Advertisement

Roles of Renal Drug Transporter in Drug Disposition and Renal Toxicity

  • Xinning YangEmail author
  • Li Han
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1141)

Abstract

The kidney plays an important role in maintaining total body homeostasis and eliminating toxic xenobiotics and metabolites. Numerous drugs and their metabolites are ultimately eliminated in the urine. The reabsorption and secretion functions of the nephron are mediated by a variety of transporters located in the basolateral and luminal membranes of the tubular cells. In the past decade, many studies indicated that transporters play important roles in drug pharmacokinetics and demonstrated the impact of renal transporters on the disposition of drugs, drug-drug interactions, and nephrotoxicities. Here, we focus on several important renal transporters and their roles in drug elimination and disposition, drug-induced nephrotoxicities and potential clinical solutions.

Keywords

SLC transporters ABC transporters Drug disposition Nephrotoxicity 

Notes

Disclaimer

The chapter reflects the views of the authors and should not be construed to represent the views or policies of the FDA.

References

  1. Abel S, Nichols D, Brearley C, Eve M (2000) Effect of cimetidine and ranitidine on pharmacokinetics and pharmacodynamics of a single dose of dofetilide. Br J Clin Pharmacol 49:64–71PubMedPubMedCentralGoogle Scholar
  2. Ackland SP, Schilsky RL (1987) High-dose methotrexate: a critical reappraisal. J Clin Oncol 5:2017–2031CrossRefGoogle Scholar
  3. Aherne G, Piall E, Marks V, Mould G, White W (1978) Prolongation and enhancement of serum methotrexate concentrations by probenecid. Br Med J 1:1097–1099PubMedPubMedCentralGoogle Scholar
  4. Aloy B, Tazi I, Bagnis C, Gauthier M, Janus N, Launay-Vacher V et al (2016) Is Tenofovir Alafenamide safer than Tenofovir Disoproxil fumarate for the kidneys? AIDS Rev 18:184–192PubMedGoogle Scholar
  5. Ando T, Kusuhara H, Merino G, Alvarez AI, Schinkel AH, Sugiyama Y (2007) Involvement of breast cancer resistance protein (ABCG2) in the biliary excretion mechanism of fluoroquinolones. Drug Metab Dispos 35:1873–1879CrossRefGoogle Scholar
  6. Arlt VM, Ferluga D, Stiborova M, Pfohl-Leszkowicz A, Vukelic M, Ceovic S et al (2002) Is aristolochic acid a risk factor for Balkan endemic nephropathy-associated urothelial cancer? Int J Cancer 101:500–502CrossRefGoogle Scholar
  7. Babu E, Takeda M, Nishida R, Noshiro-Kofuji R, Yoshida M, Ueda S et al (2010) Interactions of human organic anion transporters with aristolochic acids. J Pharmacol Sci 113:192–196CrossRefGoogle Scholar
  8. Bakhiya N, Arlt VM, Bahn A, Burckhardt G, Phillips DH, Glatt H (2009) Molecular evidence for an involvement of organic anion transporters (OATs) in aristolochic acid nephropathy. Toxicology 264:74–79CrossRefGoogle Scholar
  9. Bam R, Yant S, Cihlar T (2014) Tenofovir alafenamide is not a substrate for renal organic anion transporters (OATs) and does not exhibit OAT-dependent cytotoxicity. Antivir Ther 19:687–692CrossRefGoogle Scholar
  10. Baudoux TE, Pozdzik AA, Arlt VM, De Prez EG, Antoine MH, Quellard N et al (2012) Probenecid prevents acute tubular necrosis in a mouse model of aristolochic acid nephropathy. Kidney Int 82:1105–1113CrossRefGoogle Scholar
  11. Belz G, Doering W, Munkes R, Matthews J (1983) Interaction between digoxin and calcium antagonists and antiarrhythmic drugs. Clin Pharmacol Ther 33:410–417CrossRefGoogle Scholar
  12. Blair BG, Larson CA, Safaei R, Howell SB (2009) Copper transporter 2 regulates the cellular accumulation and cytotoxicity of Cisplatin and Carboplatin. Clin Cancer Res 15:4312–4321CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bleyer WA (1977) Methotrexate: clinical pharmacology, current status and therapeutic guidelines. Cancer Treat Rev 4:87–101CrossRefGoogle Scholar
  14. Brackman DJ, Yee SW, Enogieru OJ, Shaffer C, Ranatunga D, Denny JC, Wei W, Kamatani Y, Kubo M, Roden DM, Jorgenson E, Giacomini KM (2019) Genome-wide association and functional studies reveal novel pharmacological mechanisms for allopurinol. Clin Pharmacol Ther Mar 28.  https://doi.org/10.1002/cpt.1439
  15. Busch A, Karbach U, Miska D, Gorboulev V, Akhoundova A, Volk C et al (1998) Human neurons express the polyspecific cation transporter hOCT2, which translocates monoamine neurotransmitters, amantadine, and memantine. Mol Pharm 54:342–352CrossRefGoogle Scholar
  16. Caetano-Pinto P, Jansen J, Assaraf YG, Masereeuw R (2017) The importance of breast cancer resistance protein to the kidneys excretory function and chemotherapeutic resistance. Drug Resist Updat 30:15–27CrossRefGoogle Scholar
  17. Chu X, Bleasby K, Chan G, Nunes I, Evers R (2016) The complexities of interpreting reversible elevated serum creatinine levels in drug development: does a correlation with inhibition of renal transporters exist? Drug Metab Dispos 44:1498–1509CrossRefGoogle Scholar
  18. Chu X, Bleasby K, Yabut J, Cai X, Chan G, Hafey M et al (2007) Transport of the dipeptidyl peptidase-4 inhibitor sitagliptin by human organic anion transporter 3, organic anion transporting polypeptide 4C1, and multidrug resistance P-glycoprotein. J Pharmacol Exp Ther 321:673–683CrossRefGoogle Scholar
  19. Chu X, Galetin A, Zamek-Gliszczynski M, Zhang L, Tweedie D (2018) Dabigatran Etexilate and digoxin: comparison as clinical probe substrates for evaluation of P-gp inhibition. Clin Pharmacol Ther 104:788–792CrossRefGoogle Scholar
  20. Ciarimboli G, Deuster D, Knief A, Sperling M, Holtkamp M, Edemir B et al (2010) Organic cation transporter 2 mediates cisplatin-induced Oto- and nephrotoxicity and is a target for protective interventions. Am J Pathol 176:1169–1180CrossRefPubMedPubMedCentralGoogle Scholar
  21. Ciarimboli G, Ludwig T, Lang D, Pavenstadt H, Koepsell H, Piechota HJ et al (2005) Cisplatin nephrotoxicity is critically mediated via the human organic cation transporter 2. Am J Pathol 167:1477–1484CrossRefPubMedPubMedCentralGoogle Scholar
  22. Cimoch P, Lavelle J, Pollard R, Griffy K, Wong R, Tarnowski T et al (1998) Pharmacokinetics of oral ganciclovir alone and in combination with zidovudine, didanosine, and probenecid in HIV-infected subjects. J Acquir Immune Defic Syndr Hum Retrovirol 17:227–234CrossRefGoogle Scholar
  23. Clinical Pharmacology and Biopharmaceutical Review for NDA 207561 from Drugs@FDA (2015) https://www.accessdata.fda.gov/drugsatfda_docs/nda/2015/207561Orig1s000ClinPharmR.pdf
  24. Claudino WM, Gibson B, Tse W, Krem M, Grewal J (2016) Methotrexate-associated primary cutaneous CD30-positive cutaneous T-cell lymphoproliferative disorder: a case illustration and a brief review. Am J Blood Res 6:1–5PubMedPubMedCentralGoogle Scholar
  25. Cleophas MC, Joosten LA, Stamp LK, Dalbeth N, Woodward OM, Merriman TR (2017) ABCG2 polymorphisms in gout: insights into disease susceptibility and treatment approaches. Pharmgenomics Pers Med 10:129–142PubMedPubMedCentralGoogle Scholar
  26. Cundy K, Petty B, Flaherty J, Fisher P, Polis M, Wachsman M et al (1995) Clinical pharmacokinetics of cidofovir in human immunodeficiency virus-infected patients. Antimicrob Agents Chemother 39:1247–1252CrossRefPubMedPubMedCentralGoogle Scholar
  27. Deeks D (2017) Lesinurad: a review in Hyperuricaemia of gout. Drugs Aging 34:401–410CrossRefGoogle Scholar
  28. Ding XS, Liang AH, Wang JH, Xiao YQ, Wu ZL, Li CY et al (2005) Nephrotoxicity of Aristolochia manshuriensis and aristolochic acids in mice. Zhongguo Zhong Yao Za Zhi 30:1019–1022PubMedGoogle Scholar
  29. Dong Z, Yang Y, Arya V, Zhang L (2016) Comparing various in vitro prediction criteria to assess the potential of a new molecular entity (NME) to inhibit OCT2 and MATE transporters in vivo. Clin Pharmacol Ther 99:S94Google Scholar
  30. El-Sheikh AA, Morsy MA, Altaher AY (2016) Protective mechanisms of resveratrol against methotrexate-induced renal damage may involve BCRP/ABCG2. Fundam Clin Pharmacol 30:406–418CrossRefGoogle Scholar
  31. Elsheikh AK, Masereeuw R, Russel FG (2008) Mechanisms of renal anionic drug transport. Eur J Pharmacol 585:245–255CrossRefGoogle Scholar
  32. Fallon JK, Smith PC, Xia CQ, Kim MS (2016) Quantification of four efflux drug transporters in liver and kidney across species using targeted quantitative proteomics by isotope dilution nanoLC-MS/MS. Pharm Res 33:1–9CrossRefGoogle Scholar
  33. Fenster P, Hager W, Goodman M (1984) Digoxin-quinidine-spironolactone interaction. Clin Pharmacol Ther 36:70–73CrossRefGoogle Scholar
  34. Fenster P, Hager W, Perrier D, Powell J, Graves P, Michael U (1982) Digoxin-quinidine interaction in patients with chronic renal failure. Circulation 66:1277–1280CrossRefGoogle Scholar
  35. Filipski KK, Mathijssen RH, Mikkelsen TS, Schinkel AH, Sparreboom A (2009) Contribution of organic cation transporter 2 (OCT2) to cisplatin-induced nephrotoxicity. Clin Pharmacol Ther 86:396–402CrossRefPubMedPubMedCentralGoogle Scholar
  36. Frei E, 3rd, Blum RH, Pitman SW, Kirkwood JM, Henderson IC, Skarin AT, et al. (1980) High dose methotrexate with leucovorin rescue. Rationale and spectrum of antitumor activity. Am J Med 68:370–376Google Scholar
  37. George B, You D, Joy M, Aleksunes L (2017) Xenobiotic transporters and kidney injury. Adv Drug Deliv Rev 116:73–91CrossRefPubMedPubMedCentralGoogle Scholar
  38. Gillette M, Shah B, Schafer J, Desimone J (2014) Dolutegravir: a new integrase strand transfer inhibitor for the treatment of HIV - an alternative viewpoint. Pharmacotherapy 34:e173–e174CrossRefGoogle Scholar
  39. Green MR, Chowdhary SA, Chalmers LM, Lombardi KM, Chamberlain MC (2006) High-dose methotrexate complicated by acute tubular necrosis. Clinical Practice 3:495Google Scholar
  40. Hager W, Mayersohn M, Graves P (1981) Digoxin bioavailability during quinidine administration. Clin Pharmacol Ther 30:594–599CrossRefGoogle Scholar
  41. Hartmann JT, Kollmannsberger C, Kanz L, Bokemeyer C (1999) Platinum organ toxicity and possible prevention in patients with testicular cancer. Int J Cancer 83:866–869CrossRefGoogle Scholar
  42. Hedman A, Angelin B, Arvidsson A, Beck O, Dahlqvist R, Nilsson B et al (1991) Digoxin-verapamil interaction: reduction of biliary but not renal digoxin clearance in humans. Clin Pharmacol Ther 49:256–262CrossRefGoogle Scholar
  43. Henderson ES, Adamson RH, Denham C, Oliverio VT (1965) The metabolic fate of tritiated methotrexate. I. Absorption, excretion, and distribution in mice, rats, dogs and monkeys. Cancer Res 25:1008–1017PubMedGoogle Scholar
  44. Hill G, Cihlar T, Oo C, Ho E, Prior K, Wiltshire H et al (2002) The anti-influenza drug oseltamivir exhibits low potential to induce pharmacokinetic drug interactions via renal secretion-correlation of in vivo and in vitro studies. Drug Metab Dispos 30:13–19CrossRefGoogle Scholar
  45. Ho E, Lin D, Mendel D, Cihlar T (2000) Cytotoxicity of antiviral nucleotides adefovir and cidofovir is induced by the expression of human renal organic anion transporter 1. J Am Soc Nephrol 11:383–393PubMedPubMedCentralGoogle Scholar
  46. Huls M, Brown CDA, Windass AS, Sayer R, Van Den Heuvel JJMW, Heemskerk S et al (2008) The breast cancer resistance protein transporter ABCG2 is expressed in the human kidney proximal tubule apical membrane. Kidney Int 73:220–225CrossRefGoogle Scholar
  47. Ishida S, Lee J, Thiele DJ, Herskowitz I (2002) Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc Natl Acad Sci U S A 99:14298–14302CrossRefPubMedPubMedCentralGoogle Scholar
  48. Ito S, Kusuhara H, Kuroiwa Y, Wu C, Moriyama Y, Inoue K et al (2010) Potent and specific inhibition of mMate1-mediated efflux of type I organic cations in the liver and kidney by pyrimethamine. J Pharmacol Exp Ther 333:341–350CrossRefPubMedPubMedCentralGoogle Scholar
  49. Ivanyuk A, Livio F, Biollaz J, Buclin T (2017) Renal drug transporters and drug interactions. Clin Pharmacokinet 56:825–892CrossRefGoogle Scholar
  50. Jadot I, Decleves AE, Nortier J, Caron N (2017) An integrated view of Aristolochic acid nephropathy: update of the literature. Int J Mol Sci 18Google Scholar
  51. Jaehde U, Sörgel F, Reiter A, Sigl G, Naber K, Schunack W (1995) Effect of probenecid on the distribution and elimination of ciprofloxacin in humans. Clin Pharmacol Ther 58:532–541CrossRefGoogle Scholar
  52. Jia Y, Liu Z, Wang C, Meng Q, Huo X, Liu Q et al (2016) P-gp, MRP2 and OAT1/OAT3 mediate the drug-drug interaction between resveratrol and methotrexate. Toxicol Appl Pharmacol 306:27–35CrossRefGoogle Scholar
  53. Karris M (2017) Short communication: resolution of Tenofovir Disoproxil fumarate induced Fanconi syndrome with switch to Tenofovir Alafenamide fumarate in a HIV-1 and hepatitis B Coinfected patient. AIDS Res Hum Retrovir 33:718–722CrossRefGoogle Scholar
  54. Kearney B, Flaherty J, Shah J (2004) Tenofovir disoproxil fumarate: clinical pharmacology and pharmacokinetics. Clin Pharmacokinet 43:595–612CrossRefGoogle Scholar
  55. Klein H, Lang R, Weiss E, Di Segni E, Libhaber C, Guerrero J et al (1982) The influence of verapamil on serum digoxin concentration. Circulation 65:998–1003CrossRefGoogle Scholar
  56. Kumar V, Poonam PAK, Parmar VS (2003) Naturally occurring aristolactams, aristolochic acids and dioxoaporphines and their biological activities. Nat Prod Rep 20:565–583CrossRefGoogle Scholar
  57. Landersdorfer C, Kirkpatrick C, Kinzig M, Bulitta J, Holzgrabe U, Jaehde U et al (2010) Competitive inhibition of renal tubular secretion of ciprofloxacin and metabolite by probenecid. Br J Clin Pharmacol 69:167–178CrossRefPubMedPubMedCentralGoogle Scholar
  58. Lebel M, Paone R, Lewis G (1983) Effect of probenecid on the pharmacokinetics of ceftizoxime. J Antimicrob Chemother 12:147–155CrossRefGoogle Scholar
  59. Lee S, Arya V, Yang X, Volpe D, Zhang L (2017) Evaluation of transporters in drug development: current status and contemporary issues. Adv Drug Deliv Rev 116:100–118CrossRefGoogle Scholar
  60. Lee W, He G, Eisenberg E, Cihlar T, Swaminathan S, Mulato A et al (2005) Selective intracellular activation of a novel prodrug of the human immunodeficiency virus reverse transcriptase inhibitor tenofovir leads to preferential distribution and accumulation in lymphatic tissue. Antimicrob Agents Chemother 49:1898–1906CrossRefPubMedPubMedCentralGoogle Scholar
  61. Lepist E, Zhang X, Hao J, Huang J, Kosaka A, Birkus G et al (2014) Contribution of the organic anion transporter OAT2 to the renal active tubular secretion of creatinine and mechanism for serum creatinine elevations caused by cobicistat. Kidney Int 86:350–357CrossRefPubMedPubMedCentralGoogle Scholar
  62. Liu Z, Jia Y, Wang C, Meng Q, Huo X, Sun H et al (2017) Organic anion transporters 1 (OAT1) and OAT3 meditated the protective effect of rhein on methotrexate-induced nephrotoxicity. RSC Adv 7:25461–25468CrossRefGoogle Scholar
  63. Maeda A, Tsuruoka S, Kanai Y, Endou H, Saito K, Miyamoto E et al (2008) Evaluation of the interaction between nonsteroidal anti-inflammatory drugs and methotrexate using human organic anion transporter 3-transfected cells. Eur J Pharmacol 596:166–172CrossRefGoogle Scholar
  64. Maeda K, Tian Y, Fujita T, Ikeda Y, Kumagai Y, Kondo T et al (2014) Inhibitory effects of p-aminohippurate and probenecid on the renal clearance of adefovir and benzylpenicillin as probe drugs for organic anion transporter (OAT) 1 and OAT3 in humans. Eur J Pharm Sci 59:94–103CrossRefGoogle Scholar
  65. Masuda S, Terada T, Yonezawa A, Tanihara Y, Kishimoto K, Katsura T et al (2006) Identification and functional characterization of a new human kidney-specific H+/organic cation antiporter, kidney-specific multidrug and toxin extrusion 2. J Am Soc Nephrol 17:2127–2135CrossRefGoogle Scholar
  66. Mathialagan S, Rodrigues A, Feng B (2017) Evaluation of renal transporter inhibition using creatinine as a substrate in vitro to assess the clinical risk of elevated serum creatinine. J Pharm Sci 106:2535–2541CrossRefGoogle Scholar
  67. Merino G, Jonker JW, Wagenaar E, Pulido MM, Molina AJ, Alvarez AI et al (2005) Transport of anthelmintic benzimidazole drugs by breast cancer resistance protein (BCRP/ABCG2). Drug Metab Dispos 33:614–618CrossRefGoogle Scholar
  68. Meyer Zu Schwabedissen H, Verstuyft C, Kroemer H, Becquemont L, Kim R (2010) Human multidrug and toxin extrusion 1 (MATE1/SLC47A1) transporter: functional characterization, interaction with OCT2 (SLC22A2), and single nucleotide polymorphisms. Am J Physiol Renal Physiol 298:F997–F1005CrossRefGoogle Scholar
  69. Moellentin D, Picone C, Leadbetter E (2008) Memantine-induced myoclonus and delirium exacerbated by trimethoprim. Ann Pharmacother 42:443–447CrossRefGoogle Scholar
  70. Morris M, Felmlee M (2008) Overview of the proton-coupled MCT (SLC16A) family of transporters: characterization, function and role in the transport of the drug of abuse γ-Hydroxybutyric acid. AAPS J 10:311–321CrossRefPubMedPubMedCentralGoogle Scholar
  71. Mothobi N, Masters J, Marriott D (2018) Fanconi syndrome due to tenofovir disoproxil fumarate reversed by switching to tenofovir alafenamide fumarate in an HIV-infected patient. Ther Adv Infect Dis 5:91–95PubMedPubMedCentralGoogle Scholar
  72. Müller F, König J, Hoier E, Mandery K, Fromm M (2013) Role of organic cation transporter OCT2 and multidrug and toxin extrusion proteins MATE1 and MATE2-K for transport and drug interactions of the antiviral lamivudine. Biochem Pharmacol 86:808–815CrossRefPubMedPubMedCentralGoogle Scholar
  73. Müller F, Pontones C, Renner B, Mieth M, Hoier E, Auge D et al (2015) N(1)-methylnicotinamide as an endogenous probe for drug interactions by renal cation transporters: studies on the metformin-trimethoprim interaction. Eur J Clin Pharmacol 71:85–94CrossRefPubMedPubMedCentralGoogle Scholar
  74. Müller F, Weitz D, Derdau V, Sandvoss M, Mertsch K, König J et al (2017) Contribution of MATE1 to renal secretion of the NMDA receptor antagonist Memantine. Mol Pharm 14:2991–2998CrossRefGoogle Scholar
  75. Nakamura T, Yonezawa A, Hashimoto S, Katsura T, Inui K (2010) Disruption of multidrug and toxin extrusion MATE1 potentiates cisplatin-induced nephrotoxicity. Biochem Pharmacol 80:1762–1767CrossRefGoogle Scholar
  76. Ochs H, Bodem G, Greenblatt D (1981) Impairment of digoxin clearance by coadministration of quinidine. J Clin Pharmacol 21:396–400CrossRefGoogle Scholar
  77. Odlind B, Beermann B, Lindström B (1983) Coupling between renal tubular secretion and effect of bumetanide. Clin Pharmacol Ther 34:805–809CrossRefGoogle Scholar
  78. Pan G, Giri N, Elmquist WF (2007) Abcg2/Bcrp1 mediates the polarized transport of antiretroviral nucleosides abacavir and zidovudine. Drug Metab Dispos 35:1165–1173CrossRefGoogle Scholar
  79. Pauline B, Noam Z, Dick P, Ozgür SN, Tibben MM, Beijnen JH et al (2004) Mechanism of the pharmacokinetic interaction between methotrexate and benzimidazoles: potential role for breast cancer resistance protein in clinical drug-drug interactions. Cancer Res 64:5804CrossRefGoogle Scholar
  80. Pedersen K, Christiansen B, Kjaer K, Klitgaard N, Nielsen-Kudsk F (1983a) Verapamil-induced changes in digoxin kinetics and intraerythrocytic sodium concentration. Clin Pharmacol Ther 34:8–13CrossRefGoogle Scholar
  81. Pedersen K, Christiansen B, Klitgaard N, Nielsen-Kudsk F (1983b) Changes in steady state digoxin pharmacokinetics during quinidine therapy in cardiac patients: influence of plasma quinidine concentration. Acta Pharmacol Toxicol (Copenh) 52:357–363CrossRefGoogle Scholar
  82. Pedersen K, Christiansen B, Klitgaard N, Nielsen-Kudsk F (1983c) Effect of quinidine on digoxin bioavailability. Eur J Clin Pharmacol 24:41–47CrossRefGoogle Scholar
  83. Pedersen K, Dorph-Pedersen A, Hvidt S, Klitgaard N, Nielsen-Kudsk F (1981) Digoxin-verapamil interaction. Clin Pharmacol Ther 30:311–316CrossRefGoogle Scholar
  84. Pedersen K, Dorph-Pedersen A, Hvidt S, Klitgaard N, Pedersen K (1982) The long-term effect of verapamil on plasma digoxin concentration and renal digoxin clearance in healthy subjects. Eur J Clin Pharmacol 22:123–127CrossRefGoogle Scholar
  85. Qi X, Cai Y, Gong L, Liu L, Chen F, Xiao Y et al (2007) Role of mitochondrial permeability transition in human renal tubular epithelial cell death induced by aristolochic acid. Toxicol Appl Pharmacol 222:105–110CrossRefGoogle Scholar
  86. Rameis H (1985) Quinidine-digoxin interaction: are the pharmacokinetics of both drugs altered? Int J Clin Pharmacol Ther Toxicol 23:145–153PubMedGoogle Scholar
  87. Ray A, Cihlar T, Robinson K, Tong L, Vela J, Fuller M et al (2006) Mechanism of active renal tubular efflux of tenofovir. Antimicrob Agents Chemother 50:3297–3304CrossRefPubMedPubMedCentralGoogle Scholar
  88. Ray A, Fordyce M, Hitchcock M (2016) Tenofovir alafenamide: a novel prodrug of tenofovir for the treatment of human immunodeficiency virus. Antivir Res 125:63–70CrossRefGoogle Scholar
  89. Reese M, Savina P, Generaux G, Tracey H, Humphreys J, Kanaoka E et al (2013) In vitro investigations into the roles of drug transporters and metabolizing enzymes in the disposition and drug interactions of dolutegravir, a HIV integrase inhibitor. Drug Metab Dispos 41:353–361CrossRefGoogle Scholar
  90. Robey RW, Steadman K, Polgar O, Bates SE (2005) ABCG2-mediated transport of photosensitizers: potential impact on photodynamic therapy. Cancer Biol Ther 4:187–194CrossRefGoogle Scholar
  91. Rodin S, Johnson B, Wilson J, Ritchie P, Johnson J (1988) Comparative effects of verapamil and isradipine on steady-state digoxin kinetics. Clin Pharmacol Ther 43:668–672CrossRefGoogle Scholar
  92. Schenck-Gustafsson K, Dahlqvist R (1981) Pharmacokinetics of digoxin in patients subjected to the quinidine-digoxin interaction. Br J Clin Pharmacol 11:181–186CrossRefPubMedPubMedCentralGoogle Scholar
  93. Serota D, Franch H, Cartwright E (2018) Acute kidney injury in a patient on Tenofovir Alafenamide fumarate after initiation of treatment for hepatitis C virus infection. Open Forum Infect Dis 5:ofy189PubMedPubMedCentralGoogle Scholar
  94. Shen H, Lai Y, Rodrigues D (2017) Organic anion transporter 2: an enigmatic human solute carrier. Drug Metab Dispos 45:228–236CrossRefGoogle Scholar
  95. Shibutani S, Dong H, Suzuki N, Ueda S, Miller F, Grollman AP (2007) Selective toxicity of aristolochic acids I and II. Drug Metab Dispos 35:1217–1222CrossRefGoogle Scholar
  96. Smith D, Gee W, Brater D, Lin E, Benet L (1980) Preliminary evaluation of furosemide-probenecid interaction in humans. J Pharm Sci 69:571–575CrossRefGoogle Scholar
  97. Stark AN, Jackson G, Carey PJ, Arfeen S, Proctor SJ (1989) Severe renal toxicity due to intermediate-dose methotrexate. Cancer Chemother Pharmacol 24:243–245CrossRefGoogle Scholar
  98. Stray K, Bam R, Birkus G, Hao J, Lepist E, Yant S et al (2013) Evaluation of the effect of cobicistat on the in vitro renal transport and cytotoxicity potential of tenofovir. Antimicrob Agents Chemother 57:4982–4989CrossRefPubMedPubMedCentralGoogle Scholar
  99. Suzuki M, Suzuki H, Sugimoto Y, Sugiyama Y (2003) ABCG2 transports sulfated conjugates of steroids and xenobiotics. J Biol Chem 278:22644–22649CrossRefGoogle Scholar
  100. Tahara H, Kusuhara H, Endou H, Koepsell H, Imaoka T, Fuse E et al (2005) A species difference in the transport activities of H2 receptor antagonists by rat and human renal organic anion and cation transporters. J Pharmacol Exp Ther 315:337–345CrossRefGoogle Scholar
  101. Takashima T, Wu C, Takashima-Hirano M, Katayama Y, Wada Y, Suzuki M et al (2013) Evaluation of breast cancer resistance protein function in hepatobiliary and renal excretion using PET with 11C-SC-62807. J Nucl Med 54:267–276CrossRefGoogle Scholar
  102. Takeda M, Khamdang S, Narikawa S, Kimura H, Hosoyamada M, Cha SH et al (2002) Characterization of methotrexate transport and its drug interactions with human organic anion transporters. J Pharmacol Exp Ther 302:666–671CrossRefGoogle Scholar
  103. Takeuchi A, Masuda S, Saito H, Hashimoto Y, Inui K-I (2000) Trans-stimulation effects of folic acid derivatives on methotrexate transport by rat renal organic anion transporter, OAT-K1. J Pharmacol Exp Ther 293:1034–1039PubMedGoogle Scholar
  104. Tang C, Shou M, Mei Q, Rushmore TH, Rodrigues AD (2000) Major role of human liver microsomal cytochrome P450 2C9 (CYP2C9) in the oxidative metabolism of celecoxib, a novel cyclooxygenase-II inhibitor. J Pharmacol Exp Ther 293:453–459PubMedGoogle Scholar
  105. Tanihara Y, Masuda S, Katsura T, Inui K (2009) Protective effect of concomitant administration of imatinib on cisplatin-induced nephrotoxicity focusing on renal organic cation transporter OCT2. Biochem Pharmacol 9:1263–1271CrossRefGoogle Scholar
  106. Tatu CA, Orem WH, Finkelman RB, Feder GL (1998) The etiology of Balkan endemic nephropathy: still more questions than answers. Environ Health Perspect 106:689–700PubMedPubMedCentralGoogle Scholar
  107. Uddin M, Gibson AA, Chen M, Carnes CA (2018) Sparreboom A Identification of MATE1 as a high-affinity carrier of dofetilide. Clin Pharmacol Ther 103:S53Google Scholar
  108. Uwai Y, Ida H, Tsuji Y, Katsura T, Inui K (2007) Renal transport of adefovir, cidofovir, and tenofovir by SLC22A family members (hOAT1, hOAT3, and hOCT2). Pharm Res 24:811–815CrossRefGoogle Scholar
  109. Volk EL, Farley KM, Wu Y, Li F, Robey RW, Schneider E (2002) Overexpression of wild-type breast cancer resistance protein mediates methotrexate resistance. Cancer Res 62:5035–5040PubMedGoogle Scholar
  110. Volk EL, Schneider E (2003) Wild-type breast cancer resistance protein (BCRP/ABCG2) is a methotrexate polyglutamate transporter. Cancer Res 63:5538–5543PubMedGoogle Scholar
  111. Vree T, Van Den Biggelaar-Martea M, Verwey-Van Wissen C (1995) Probenecid inhibits the renal clearance of frusemide and its acyl glucuronide. Br J Clin Pharmacol 39:692–695PubMedPubMedCentralGoogle Scholar
  112. Wagner D, Sager J, Duan H, Isoherranen N, Wang J (2017) Interaction and transport of methamphetamine and its primary metabolites by organic cation and multidrug and toxin extrusion transporters. Drug Metab Dispos 45:770–778CrossRefPubMedPubMedCentralGoogle Scholar
  113. Wang L, Sweet D (2013) Renal organic anion transporters (SLC22 family): expression, regulation, roles in toxicity, and impact on injury and disease. AAPS J 15:53–69CrossRefGoogle Scholar
  114. Wen CC, Yee SW, Liang X, Hoffmann TJ, Kvale MN, Banda Y, Jorgenson E, Schaefer C, Risch N, Giacomini KM (2015) Genome-wide association study identifies ABCG2 (BCRP) as an allopurinol transporter and a determinant of drug response. Clin Pharmacol Ther 5:518–525CrossRefGoogle Scholar
  115. Welling P, Dean S, Selen A, Kendall M, Wise R (1979) Probenecid: an unexplained effect on cephalosporin pharmacology. Br J Clin Pharmacol 8:491–495CrossRefPubMedPubMedCentralGoogle Scholar
  116. Woodward OM, Kottgen A, Coresh J, Boerwinkle E, Guggino WB, Kottgen M (2009) Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc Natl Acad Sci U S A 106:10338–10342CrossRefPubMedPubMedCentralGoogle Scholar
  117. Xue X, Gong LK, Maeda K, Luan Y, Qi XM, Sugiyama Y et al (2011) Critical role of organic anion transporters 1 and 3 in kidney accumulation and toxicity of aristolochic acid I. Mol Pharm 8:2183–2192CrossRefGoogle Scholar
  118. Yao X, Panichpisal K, Kurtzman N, Nugent K (2007) Cisplatin nephrotoxicity: a review. Am J Med Sci 334:115–124CrossRefGoogle Scholar
  119. Yonezawa A, Inui K (2011) Organic cation transporter OCT/SLC22A and H+/organic cation antiporter MATE/SLC47A are key molecules for nephrotoxicity of platinum agents. Biochem Pharmacol 5:563–568CrossRefGoogle Scholar
  120. Yonezawa A, Masuda S, Yokoo S, Katsura T, Inui K (2006) Cisplatin and oxaliplatin, but not carboplatin and nedaplatin, are substrates for human organic cation transporters (SLC22A1-3 and multidrug and toxin extrusion family). J Pharmacol Exp Ther 319:879–886CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Office of Clinical Pharmacology, Office of Translational ScienceCenter for Drug Evaluation and Research, Food and Drug AdministrationSilver SpringUSA
  2. 2.Shanghai Institute of Materia Medica, Chinese Academy of ScienceShanghaiChina

Personalised recommendations