Current Research Method in Transporter Study

  • Dianlei WangEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1141)


Transporters play an important role in the absorption, distribution, metabolism, and excretion (ADME) of drugs. In recent years, various in vitro, in situ/ex vivo, and in vivo methods have been established for studying transporter function and drug-transporter interaction. In this chapter, the major types of in vitro models for drug transport studies comprise membrane-based assays, cell-based assays (such as primary cell cultures, immortalized cell lines), and transporter-transfected cell lines with single transporters or multiple transporters. In situ/ex vivo models comprise isolated and perfused organs or tissues. In vivo models comprise transporter gene knockout models, natural mutant animal models, and humanized animal models. This chapter would be focused on the methods for the study of drug transporters in vitro, in situ/ex vivo, and in vivo. The applications, advantages, or limitations of each model and emerging technologies are also mentioned in this chapter.


Membrane-based assays Cell-based assays Transporter gene knockout models Natural mutant animal models Humanized animal models Imaging of drug transporters 



The work was supported in part by funding from the National Natural Science Foundation of China (No. 81473536). I would like to thank Ms. Cen Guo for the reviews and recommendations of this chapter.


  1. Abe K, Bridges AS, Brouwer KL (2009) Use of sandwich-cultured human hepatocytes to predict biliary clearance of angiotensin II receptor blockers and HMG-CoA reductase inhibitors. Drug Metab Dispos 37:447–452CrossRefGoogle Scholar
  2. Allen JD, Van Dort SC, Buitelaar M, van Tellingen O, Schinkel AH (2003) Mouse breast cancer resistance protein (Bcrp1/Abcg2) mediates etoposide resistance and transport, but etoposide oral availability is limited primarily by P-glycoprotein. Cancer Res 63:1339–1344PubMedGoogle Scholar
  3. Ambudkar SV, Lelong IH, Zhang J, Cardarelli CO, Gottesman MM, Pastan I (1992) Partial purification and reconstitution of the human multidrug-resistance pump: characterization of the drug-stimulatable ATP hydrolysis. Proc Natl Acad Sci U S A 89:8472–8476CrossRefPubMedPubMedCentralGoogle Scholar
  4. Artursson P (1990) Epithelial transport of drugs in cell culture. I: a model for studying the passive diffusion of drugs over intestinal absorptive (Caco-2) cells. J Pharm Sci 79:476–482CrossRefGoogle Scholar
  5. Audus KL, Borchardt RT (1986) Characterization of an in vitro blood-brain barrier model system for studying drug transport and metabolism. Pharm Res 3:81–87CrossRefGoogle Scholar
  6. Bailey DL, Willowson KP (2013) An evidence-based review of quantitative SPECT imaging and potential clinical applications. J Nucl Med 54:83–89CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bauer M, Karch R, Neumann F, Abrahim A, Wagner CC, Kletter K et al (2009) Age dependency of cerebral P-gp function measured with (R)-[11C]verapamil and PET. Eur J Clin Pharmacol 65:941–946Google Scholar
  8. Bauer M, Wulkersdorfer B, Karch R, Philippe C, Jäger W, Stanek J et al (2017) Effect of P-glycoprotein inhibition at the blood–brain barrier on brain distribution of (R)-[11C]verapamil in elderly vs. young subjects. Br J Clin Pharmacol 83:1991–1999CrossRefPubMedPubMedCentralGoogle Scholar
  9. Belinsky MG, Dawson PA, Shchaveleva I, Bain LJ, Wang R, Ling V et al (2005) Analysis of the in vivo functions of Mrp3. Mol Pharmacol 68:160–168CrossRefGoogle Scholar
  10. Bell CC, Hendriks DF, Moro SM, Ellis E, Walsh J, Renblom A et al (2016) Characterization of primary human hepatocyte spheroids as a model system for drug-induced liver injury, liver function and disease. Sci Rep 6:25187CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bell CC, Lauschke VM, Vorrink SU, Palmgren H, Duffin R, Andersson TB et al (2017) Transcriptional, functional, and mechanistic comparisons of stem cell–derived hepatocytes, HepaRG cells, and three-dimensional human hepatocyte spheroids as predictive in vitro systems for drug-induced liver injury. Drug Metab Dispos 45:419–429CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bi L, Chen J, Yuan X, Jiang Z, Chen W (2012) Salvianolic acid A positively regulates PTEN protein level and inhibits growth of A549 lung cancer cells. Biomed Rep 1:213–217CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bow DA, Perry JL, Miller DS, Pritchard JB, Brouwer KL (2008) Localization of P-gp (Abcb1) and Mrp2 (Abcc2) in freshly isolated rat hepatocytes. Drug Metab Dispos 36:198–202Google Scholar
  14. Brouwer KL, Keppler D, Hoffmaster KA, Bow DA, Cheng Y, Lai Y et al (2013) In vitro methods to support transporter evaluation in drug discovery and development. Clin Pharmacol Ther 94:95–112CrossRefPubMedGoogle Scholar
  15. Chu X, Bleasby K, Evers R (2013) Species differences in drug transporters and implications for translating preclinical findings to humans. Expert Opin Drug Metab Toxicol 9:237–252CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cindy QX, Milton MN, Gan LS (2007) Evaluation of drug-transporter interactions using in vitro and in vivo models. Curr Drug Metab 8:341–363CrossRefGoogle Scholar
  17. Cui Y, Konig J, Keppler D (2001) Vectorial transport by double-transfected cells expressing the human uptake transporter SLC21A8 and the apical export pump ABCC2. Mol Pharmacol 60:934–943CrossRefPubMedPubMedCentralGoogle Scholar
  18. Dallas S, Salphati L, Gomez-Zepeda D, Wanek T, Chen L, Chu X et al (2016) Generation and characterization of a breast cancer resistance protein humanized mouse model. Mol Pharmacol 89:492–504CrossRefPubMedPubMedCentralGoogle Scholar
  19. De Bruyn T, Chatterjee S, Fattah S, Keemink J, Nicolaï J, Augustijns P et al (2013) Sandwich-cultured hepatocytes: utility for in vitro exploration of hepatobiliary drug disposition and drug-induced hepatotoxicity. Expert Opin Drug Metab Toxicol 9:589–616CrossRefPubMedPubMedCentralGoogle Scholar
  20. Delacroix D, Guerre JP, LeBlanc P, Hickman C (2002) Radionuclide and radiation protection handbook 2nd edition. Radiat Prot Dosim 98:9–168CrossRefGoogle Scholar
  21. Doige CA, Sharom FJ (1992) Transport properties of P-glycoprotein in plasma membrane vesicles from multidrug-resistant Chinese hamster ovary cells. Biochim Biophys Acta 1109:161–171CrossRefPubMedGoogle Scholar
  22. Dumont JN (1972) Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals. J Morphol 136:153–179CrossRefPubMedGoogle Scholar
  23. Elsby R, Surry DD, Smith VN, Gray AJ (2008) Validation and application of Caco-2 assays for the in vitro evaluation of development candidate drugs as substrates or inhibitors of P-glycoprotein to support regulatory submissions. Xenbiotica 38:1140–1164CrossRefGoogle Scholar
  24. Elsinga PH, Hendrikse NH, Bart J, Vaalburg W, van Waarde A (2004) PET studies on P-glycoprotein function in the blood-brain barrier: how it affects uptake and binding of drugs within the CNS. Curr Pharm Des 10:1493–1503CrossRefPubMedGoogle Scholar
  25. Endres CJ, Hsiao P, Chung FS, Unadkat JD (2006) The role of transporters in drug interactions. Eur J Pharm Sci 27:501–517CrossRefPubMedGoogle Scholar
  26. Eyal S, Ke B, Muzi M, Link JM, Mankoff DA et al (2010) Regional P-glycoprotein activity and inhibition at the human blood-brain barrier as imaged by positron emission tomography. Clin Pharmacol Ther 87:579–585CrossRefPubMedPubMedCentralGoogle Scholar
  27. Fahrmayr C, König J, Auge D, Mieth M, Münch K, Segrestaa J et al (2013) Phase I and II metabolism and MRP2-mediated export of bosentan in a MDCKII-OATP1B1-CYP3A4-UGT1A1-MRP2 quadruple-transfected cell line. Br J Pharmacol 169:21–33CrossRefPubMedPubMedCentralGoogle Scholar
  28. Feng B, Mills JB, Davidson RE, Mireles RJ, Janiszewski JS, Troutman MD et al (2008) In vitro P-glycoprotein assays to predict the in vivo interactions of P-glycoprotein with drugs in the central nervous system. Drug Metab Dispos 36:268–275CrossRefPubMedGoogle Scholar
  29. Fogh J (1975) Fogh J and Trempe G in human tumor cells in vitro. Plenum, New York, pp 115–141CrossRefGoogle Scholar
  30. Forbes B, Shah A, Martin GP, Lansley AB (2003) The human bronchial epithelial cell line 16HBE14o- as a model system of the airways for studying drug transport. Int J Pharm 257:161–167CrossRefGoogle Scholar
  31. Fulcher ML, Gabriel S, Burns KA, Yankaskas JR, Randell SH (2005) Well-differentiated human airway epithelial cell cultures. Methods Mol Med 107:183–206PubMedGoogle Scholar
  32. Gameiro M, Silva R, Rocha-Pereira C, Carmo H, Carvalho F, Bastos ML et al (2017) Cellular models and in vitro assays for the screening of modulators of P-gp, MRP1 and BCRP. Molecules 22:4Google Scholar
  33. Gartzke D, Fricker G (2014) Establishment of optimized MDCK cell lines for reliable efflux transport studies. J Pharm Sci 103:1298–1304CrossRefGoogle Scholar
  34. Gellissen G, Janowicz ZA, Merckelbach A, Piontek M, Keup P, Weydemann U et al (1991) Heterologous gene expression in Hansenula polymorpha: efficient secretion of glucoamylase. Biotechnology 9:291–295PubMedGoogle Scholar
  35. Geyer J, Gavrilova O, Petzinger E (2009) Brain penetration of ivermectin and selamectin in mdr1a,b P-glycoprotein- and bcrp-deficient knockout mice. J Vet Pharmacol Ther 32:87–96CrossRefGoogle Scholar
  36. Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X et al (2010) Membrane transporters in drug development. Nat Rev Drug Discov 9:215–236CrossRefGoogle Scholar
  37. Goldberg H, Ling V, Wong PY, Skorecki K (1988) Reduced cyclosporin accumulation in multidrug-resistant cells. Biochem Biophys Res Commun 152:552–558CrossRefGoogle Scholar
  38. Graham FL, Smiley J, Russell WC, Nairn R (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36:59–74CrossRefGoogle Scholar
  39. Guguenguillouzo C, Guillouzo A (2010) General review on in vitro hepatocyte models and their applications. Methods Mol Biol 640:1–40CrossRefGoogle Scholar
  40. Gui C, Obaidat A, Chaguturu R, Hagenbuch B (2010) Development of a cell based high-throughput assay to screen for inhibitors of organic anion transporting polypeptides 1B1 and 1B3. Curr Chem Genomics 4:1–8CrossRefPubMedPubMedCentralGoogle Scholar
  41. Guo A, Marinaro W, Hu P, Sinko PJ (2002) Delineating the contribution of secretory transporters in the efflux of etoposide using Madin-Darby canine kidney (MDCK) cells overexpressing P-glycoprotein (P-gp), multidrug resistance-associated protein (MRP1), and canalicular multispecific organic anion transporter (cMOAT). Drug Metab Dispos 30:457–463Google Scholar
  42. Guo C, Yang K, Brouwer KR, St Claire RL 3rd, Brouwer KL (2016) Prediction of altered bile acid disposition due to inhibition of multiple transporters: an integrated approach using sandwich-cultured hepatocytes, mechanistic modeling and simulation. J Pharmacol Exp Ther 358:324–333CrossRefPubMedPubMedCentralGoogle Scholar
  43. Guo C, LaCerte C, Edwards JE, Brouwer KR, Brouwer KLR (2018) Farnesoid X receptor agonists obeticholic acid and chenodeoxycholic acid increase bile acid efflux in sandwich-cultured human hepatocytes: functional evidence and mechanisms. J Pharmacol Exp Ther 365:413–421CrossRefPubMedPubMedCentralGoogle Scholar
  44. Hayeshi R, Hilgendorf C, Artursson P, Augustijns P, Brodin B, Dehertogh P et al (2008) Comparison of drug transporter gene expression and functionality in Caco-2 cells from 10 different laboratories. Eur J Pharm Sci 35:383–396CrossRefGoogle Scholar
  45. Hendrikse NH, Vaalburg W (2002) Dynamics of multidrug resistance: P-glycoprotein analyses with positron emission tomography. Methods 27:228–233CrossRefGoogle Scholar
  46. Hendrikse NH, de Vries EG, Eriks-Fluks L, van der Graaf WT, Hospers GA, Willemsen AT et al (1999) A new in vivo method to study P-glycoprotein transport in tumors and the blood-brain barrier. Cancer Res 59:2411–2416PubMedGoogle Scholar
  47. Hidalgo IJ, Raub TJ, Borchardt RT (1989) Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 96:736–749CrossRefGoogle Scholar
  48. Higgins JW, Bao JQ, Ke AB, Manro JR, Fallon JK, Smith PC et al (2014) Utility of Oatp1a/1b-knockout and OATP1B1/3-humanized mice in the study of OATP-mediated pharmacokinetics and tissue distribution: case studies with pravastatin, atorvastatin, simvastatin, and carboxydichlorofluorescein. Drug Metab Dispos 42:182–192CrossRefGoogle Scholar
  49. Hilgendorf C, Ahlin G, Seithel A, Artursson P, Ungell AL, Karlsson J (2007) Expression of thirty-six drug transporter genes in human intestine, liver, kidney, and organotypic cell lines. Drug Metab Dispos 35:1333–1340CrossRefGoogle Scholar
  50. Hu Y, Smith DE (2016) Species differences in the pharmacokinetics of cefadroxil as determined in wild type and humanized PepT1 mice. Biochem Pharmacol 107:81–90CrossRefPubMedPubMedCentralGoogle Scholar
  51. Hu Y, Smith DE, Ma K, Jappar D, Thomas W, Hillgren KM (2008) Targeted disruption of peptide transporter Pept1 gene in mice significantly reduces dipeptide absorption in intestine. Mol Pharm 5:1122–1130CrossRefPubMedPubMedCentralGoogle Scholar
  52. Hu Y, Sampson KE, Xing L, Li N, Heyde BR, Xie J et al (2010) Two branched polar groups and polar linker moieties of thiophene amide derivatives are essential for MRP2/ABCC2 recognition. Drug Metab Lett 4:254–261CrossRefGoogle Scholar
  53. Hu Y, Xie Y, Wang Y, Chen X, Smith DE (2014) Development and characterization of a novel mouse line humanized for the intestinal peptide transporter PEPT1. Mol Pharm 11:3737–3746CrossRefPubMedPubMedCentralGoogle Scholar
  54. Imaoka H, Hoshino T, Takei S, Kinoshita T, Okamoto M, Kawayama T (2007) Interleukin-18 production and pulmonary function in COPD. Eur Respir J 31:287–297CrossRefGoogle Scholar
  55. Ishigami M, Tokui T, Komai T, Tsukahara K, Yamazaki M, Sugiyama Y (1995) Evaluation of the uptake of pravastatin by perfused rat liver and primary cultured rat hepatocytes. Pharm Res 12:1741–1745CrossRefGoogle Scholar
  56. Jager W, Gehring E, Hagenauer B, Aust S, Senderowicz A, Thalhammer T et al (2003) Biliary excretion of flavopiridol and its glucuronides in the isolated perfused rat liver: role of multidrug resistance protein 2 (Mrp2). Life Sci 73:2841–2854CrossRefGoogle Scholar
  57. Jansen PL, Peters WH, Lamers WH (1985) Hereditary chronic conjugated hyperbilirubinemia in mutant rats caused by defective hepatic anion transport. Hepatology 5:573–579CrossRefGoogle Scholar
  58. Jappar D, Wu SP, Hu Y, Smith DE (2010) Significance and regional dependency of peptide transporter (PEPT) 1 in the intestinal permeability of glycylsarcosine: in situ single-pass perfusion studies in wild-type and pept1 knockout mice. Drug Metab Dispos 38:1740–1749CrossRefPubMedPubMedCentralGoogle Scholar
  59. Jones HM, Barton HA, Lai Y, Bi YA, Kimoto E, Kempshall S et al (2012) Mechanistic pharmacokinetic modeling for the prediction of transporter-mediated disposition in humans from sandwich culture human hepatocyte data. Drug Metab Dispos 40:1007–1017CrossRefGoogle Scholar
  60. Jonker JW, Wagenaar E, Mol CA, Buitelaar M, Koepsell H, Smit JW et al (2001) Reduced hepatic uptake and intestinal excretion of organic cations in mice with a targeted disruption of the organic cation transporter 1 (Oct1 [Slc22a1]) gene. Mol Cell Biol 21:5471–5477CrossRefPubMedPubMedCentralGoogle Scholar
  61. Jonker JW, Buitelaar M, Wagenaar E, Van Der Valk MA, Scheffer GL, Scheper RJ et al (2002) The breast cancer resistance protein protects against a major chlorophyll-derived dietary phototoxin and protoporphyria. Proc Natl Acad Sci U S A 99:15649–15654CrossRefPubMedPubMedCentralGoogle Scholar
  62. Jonker JW, Wagenaar E, Van Eijl S, Schinkel AH (2003) Deficiency in the organic cation transporters 1 and 2 (Oct1/Oct2 [Slc22a1/Slc22a2]) in mice abolishes renal secretion of organic cations. Mol Cell Biol 23:7902–7908CrossRefPubMedPubMedCentralGoogle Scholar
  63. Kawamura K, Yamasaki T, Yui J, Hatori A, Konno F, Kumata K et al (2009) In vivo evaluation of P-glycoprotein and breast cancer resistance protein modulation in the brain using [11C]gefitinib. Nucl Med Biol 36:239–246CrossRefGoogle Scholar
  64. Keppler D (2005) Uptake and efflux transporters for conjugates in human hepatocytes. Methods Enzymol 400:531–542CrossRefGoogle Scholar
  65. Kiser GL, Gentzsch M, Kloser AK, Balzi E, Wolf DH, Goffeau A et al (2001) Expression and degradation of the cystic fibrosis transmembrane conductance regulator in Saccharomyces cerevisiae. Arch Biochem Biophys 390:195–205CrossRefGoogle Scholar
  66. Kobayashi M, Nakanishi T, Nishi K, Higaki Y, Okudaira H, Ono M et al (2014) Transport mechanisms of hepatic uptake and bile excretion in clinical hepatobiliary scintigraphy with 99mTc-N-pyridoxyl-5-methyltryptophan. Nucl Med Biol 41:338–342CrossRefGoogle Scholar
  67. Kopplow K, Letschert K, König J, Walter B, Keppler D (2005) Human hepatobiliary transport of organic anions analyzed by quadruple-transfected cells. Mol Pharmacol 68:1031–1038CrossRefGoogle Scholar
  68. Kurisu H, Kamisaka K, Koyo T, Yamasuge S, Igarashi H, Maezawa H et al (1991) Organic anion transport study in mutant rats with autosomal recessive conjugated hyperbilirubinemia. Life Sci 49:1003–1011CrossRefGoogle Scholar
  69. Langer O, Müller M (2004) Methods to assess tissue-specific distribution and metabolism of drugs. Curr Drug Metab 5:463–481CrossRefGoogle Scholar
  70. Lankas GR, Cartwright ME, Umbenhauer D (1997) P-glycoprotein deficiency in a subpopulation of CF-1 mice enhances avermectin-induced neurotoxicity. Toxicol Appl Pharmacol 143:357–365CrossRefGoogle Scholar
  71. Lau YY, Wu CY, Okochi H, Benet LZ (2004) Ex situ inhibition of hepatic uptake and efflux significantly changes metabolism: hepatic enzyme-transporter interplay. J Pharmacol Exp Ther 308:1040–1045CrossRefGoogle Scholar
  72. Lauschke VM, Hendriks DF, Bell CC, Andersson TB, Ingelman-Sundberg M (2016) Novel 3D culture systems for studies of human liver function and assessments of the hepatotoxicity of drugs and drug candidates. Chem Res Toxicol 29:1936–1955CrossRefGoogle Scholar
  73. LeCluyse EL, Bullock PL, Parkinson A, Hochman JH (1996) Cultured rat hepatocytes. Pharm Biotechnol 8:121–159CrossRefGoogle Scholar
  74. Leggas M, Adachi M, Scheffer GL, Sun D, Wielinga P, Du G et al (2004) Mrp4 confers resistance to topotecan and protects the brain from chemotherapy. Mol Cell Biol 24:7612–7621CrossRefPubMedPubMedCentralGoogle Scholar
  75. Lehmann T, Köhler C, Weidauer E, Taege C, Foth H (2001) Expression of MRP1 and related transporters in human lung cells in culture. Toxicology 167:59–72CrossRefGoogle Scholar
  76. Letschert K, Komatsu M, Hummel-Eisenbeiss J, Keppler D (2005) Vectorial transport of the peptide CCK-8 by double-transfected MDCKII cells stably expressing the organic anion transporter OATP1B3 (OATP8) and the export pump ABCC2. J Pharmacol Exp Ther 313:549–556CrossRefGoogle Scholar
  77. Li M, Yuan H, Li N, Song G, Zheng Y, Baratta M et al (2008) Identification of interspecies difference in efflux transporters of hepatocytes from dog, rat, monkey and human. Eur J Pharm Sci 35:114–126CrossRefGoogle Scholar
  78. Lin JH (1995) Species similarities and differences in pharmacokinetics. Drug Metab Dispos 23:1008–1021PubMedGoogle Scholar
  79. Lin JH, Yamazaki M (2003) Clinical relevance of P-glycoprotein in drug therapy. Drug Metab Rev 35:417–454CrossRefGoogle Scholar
  80. Lin H, Li H, Cho HJ, Bian S, Roh HJ, Lee MK et al (2007) Air-liquid interface (ALI) culture of human bronchial epithelial cell monolayers as an in vitro model for airway drug transport studies. J Pharm Sci 96:341–350CrossRefPubMedPubMedCentralGoogle Scholar
  81. Lin CJ, Tai Y, Huang MT, Tsai YF, Hsu HJ, Tzen KY et al (2010) Cellular localization of the organic cation transporters, OCT1 and OCT2, in brain microvessel endothelial cells and its implication for MPTP transport across the blood-brain barrier and MPTP-induced dopaminergic toxicity in rodents. J Neurochem 114:717–727CrossRefPubMedPubMedCentralGoogle Scholar
  82. Liu H, Yang H, Wang D, Liu Y, Liu X, Li Y et al (2009) Insulin regulates P-glycoprotein in rat brain microvessel endothelial cells via an insulin receptor-mediated PKC/NF-κB pathway but not a PI3K/Akt pathway. Eur J Pharmacol 602:277–282CrossRefPubMedPubMedCentralGoogle Scholar
  83. Mallants R, Van Oosterwyck K, Van Vaeck L, Mols R, De Clercq E, Augustijns P (2005) Multidrug resistance-associated protein 2 (MRP2) affects hepatobiliary elimination but not the intestinal disposition of tenofovir disoproxil fumarate and its metabolites. Xenobiotica 35:1055–1066CrossRefPubMedPubMedCentralGoogle Scholar
  84. Månsson S, Johansson E, Magnusson P, Chai CM, Hansson G, Petersson JS et al (2006) 13C imaging-a new diagnostic platform. Eur Radiol 16:57–67CrossRefPubMedPubMedCentralGoogle Scholar
  85. Markowitz JS, Devane CL, Liston HL, Boulton DW, Risch SC (2002) The effects of probenecid on the disposition of risperidone and olanzapine in healthy volunteers. Clin Pharmacol Ther 71:30–38CrossRefPubMedPubMedCentralGoogle Scholar
  86. Martignoni M, Groothuis GM, de Kanter R (2006) Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol 2:875–894CrossRefPubMedPubMedCentralGoogle Scholar
  87. Matsui R, Hattori R, Usami Y, Koyama M, Hirayama Y et al (2018) Functional characteristics of a renal H+/lipophilic cation antiport system in porcine LLC-PK1 cells and rats. Drug Metab Pharmacokinet 33:96–102CrossRefGoogle Scholar
  88. Meyer MJ, Seitz T, Brockmöller J, Tzvetkov MV (2017) Effects of genetic polymorphisms on the OCT1 and OCT2-mediated uptake of ranitidine. PLoS One 12:e0189521CrossRefPubMedPubMedCentralGoogle Scholar
  89. Muzi M, Mankoff DA, Link JM, Shoner S, Collier AC, Sasongko L et al (2009) Imaging of cyclosporine inhibition of P-glycoprotein activity using 11C-verapamil in the brain: studies of healthy humans. J Nucl Med 50:1267–1275CrossRefPubMedPubMedCentralGoogle Scholar
  90. Nakanishi T, Doyle LA, Hassel B, Wei Y, Bauer KS, Wu S et al (2003) Functional characterization of human breast cancer resistance protein (BCRP, ABCG2) expressed in the oocytes of Xenopus laevis. Mol Pharmacol 64:1452–1462CrossRefPubMedGoogle Scholar
  91. Nakanishi T, Shibue Y, Fukuyama Y, Yoshida K, Fukuda H, Shirasaka Y et al (2011) Quantitative time-lapse imaging-based analysis of drug-drug interaction mediated by hepatobiliary transporter, multidrug resistance-associated protein 2, in sandwich-cultured rat hepatocytes. Drug Metab Dispos 39:984–991CrossRefPubMedGoogle Scholar
  92. Nakanishi T, Ikenaga M, Fukuda H, Matsunaga N, Tamai I (2012) Application of quantitative time-lapse imaging (QTLI) for evaluation of Mrp2-based drug-drug interaction induced by liver metabolites. Toxicol Appl Pharmacol 263:244–250CrossRefPubMedGoogle Scholar
  93. Neyt S, Huisman MT, Vanhove C, Man HD, Vliegen M, Moerman L et al (2013) In vivo visualization and quantification of (disturbed) oatp-mediated hepatic uptake and Mrp2-mediated biliary excretion of 99mTc-mebrofenin in mice. J Nucl Med 54:624–630CrossRefPubMedGoogle Scholar
  94. Neyt S, Vliegen M, Verreet B, De Lombaerde S, Braeckman K, Vanhove C et al (2016) Synthesis, in vitro and in vivo small-animal SPECT evaluation of novel technetium labeled bile acid analogues to study (altered) hepatic transporter function. Nucl Med Biol 43:642–649CrossRefPubMedGoogle Scholar
  95. Noé J, Portmann R, Brun ME, Funk C (2007) Substrate-dependent drug-drug interactions between gemfibrozil, fluvastatin and other organic anion-transporting peptide (OATP) substrates on OATP1B1, OATP2B1, and OATP1B3. Drug Metab Dispos 35:1308–1314CrossRefPubMedGoogle Scholar
  96. Orlický J, Sulová Z, Dovinová I, Fiala R, Zahradníková A Jr, Breier A (2004) Functional fluo-3/AM assay on P-glycoprotein transport activity in L1210/VCR cells by confocal microscopy. Gen Physiol Biophys 23:357–366PubMedGoogle Scholar
  97. Osato DH, Huang CC, Kawamoto M, Johns SJ, Stryke D, Wang J et al (2003) Functional characterization in yeast of genetic variants in the human equilibrative nucleoside transporter, ENT1. Pharmacogenetics 13:297–301CrossRefPubMedGoogle Scholar
  98. Palmeira A, Sousa E, Vasconcelos MH, Pinto MM (2012) Three decades of P-gp inhibitors: skimming through several generations and scaffolds. Curr Med Chem 19:1946–2025Google Scholar
  99. Pan G, Winter TN, Roberts JC, Fairbanks CA, Elmquist WF (2010) Organic cation uptake is enhanced in bcrp1-transfected MDCKII cells. Mol Pharm 7:138–145CrossRefPubMedPubMedCentralGoogle Scholar
  100. Parvez MM, Jung JA, Kim JE, Shin HJ, Lim SJ, Cho MJ et al (2017) Characterization of 22 anti-tuberculosis drugs for the inhibitory effect on OAT and OCT transporters mediated uptake; possibility of drug-drug interactions. Drug Metab Pharmacokinet 32:S98–S99CrossRefGoogle Scholar
  101. Pinto M, Robine-Leon S, Appay M-D, Kedinger M, Triadou N, Dussaulx E et al (1983) Enterocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture. Biol Cell 47:323–330Google Scholar
  102. Poirier A, Belli S, Funk C, Otteneder MB, Portmann R, Heinig K et al (2012) Role of the intestinal peptide transporter PEPT1 in oseltamivir absorption: in vitro and in vivo studies. Drug Metab Dispos 40:1556–1565CrossRefPubMedPubMedCentralGoogle Scholar
  103. Polli JW, Wring SA, Humphreys JE, Huang L, Morgan JB, Webster LO et al (2001) Rational use of in vitro P-glycoprotein assays in drug discovery. J Pharmacol Exp Ther 299:620–628PubMedGoogle Scholar
  104. Pratt J, Venkatraman N, Brinker A, Xiao Y, Blasberg J, Thompson DC et al (2012) Use of zinc finger nuclease technology to knock out efflux transporters in C2BBe1 cells. Curr Protoc Toxicol Chapter 23:Unit 23.2Google Scholar
  105. Qian ZY, Huang Q, Zhou LY, Sun ZF (1999) Isolation and long term cultivation of rat brain microvascular endothelial cells. Chin J Cell Biol 21:42–45Google Scholar
  106. Rahbari R, Sheahan T, Modes V, Collier P, Macfarlane C, Badge RM (2009) A novel L1 retrotransposon marker for HeLa cell line identification. BioTechniques 46:277–284CrossRefPubMedPubMedCentralGoogle Scholar
  107. Reid DG, Murphy PS (2008) Fluorine magnetic resonance in vivo: a powerful tool in the study of drug distribution and metabolism. Drug Discov Today 13:473–480CrossRefPubMedGoogle Scholar
  108. Reis JM, Dezani AB, Pereira TM, Avdeef A, Serra CH (2013) Lamivudine permeability study: a comparison between PAMPA, ex vivo and in situ single-pass intestinal perfusion (SPIP) in rat jejunum. Eur J Pharm Sci 48:781–789CrossRefPubMedGoogle Scholar
  109. Rostami-Hodjegan A (2012) Physiologically based pharmacokinetics joined with in vitro-in vivo extrapolation of ADME: a marriage under the arch of systems pharmacology. Clin Pharmacol Ther 92:50–61CrossRefPubMedGoogle Scholar
  110. Rubio-Aliaga I, Frey I, Boll M, Groneberg DA, Eichinger HM, Balling R et al (2003) Targeted disruption of the peptide transporter Pept2 gene in mice defines its physiological role in the kidney. Mol Cell Biol 23:3247–3252CrossRefPubMedPubMedCentralGoogle Scholar
  111. Sadiq MW, Uchida Y, Hoshi Y, Tachikawa M, Terasaki T, Hammarlund-Udenaes M (2015) Validation of a P-glycoprotein (P-gp) humanized mouse model by integrating selective absolute quantification of human MDR1, mouse Mdr1a and Mdr1b protein expressions with in vivo functional analysis for blood-brain barrier transport. PLoS One 10:e0118638Google Scholar
  112. Saito A, Ishiguro N, Maeda K, Kishimoto W, Ebner T, Roth W, et al (2007) Characterization of the transcellular transport properties of OATP1B3 substrates in new versions of double transfected MDCK II cells, OATP1B3/MDR1, OATP1B3/MRP2 and OATP1B3/BCRP. International Society for the Study of Xenobiotics MeetingGoogle Scholar
  113. Salphati L, Chu X, Chen L, Prasad B, Dallas S, Evers R et al (2014) Evaluation of organic anion transporting polypeptide 1B1 and 1B3 humanized mice as a translational model to study the pharmacokinetics of statins. Drug Metab Dispos 42:1301–1313CrossRefGoogle Scholar
  114. Sampson KE, Brinker A, Pratt J, Venkatraman N, Xiao Y, Blasberg J et al (2015) Zinc finger nuclease-mediated gene knockout results in loss of transport activity for P-glycoprotein, BCRP, and MRP2 in Caco-2 cells. Drug Metab Dispos 43:199–207CrossRefGoogle Scholar
  115. Sarkadi B, Price EM, Boucher RC, Germann UA, Scarborough GA (1992) Expression of the human multidrug resistance cDNA in insect cells generates a high activity drug-stimulated membrane ATPase. J Biol Chem 267:4854–4858PubMedGoogle Scholar
  116. Sasaki M, Suzuki H, Ito K, Abe T, Sugiyama Y (2002) Transcellular transport of organic anions across a double-transfected Madin-Darby canine kidney II cell monolayer expressing both human organic anion-transporting polypeptide (OATP2/SLC21A6) and multidrug resistance-associated protein 2 (MRP2/ABCC2). J Biol Chem 277:6497–6503CrossRefGoogle Scholar
  117. Sasaki M, Suzuki H, Aoki J, Ito K, Meier PJ, Sugiyama Y (2004) Prediction of in vivo biliary clearance from the in vitro transcellular transport of organic anions across a double-transfected Madin-Darby canine kidney II monolayer expressing both rat organic anion transporting polypeptide 4 and multidrug resistance associated protein 2. Mol Pharmacol 66:450–459CrossRefGoogle Scholar
  118. Sasongko L, Link JM, Muzi M, Mankoff DA, Yang X, Collier AC et al (2005) Imaging P-glycoprotein transport activity at the human blood-brain barrier with positron emission tomography. Clin Pharmacol Ther 77:503–514CrossRefGoogle Scholar
  119. Sawamiphak S, Sophasan S, Endou H, Boonchird C (2005) Functional expression of the rat organic anion transporter 1 (rOAT1) in Saccharomyces cerevisiae. Biochim Biophys Acta 1720:44–51CrossRefGoogle Scholar
  120. Scheer N, Wolf CR (2014) Genetically humanized mouse models of drug metabolizing enzymes and transporters and their applications. Xenobiotica 44:96–108CrossRefPubMedPubMedCentralGoogle Scholar
  121. Scheer N, Balimane P, Hayward MD, Buechel S, Kauselmann G, Wolf CR (2012) Generation and characterization of a novel multidrug resistance protein 2 humanized mouse line. Drug Metab Dispos 40:2212–2218CrossRefPubMedPubMedCentralGoogle Scholar
  122. Scheffer GL, Pijnenborg AC, Smit EF, Müller M, Postma DS, Timens W (2002) Multidrug resistance related molecules in human and murine lung. J Clin Pathol 55:332–339CrossRefPubMedPubMedCentralGoogle Scholar
  123. Scherer WF, Syverton JT, Gey GO (1953) Studies on the propagation in vitro of poliomyelitis viruses. IV. Viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix. J Exp Med 97:695–710CrossRefPubMedPubMedCentralGoogle Scholar
  124. Schinkel AH, Smit JJ, van Tellingen O, Beijnen JH, Wagenaar E, van Deemter L et al (1994) Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77:491–502CrossRefPubMedPubMedCentralGoogle Scholar
  125. Schinkel AH, Mayer U, Wagenaar E, Mol CA, van Deemter L, Smit JJ et al (1997) Normal viability and altered pharmacokinetics in mice lacking mdr1-type (drug-transporting) P-glycoproteins. Proc Natl Acad Sci U S A 94:4028–4033CrossRefPubMedPubMedCentralGoogle Scholar
  126. Schwarz UI, Dixit SG, Leake BF, Kim R (2006) Identification and functional characterisation of oatp1b3 allelic variants using transfected Hela cells. North American Regional International Society for the Study of Xenobiotics Meeting8306, p 349–361Google Scholar
  127. Sharma V, Prior JL, Belinsky MG, Kruh GD, Piwnica-Worms D (2005) Characterization of a 67Ga/68Ga radiopharmaceutical for SPECT and PET of MDR1 P-plycoprotein transport activity in vivo: validation in multidrug-resistant tumors and at the blood–brain barrier. J Nucl Med 46:354–364PubMedPubMedCentralGoogle Scholar
  128. Sharom FJ, Yu X, Lu P, Liu R, Chu JW, Szabó K et al (1999) Interaction of the P-glycoprotein multidrug transporter (MDR1) with high affinity peptide chemosensitizers in isolated membranes, reconstituted systems, and intact cells. Biochem Pharmacol 58:571–586CrossRefPubMedPubMedCentralGoogle Scholar
  129. Shingaki T, Hume WE, Takashima T, Katayama Y, Okauchi T, Hayashinaka E et al (2015) Quantitative evaluation of mMate1 function based on minimally invasive measurement of tissue concentration using PET with [11C]metformin in mouse. Pharm Res 32:2538–2547PubMedPubMedCentralGoogle Scholar
  130. Shitara Y, Li AP, Kato Y, Lu C, Ito K, Itoh T et al (2003) Function of uptake transporters for taurocholate and estradiol 17beta-D-glucuronide in cryopreserved human hepatocytes. Drug Metab Pharmacokinet 18:33–41CrossRefGoogle Scholar
  131. Sigel E (1990) Use of Xenopus oocytes for the functional expression of plasma membrane proteins. J Membr Biol 117:201–221CrossRefGoogle Scholar
  132. Smith DL, Xu W, Varnold RL (1991) Oogenesis and oocyte isolation. In: Kay BK, Peng HB (eds) Xenopus laevis: practical uses in cell and molecular biology, Methods Cell Biol, vol 36, pp 45–60CrossRefGoogle Scholar
  133. Soars MG, Webborn PJ, Riley RJ (2009) Impact of hepatic uptake transporters on pharmacokinetics and drug−drug interactions: use of assays and models for decision making in the pharmaceutical industry. Mol Pharm 6:1662–1677CrossRefGoogle Scholar
  134. Sporty JL, Horálková L, Ehrhardt C (2008) In vitro cell culture models for the assessment of pulmonary drug disposition. Expert Opin Drug Metab Toxicol 4:333–345CrossRefGoogle Scholar
  135. Stieger B, Fattinger K, Madon J, Kullak-Ublick GA, Meier PJ (2000) Drug- and estrogen-induced cholestasis through inhibition of the hepatocellular bile salt export pump (Bsep) of rat liver. Gastroenterology 118:422–430CrossRefGoogle Scholar
  136. Sun JJ, Xie L, Liu XD (2006) Transport of carbamazepine and drug interactions at the blood-brain barrier. Acta Pharmacol Sin 27:249–253CrossRefPubMedPubMedCentralGoogle Scholar
  137. Swift B, Pfeifer ND, Brouwer KL (2010) Sandwich-cultured hepatocytes: an in vitro model to evaluate hepatobiliary transporter-based drug interactions and hepatotoxicity. Drug Metab Rev 42:446–471CrossRefPubMedPubMedCentralGoogle Scholar
  138. Takano A, Kusuhara H, Suhara T, Ieiri I, Morimoto T, Lee YJ et al (2006) Evaluation of in vivo P-glycoprotein function at the blood-brain barrier among MDR1 gene polymorphisms by using 11C-verapamil. J Nucl Med 47:1427–1433PubMedGoogle Scholar
  139. Takashima T, Nagata H, Nakae T, Cui Y, Wada Y, Kitamura S et al (2010) Positron emission tomography studies using (15R)-16-m-[11C]tolyl-17,18,19,20-tetranorisocarbacyclin methyl ester for the evaluation of hepatobiliary transport. J Pharmacol Exp Ther 335:314–323CrossRefGoogle Scholar
  140. Takashima T, Wu C, Takashima-Hirano M, Katayama Y, Wada Y, Suzuki M et al (2013) Evaluation of breast cancer resistance protein function in hepatobiliary and renal excretion using PET with 11C-SC-62807. J Nucl Med 54:267–276CrossRefGoogle Scholar
  141. Tamai I, Tsuji A, Kin Y (1988) Carrier- mediated transport of cefixime, a new cephalosporin antibiotic, via an organic anion transport system in the rat renal brush-border membrane. J Pharmacol Exp Ther 246:338–344PubMedGoogle Scholar
  142. Tanaka H, Shigenobu K (1996) Confocal laser scanning microscopy for the study of membrane transporter proteins. Nihon Rinsho 54:711–717PubMedGoogle Scholar
  143. Tian X, Li J, Zamek-Gliszczynski MJ, Bridges AS, Zhang P, Patel NJ et al (2007) Roles of P-glycoprotein, Bcrp, and Mrp2 in biliary excretion of spiramycin in mice. Antimicrob Agents Chemother 51:3230–3234CrossRefPubMedPubMedCentralGoogle Scholar
  144. Tournier N, Saba W, Cisternino S, Peyronneau MA, Damont A, Goutal S et al (2013) Effects of selected OATP and/or ABC transporter inhibitors on the brain and whole-body distribution of glyburide. AAPS J 15:1082–1090CrossRefPubMedPubMedCentralGoogle Scholar
  145. Tripp J, Essl C, Iancu CV, Boles E, Choe JY, Oreb M (2017) Establishing a yeast-based screening system for discovery of human GLUT5 inhibitors and activators. Sci Rep 7:6197CrossRefPubMedPubMedCentralGoogle Scholar
  146. Uwai Y, Taniguchi R, Motohashi H, Saito H, Okuda M, Inui K (2004) Methotrexate-loxoprofen interaction: involvement of human organic anion transporters hOAT1 and hOAT3. Drug Metab Pharmacokinet 19:369–374CrossRefGoogle Scholar
  147. Valenzuela P, Medina A, Rutter WJ, Ammerer G, Hall BD (1982) Synthesis and assemble of hepatitis B virus surface antigen particles in yeast. Nature 298:347–350CrossRefGoogle Scholar
  148. van de Steeg E, van der Kruijssen CM, Wagenaar E, Burggraaff JE, Mesman E, Kenworthy KE et al (2009) Methotrexate pharmacokinetics in transgenic mice with liver-specific expression of human organic anion-transporting polypeptide 1B1 (SLCO1B1). Drug Metab Dispos 37:277–281CrossRefGoogle Scholar
  149. van de Steeg E, Stránecký V, Hartmannová H, Nosková L, Hřebíček M, Wagenaar E et al (2012) Complete OATP1B1 and OATP1B3 deficiency causes human rotor syndrome by interrupting conjugated bilirubin reuptake into the liver. J Clin Invest 122:519–528CrossRefPubMedPubMedCentralGoogle Scholar
  150. van de Steeg E, van Esch A, Wagenaar E, Kenworthy KE, Schinkel AH (2013) Influence of human OATP1B1, OATP1B3, and OATP1A2 on the pharmacokinetics of methotrexate and paclitaxel in humanized transgenic mice. Clin Cancer Res 19:821–832CrossRefGoogle Scholar
  151. van der Deen M, Marks H, Willemse BW, Postma DS, Müller M, Smit EF et al (2006) Diminished expression of multidrug resistance-associated protein 1 (MRP1) in bronchial epithelium of COPD patients. Virchows Arch 449:682–688CrossRefGoogle Scholar
  152. van der Deen M, de Vries EG, Visserman H, Zandbergen W, Postma DS, Timens W et al (2007) Cigarette smoke extract affects functional activity of MRP1 in bronchial epithelial cells. J Biochem Mol Toxicol 21:243–251CrossRefGoogle Scholar
  153. van der Deen M, Homan S, Timmer-Bosscha H, Scheper RJ, Timens W, Postma DS et al (2008) Effect of COPD treatments on MRP1-mediated transport in bronchial epithelial cells. Int J Chron Obstruct Pulmon Dis 3:469–475CrossRefPubMedPubMedCentralGoogle Scholar
  154. van Staden CJ, Morgan RE, Ramachandran B, Chen Y, Lee PH, Hamadeh HK (2012) Membrane vesicle ABC transporter assays for drug safety assessment. Curr Protoc Toxicol 23Google Scholar
  155. Varma MV, Lai Y, Feng B, Litchfield J, Goosen TC, Bergman A (2012) Physiologically based modeling of pravastatin transporter-mediated hepatobiliary disposition and drug-drug interactions. Pharm Res 29:2860–2873CrossRefGoogle Scholar
  156. Vlaming ML, Mohrmann K, Wagenaar E, de Waart DR, Elferink RP, Lagas JS et al (2006) Carcinogen and anticancer drug transport by Mrp2 in vivo: studies using Mrp2 (Abcc2) knockout mice. J Pharmacol Exp Ther 318:319–327CrossRefGoogle Scholar
  157. Vlaming ML, Teunissen SF, van de Steeg E, van Esch A, Wagenaar E, Brunsveld L et al (2014) Bcrp1;Mdr1a/b;Mrp2 combination knockout mice: altered disposition of the dietary carcinogen PhIP (2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine) and its genotoxic metabolites. Mol Pharmacol 85:520–530CrossRefGoogle Scholar
  158. Wagner CC, Langer O (2011) Approaches using molecular imaging technology—use of PET in clinical microdose studies. Adv Drug Deliv Rev 63:539–546CrossRefGoogle Scholar
  159. Wagner CC, Bauer M, Karch R, Feurstein T, Kopp S, Chiba P et al (2009) A pilot study to assess the efficacy of tariquidar to inhibit P-glycoprotein at the human blood-brain barrier with (R)-11C-verapamil and PET. J Nucl Med 50:1954–1961CrossRefPubMedPubMedCentralGoogle Scholar
  160. Wang Q, Rager JD, Weinstein K, Kardos PS, Dobson GL, Li J et al (2005) Evaluation of the MDR-MDCK cell line as a permeability screen for the blood-brain barrier. Int J Pharm 288:349–359CrossRefGoogle Scholar
  161. Wang DL, Wang CY, Cao Y, Zhang X, Tao XH, Yang LL et al (2014) Allyl isothiocyanate increases MRP1 function and expression in a human bronchial epithelial cell line. Oxidative Med Cell Longev 2014:547379Google Scholar
  162. Wang S, Wang S, Wang C, Chen Y, Li J, Wang X et al (2015) Upregulation of multidrug resistance-associated protein 1 by allyl isothiocyanate in human bronchial epithelial cell: involvement of c-Jun N-terminal kinase signaling pathway. Oxidative Med Cell Longev 2015:903782Google Scholar
  163. Warren MS, Zerangue N, Woodford K, Roberts LM, Tate EH, Feng B et al (2009) Comparative gene expression profiles of ABC transporters in brain microvessel endothelial cells and brain in five species including human. Pharmacol Res 59:404–413CrossRefPubMedPubMedCentralGoogle Scholar
  164. Weaver JL, Pine PS, Aszalos A, Schoenlein PV, Currier SJ, Padmanabhan R et al (1991) Laser scanning and confocal microscopy of daunorubicin, doxorubicin, and rhodamine 123 in multidrug-resistant cells. Exp Cell Res 196:323–329CrossRefGoogle Scholar
  165. Wieczorke R, Dlugai S, Krampe S, Boles E (2003) Characterisation of mammalian GLUT glucose transporters in a heterologous yeast expression system. Cell Physiol Biochem 13:123–134CrossRefGoogle Scholar
  166. Wijnholds J, Evers R, van Leusden MR, Mol CA, Zaman GJ, Mayer UA et al (1997) Increased sensitivity to anticancer drugs and decreased inflammatory response in mice lacking the multidrug resistance-associated protein. Nat Med 3:1275–1279CrossRefGoogle Scholar
  167. Williamson G, Aeberli I, Miguet L, Zhang Z, Sanchez MB, Crespy V et al (2007) Interaction of positional isomers of quercetin glucuronides with the transporter ABCC2 (cMOAT, MRP2). Drug Metab Dispos 35:1262–1268CrossRefGoogle Scholar
  168. Yamazaki M, Neway WE, Ohe T, Chen I, Rowe JF, Hochman JH et al (2001) In vitro substrate identification studies for p-glycoprotein-mediated transport: species difference and predictability of in vivo results. J Pharmacol Exp Ther 296:723–735PubMedGoogle Scholar
  169. Yang HW, Liu HY, Liu X, Zhang DM, Liu YC, Liu XD et al (2008) Increased P-glycoprotein function and level after long-term exposure of four antiepileptic drugs to rat brain microvascular endothelial cells in vitro. Neurosci Lett 434:299–303CrossRefPubMedPubMedCentralGoogle Scholar
  170. Yang K, Guo C, Woodhead JL, RLC I 3rd, Watkins PB, Siler SQ et al (2016) Sandwich-cultured hepatocytes as a tool to study drug disposition and drug-induced liver injury. J Pharm Sci 105:443–459CrossRefPubMedPubMedCentralGoogle Scholar
  171. Yasumiba S, Tazuma S, Ochi H, Chayama K, Kajiyama G (2001) CyclosporinA reduces canalicular membrane fluidity and regulates transporter function in rats. Biochem J 354:591–596CrossRefPubMedPubMedCentralGoogle Scholar
  172. Zaher H, Khan AA, Palandra J, Brayman TG, Yu L, Ware JA (2006) Breast cancer resistance protein (Bcrp/abcg2) is a major determinant of sulfasalazine absorption and elimination in the mouse. Mol Pharm 3:55–61CrossRefGoogle Scholar
  173. Zalups RK, Aslamkhan AG, Ahmad S (2004) Human organic anion transporter 1 mediates cellular uptake of cysteine-S conjugates of inorganic mercury. Kidney Int 66:251–261CrossRefGoogle Scholar
  174. Zelcer N, Huisman MT, Reid G, Wielinga P, Breedveld P, Kuil A et al (2003) Evidence for two interacting ligand binding sites in human multidrug resistance protein 2 (ATP binding cassette C2). J Biol Chem 278:23538–23544CrossRefGoogle Scholar
  175. Zhang L, Schaner ME, Giacomini KM (1998) Functional characterization of an organic cation transporter (hOCT1) in a transiently transfected human cell line (HeLa). J Pharmacol Exp Ther 286:354–361PubMedGoogle Scholar
  176. Zhang L, Liu XD, Xie L, Wang GJ (2003) P-glycoprotein restricted transport of nimodipine across blood-brain barrier. Acta Pharmacol Sin 24:903–906PubMedGoogle Scholar
  177. Zhang W, Li J, Allen SM, Weiskircher EA, Huang Y, George RA et al (2009) Silencing the breast cancer resistance protein expression and function in caco-2 cells using lentiviral vector-based short hairpin RNA. Drug Metab Dispos 37:737–744CrossRefPubMedGoogle Scholar
  178. Zhang Y, Jackson JP, St Claire RL, Freeman K, Brouwer KR, Edwards JE (2017) Obeticholic acid, a selective farnesoid x receptor agonist, regulates bile acid homeostasis in sandwich-cultured human hepatocytes. Pharmacol Res Perspect 5:e00329CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of PharmacyAnhui University of Chinese MedicineHefeiChina

Personalised recommendations