barrier. Acta Pharmacol Sin 27:249–253PubMedCrossRefPubMedCentralGoogle Scholar
  329. Tan EK, Drozdzik M, Bialecka M, Honczarenko K, Klodowska-Duda G, Teo YY et al (2004) Analysis of MDR1 haplotypes in Parkinson’s disease in a white population. Neurosci Lett 372:240–244PubMedCrossRefPubMedCentralGoogle Scholar
  330. Tan EK, Chan DK, Ng PW, Woo J, Teo YY, Tang K et al (2005) Effect of MDR1 haplotype on risk of Parkinson disease. Arch Neurol 62:4600–4464Google Scholar
  331. Tanzi RE, Bertram L (2005) Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell 120:545–555PubMedPubMedCentralCrossRefGoogle Scholar
  332. Tasker RC, Acerini CL (2014) Cerebral edema in children with diabetic ketoacidosis: vasogenic rather than cellular? Pediatr Diabetes 15:261–270PubMedCrossRefPubMedCentralGoogle Scholar
  333. Thal DR, Griffin WS, de Vos RA, Ghebremedhin E (2008) Cerebral amyloid angiopathy and its relationship to Alzheimer’s disease. Acta Neuropathol 115:599–609PubMedCrossRefPubMedCentralGoogle Scholar
  334. Thompson BJ, Sanchez-Covarrubias L, Slosky LM, Zhang Y, Laracuente ML, Ronaldson PT (2014) Hypoxia/reoxygenation stress signals an increase in organic anion transporting polypeptide 1a4 (Oatp 1a4) at the blood-brain barrier: relevance to CNS drug delivery. J Cereb Blood Flow Metab 34:699–707PubMedPubMedCentralCrossRefGoogle Scholar
  335. Tyagi SC, Lominadze D, Roberts AM (2005) Homocysteine in microvascular endothelial cell barrier permeability. Cell Biochem Biophys 43:37–44PubMedCrossRefPubMedCentralGoogle Scholar
  336. Uchida Y, Ohtsuki S, Katsukura Y, Ikeda C, Suzuki T, Kamiie J et al (2011) Quantitative targeted absolute proteomics of human blood-brain barrier transporters and receptors. J Neurochem 117:333–345PubMedCrossRefPubMedCentralGoogle Scholar
  337. van Assema DM, Lubberink M, Bauer M, van der Flier WM, Schuit RC, Windhorst AD et al (2012) Blood-brain barrier P-glycoprotein function in Alzheimer’s disease. Brain 135(Pt 1):181–189PubMedCrossRefPubMedCentralGoogle Scholar
  338. van der Mark M, Brouwer M, Kromhout H, Nijssen P, Huss A, Vermeulen R (2012) Is pesticide use related to Parkinson disease? some clues to heterogeneity in study results. Environ Health Perspect 120:340–347PubMedCrossRefPubMedCentralGoogle Scholar
  339. van Gelder BM, Buijsse B, Tijhuis M, Kalmijn S, Giampaoli S, Nissinen A et al (2007) Coffee consumption is inversely associated with cognitive decline in elderly European men: The FINE Study. Eur J Clin Nutr 61:226–232PubMedCrossRefPubMedCentralGoogle Scholar
  340. Van Vliet EA, Da C, Araujo S, Redeker S, Van Schaik R, Aronica E et al (2007) Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy. Brain 130:521–534PubMedCrossRefPubMedCentralGoogle Scholar
  341. Vautier S, Milane A, Fernandez C, Chacun H, Lacomblez L, Farinotti R (2009) Role of two efflux proteins, ABCB1 and ABCG2 in blood-brain barrier transport of bromocriptine in a murine model of MPTP-induced dopaminergic degeneration. J Pharm Pharm Sci 12:199–208PubMedCrossRefPubMedCentralGoogle Scholar
  342. Vavilala MS, Richards TL, Roberts JS, Chiu H, Pihoker C, Bradford H et al (2010) Change in blood– brain barrier permeability during pediatric diabetic ketoacidosis treatment. Pediatr Crit Care Med 11:332–338PubMedPubMedCentralGoogle Scholar
  343. Vazana U, Veksler R, Pell GS, Prager O, Fassler M, Chassidim Y et al (2016) Glutamate-mediated blood–brain barrier opening: implications for neuroprotection and drug delivery. J Neurosci 36:7727–7739PubMedPubMedCentralCrossRefGoogle Scholar
  344. Villarán RF, de Pablos RM, Argüelles S, Espinosa-Oliva AM, Tomás-Camardiel M et al (2009) The intranigral injection of tissue plasminogen activator induced blood-brain barrier disruption, inflammatory process and degeneration of the dopaminergic system of the rat. Neurotoxicology 30:403–413PubMedCrossRefPubMedCentralGoogle Scholar
  345. Vinsant S, Mansfield C, Jimenez-Moreno R, Del Gaizo Moore V, Yoshikawa M, Hampton TG et al (2013) Characterization of early pathogenesis in the SOD1(G93A) mouse model of ALS: part I, background and methods. Brain Behav 3:335–350PubMedPubMedCentralCrossRefGoogle Scholar
  346. Viswanathan A, Greenberg SM (2011) Cerebral amyloid angiopathy (CAA) in the elderly. Ann Neurol 70:871–880PubMedPubMedCentralCrossRefGoogle Scholar
  347. Vogelgesang S, Cascorbi I, Schroeder E, Pahnke J, Kroemer HK, Siegmund W et al (2002) Deposition of Alzheimer’s beta-amyloid is inversely correlated with P-glycoprotein expression in the brains of elderly non-demented humans. Pharmacogenetics 12:535–541PubMedCrossRefPubMedCentralGoogle Scholar
  348. Vogelgesang S, Warzok RW, Cascorbi I, Kunert-Keil C, Schroeder E, Kroemer HK et al (2004) The role of P-glycoprotein in cerebral amyloid angiopathy; implications for the early pathogenesis of Alzheimer’s disease. Curr Alzheimer Res 1:121–125PubMedPubMedCentralCrossRefGoogle Scholar
  349. Wahrle SE, Jiang H, Parsadanian M, Legleiter J, Han X, Fryer JD et al (2004) ABCA1 is required for normal central nervous system ApoE levels and for lipidation of astrocyte-secreted apoE. J Biol Chem 279:40987–40993PubMedCrossRefPubMedCentralGoogle Scholar
  350. Wahrle SE, Jiang H, Parsadanian M, Hartman RE, Bales KR, Paul SM et al (2005) Deletion of Abca 1 increases Abeta deposition in the PDAPP transgenic mouse model of Alzheimer disease. J Biol Chem 280:43236–43242PubMedCrossRefPubMedCentralGoogle Scholar
  351. Wahrle SE, Jiang H, Parsadanian M, Kim J, Li A, Knoten A et al (2008) Overexpression of ABCA1 reduces amyloid deposition in the PDAPP mouse model of Alzheimer disease. J Clin Invest 118:671–682PubMedPubMedCentralGoogle Scholar
  352. Walker D, Lue LF, Paul G, Patel A, Sabbagh MN (2015) Receptor for advanced glycation endproduct modulators: a new therapeutic target in Alzheimer’s disease. Expert Opin Investig Drugs 24:393–399PubMedPubMedCentralCrossRefGoogle Scholar
  353. Wang A, Cockburn M, Ly TT, Bronstein JM, Ritz B (2014) The association between ambient exposure to organophosphates and Parkinson’s disease risk. Occup Environ Med 71:275–281PubMedPubMedCentralCrossRefGoogle Scholar
  354. Wang W, Bodles-Brakhop AM, Barger SW (2016) A Role for P-Glycoprotein in Clearance of Alzheimer Amyloid β -Peptide from the Brain. Curr Alzheimer Res 13:615–620PubMedCrossRefPubMedCentralGoogle Scholar
  355. Warren MS, Zerangue N, Woodford K, Roberts LM, Tate EH, Feng B et al (2009) Comparative gene expression profiles of ABC transporters in brain microvessel endothelial cells and brain in five species including human. Pharmacol Res 59:404–413PubMedCrossRefPubMedCentralGoogle Scholar
  356. Weiss N, Miller F, Cazaubon S, Couraud PO (2009) The blood-brain barrier in brain homeostasis and neurological diseases. Biochim Biophys Acta 1788:842–857PubMedCrossRefPubMedCentralGoogle Scholar
  357. Weissberg I, Wood L, Kamintsky L, Vazquez O, Milikovsky DZ, Alexander A et al (2015) Albumin induces excitatory synaptogenesis through astrocytic TGF-β/ALK5 signaling in a model of acquired epilepsy following blood-brain barrier dysfunction. Neurobiol Dis 78:115–125PubMedPubMedCentralCrossRefGoogle Scholar
  358. Wen T, Liu YC, Yang HW, Liu HY, Liu XD, Wang GJ et al (2008) Effect of 21-day exposure of phenobarbital, carbamazepine and phenytoin on P-glycoprotein expression and activity in the rat brain. J Neurol Sci 270:99–106PubMedCrossRefPubMedCentralGoogle Scholar
  359. Westerlund M, Belin AC, Anvret A, Håkansson A, Nissbrandt H, Lind C et al (2009) Association of a polymorphism in the ABCB1 gene with Parkinson’s disease. Parkinsonism Relat Disord 15:422–424PubMedCrossRefPubMedCentralGoogle Scholar
  360. Wijesuriya HC, Bullock JY, Faull RL, Hladky SB, Barrand MA (2010) ABC efflux transporters in brain vasculature of Alzheimer’s subjects. Brain Res 1358:228–238PubMedCrossRefPubMedCentralGoogle Scholar
  361. Williams MJ, Lowrie MB, Bennett JP, Firth JA, Clark P (2005) Cadherin-10 is a novel blood-brain barrier adhesion molecule in human and mouse. Brain Res 1058:62–72PubMedCrossRefPubMedCentralGoogle Scholar
  362. Winkler EA, Bell RD, Zlokovic BV (2011) Central nervous system pericytes in health and disease. Nat Neurosci 14:1398–1405PubMedPubMedCentralCrossRefGoogle Scholar
  363. Winkler EA, Sengillo JD, Bell RD, Wang J, Zlokovic BV (2012) Blood–spinal cord barrier pericyte reductions contribute to increased capillary permeability. J Cereb Blood Flow Metab 32:1841–1852PubMedPubMedCentralCrossRefGoogle Scholar
  364. Winkler EA, Sengillo JD, Sullivan JS, Henkel JS, Appel SH, Zlokovic BV (2013) Blood–spinal cord barrier breakdown and pericyte reductions in amyotrophic lateral sclerosis. Acta Neuropathol 125:111–120PubMedCrossRefPubMedCentralGoogle Scholar
  365. Winkler EA, Sengillo JD, Sagare AP, Zhao Z, Ma Q, Zuniga E et al (2014) Blood-spinal cord barrier disruption contributes to early motor-neuron degeneration in ALS-model mice. Proc Natl Acad Sci USA 111:E1035–E1042PubMedCrossRefPubMedCentralGoogle Scholar
  366. Winkler EA, Nishida Y, Sagare AP, Rege SV, Bell RD, Perlmutter D et al (2015) GLUT1 reductions exacerbate Alzheimer’s disease vasculo-neuronal dysfunction and degeneration. Nat Neurosci 18:521–530PubMedPubMedCentralCrossRefGoogle Scholar
  367. Woo M, Patterson EK, Cepinskas G, Clarson C, Omatsu T, Fraser DD (2016a) Dynamic regulation of plasma matrix metalloproteinases in human diabetic ketoacidosis. Pediatr Res 79:295–300PubMedCrossRefPubMedCentralGoogle Scholar
  368. Woo MM, Patterson EK, Clarson C, Cepinskas G, Bani-Yaghoub M, Stanimirovic DB et al (2016b) Elevated leukocyte azurophilic enzymes in human diabetic ketoacidosis plasma degrade cerebrovascular endothelial junctional proteins. Crit Care Med 44:e846–e853PubMedCrossRefPubMedCentralGoogle Scholar
  369. Wu KC, Lu YH, Peng YH, Tsai TF, Kao YH, Yang HT et al (2015) Decreased expression of organic cation transporters, Oct1 and Oct2, in brain microvessels and its implication to MPTP-induced dopaminergic toxicity in aged mice. J Cereb Blood Flow Metab 35:37–47PubMedCrossRefPubMedCentralGoogle Scholar
  370. Xiong H, Callaghan D, Jones A, Bai J, Rasquinha I, Smith C et al (2009) ABCG2 is upregulated in Alzheimer’s brain with cerebral amyloid angiopathy and may act as a gatekeeper at the blood-brain barrier for Abeta(1−40) peptides. J Neurosci 29:5463–5475PubMedPubMedCentralCrossRefGoogle Scholar
  371. Xu R, Wu C, Zhang X, Zhang Q, Yang Y, Yi J, Yang R, Tao Y (2011) Linking hypoxic and oxidative insults to cell death mechanisms in models of ALS. Brain Res 1372:133–144PubMedCrossRefPubMedCentralGoogle Scholar
  372. Yamanaka K, Chun SJ, Boillee S, Fujimori-Tonou N, Yamashita H, Gutmann DH et al (2008) Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nat Neurosci 11:251–253PubMedPubMedCentralCrossRefGoogle Scholar
  373. Yang ZH, Liu XD (2008) P-glycoprotein-mediated efflux of phenobarbital at the blood-brain barrier evidence from transport experiments in vitro. Epilepsy Res 78:40–49PubMedCrossRefPubMedCentralGoogle Scholar
  374. Yang Y, Estrada EY, Thompson JF, Liu W, Rosenberg GA (2007) Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab 27:697–709PubMedCrossRefPubMedCentralGoogle Scholar
  375. Yang HW, Liu HY, Liu X, Zhang DM, Liu YC, Liu XD et al (2008) Increased P-glycoprotein function and level after long-term exposure of four antiepileptic drugs to rat brain microvascular endothelial cells in vitro. Neurosci Lett 434:299–303PubMedCrossRefPubMedCentralGoogle Scholar
  376. Yang B, Akhter S, Chaudhuri A, Kanmogne GD (2009) HIV-1 gp120 induces cytokine expression, leukocyte adhesion, and transmigration across the blood-brain barrier: modulatory effects of STAT1 signaling. Microvasc Res 77:212–219PubMedCrossRefPubMedCentralGoogle Scholar
  377. Yang JJ, Milton MN, Yu S, Liao M, Liu N, Wu JT et al (2010) P-glycoprotein and breast cancer resistance protein affect disposition of tandutinib, a tyrosine kinase inhibitor. Drug Metab Lett 4:201–212PubMedPubMedCentralGoogle Scholar
  378. Yang J, Lunde LK, Nuntagij P, Oguchi T, Camassa LM, Nilsson LN et al (2011) Loss of astrocyte polarization in the tg-ArcSwe mouse model of Alzheimer’s’s disease. J Alzheimers Dis 27:711–722PubMedCrossRefPubMedCentralGoogle Scholar
  379. Yao D, Yang ZH, Liu L, Li J, Yu YL, Zhang LL et al (2011) Verapamil exerts biphasic modulation on phenobarbital transport across the blood-brain barrier: evidence from an in vivo and in vitro study. Naunyn Schmiedebergs Arch Pharmacol 383:393–402PubMedCrossRefPubMedCentralGoogle Scholar
  380. Yao D, Liu L, Jin S, Li J, Liu XD (2012) Overexpression of multidrug resistance-associated protein 2 in the brain of pentylenetetrazole-kindled rats. Neuroscience 227:283–292PubMedCrossRefPubMedCentralGoogle Scholar
  381. Yarnitsky D, Gross Y, Lorian A, Shalev A, Lamensdorf I, Bornstein R et al (2004) Blood-brain barrier opened by stimulation of the parasympathetic sphenopalatine ganglion: a new method for macromolecule delivery to the brain. J Neurosur 101:303–309CrossRefGoogle Scholar
  382. Yorulmaz H, Şeker FB, Demir G, Yalçın ĬE, Öztaş B (2013) The effects of zinc treatment on the blood-brain barrier permeability and brain element levels during convulsions. Biol Trace Elem Res 151:256–262PubMedCrossRefPubMedCentralGoogle Scholar
  383. Zhang Z, Chopp M (2002) Vascular endothelial growth factor and angiopoietins in focal cerebral ischemia. Trends Cardiovasc Med 12:62–66PubMedCrossRefPubMedCentralGoogle Scholar
  384. Zhang Y, Schuetz JD, Elmquist WF, Miller DW (2004) Plasma membrane localization of multidrug resistance-associated protein homologs in brain capillary endothelial cells. J Pharmacol Exp Ther 311:449–455PubMedCrossRefPubMedCentralGoogle Scholar
  385. Zhang H, Gu YT, Xue YX (2007) Bradykinin-induced blood-brain tumor barrier permeability increase is mediated by adenosine 5′-triphosphate-sensitive potassium channel. Brain Res 1144:33–41PubMedCrossRefPubMedCentralGoogle Scholar
  386. Zhang W, Hao J, Liu R, Zhang Z, Lei G, Su C et al (2011) Soluble Aβ levels correlate with cognitive deficits in the 12-month-old APPswe/PS1dE9 mouse model of Alzheimer’s disease. Behav Brain Res 222:342–350PubMedCrossRefPubMedCentralGoogle Scholar
  387. Zhao C, Ling Z, Newman MB, Bhatia A, Carvey PM (2007) TNF-alpha knockout and minocycline treatment attenuates blood-brain barrier leakage in MPTP-treated mice. Neurobiol Dis 26:36–46PubMedPubMedCentralCrossRefGoogle Scholar
  388. Zhao R, Raub TJ, Sawada GA, Kasper SC, Bacon JA, Bridges AS, Pollack GM (2009) Breast cancer resistance protein interacts with various compounds in vitro, but plays a minor role in substrate efflux at the blood-brain barrier. Drug Metab Dispos 37:1251–1258PubMedPubMedCentralCrossRefGoogle Scholar
  389. Zhong Z, Deane R, Ali Z, Parisi M, Shapovalov Y, O’Banion MK et al (2008) ALS-causing SOD1 mutants generate vascular changes prior to motor neuron degeneration. Nat Neurosci 11:420–422PubMedPubMedCentralCrossRefGoogle Scholar
  390. Zhou L, Schmidt K, Nelson FR, Zelesky V, Troutman MD, Feng B (2009) The effect of breast cancer resistance protein and P-glycoprotein on the brain penetration of flavopiridol, imatinib mesylate (Gleevec), prazosin, and 2-methoxy-3-(4-(2-(5-methyl-2-phenyloxazol-4- yl)ethoxy)phenyl) propanoic acid (PF-407288) in mice. Drug Metab Dispos 37:946–955PubMedCrossRefPubMedCentralGoogle Scholar
  391. Zhu JJ, Gerstner ER, Engler DA, Mrugala MM, Nugent W, Nierenberg K et al (2009) High-dose methotrexate for elderly patients with primary CNS lymphoma. Neuro Oncol 11:211–215PubMedPubMedCentralCrossRefGoogle Scholar
  392. Zhuang Y, Fraga CH, Hubbard KE, Hagedorn N, Panetta JC, Waters CM et al (2006) Topotecan central nervous system penetration is altered by a tyrosine kinase inhibitor. Cancer Res. 66:11305–11313PubMedCrossRefPubMedCentralGoogle Scholar
  393. Zschiedrich K, König IR, Brüggemann N, Kock N, Kasten M, Leenders KL et al (2009) MDR1 variants and risk of Parkinson disease. Association with pesticide exposure? J Neurol 256:115–120PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.China Pharmaceutical UniversityNanjingChina

Personalised recommendations