Advertisement

Contributions of Drug Transporters to Blood-Placental Barrier

  • Li Liu
  • Xiaodong LiuEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1141)

Abstract

The placenta is the only organ linking two different individuals, mother and fetus, termed as blood-placental barrier. The functions of the blood-placental barrier are to regulate material transfer between the maternal and fetal circulation. The main functional units are the chorionic villi within which fetal blood is separated by only three or four cell layers (placental membrane) from maternal blood in the surrounding intervillous space. A series of drug transporters such as P-glycoprotein (P-GP), breast cancer resistance protein (BCRP), multidrug resistance-associated proteins (MRP1, MRP2, MRP3, MRP4, and MRP5), organic anion-transporting polypeptides (OATP4A1, OATP1A2, OATP1B3, and OATP3A1), organic anion transporter 4 (OAT4), organic cation transporter 3 (OCT3), organic cation/carnitine transporters (OCTN1 and OCTN2), multidrug and toxin extrusion 1 (MATE1), and equilibrative nucleoside transporters (ENT1 and ENT2) have been demonstrated on the apical membrane of syncytiotrophoblast, some of which also expressed on the basolateral membrane of syncytiotrophoblast or fetal capillary endothelium. These transporters are involved in transport of most drugs in the placenta, in turn, affecting drug distribution in fetus. Moreover, expressions of these transporters in the placenta often vary along with the gestational ages and are also affected by pathophysiological factor. This chapter will mainly illustrate function and expression of these transporters in placentas, their contribution to drug distribution in fetus, and their clinical significance.

Keywords

Blood-placental barrier Syncytiotrophoblast Transplacental transport SLC transporter ABC transporters Fetus drug distribution 

Notes

Acknowledgments

The project was in part supported by the National Natural Science Foundation of China (No. 81872930; 81573490) and “Double First-Class” University Project (No. CPU2018GY22).

References

  1. Afrouzian M, Al-Lahham R, Patrikeeva S, Xu M, Fokina V, Fischer WG et al (2018) Role of the efflux transporters BCRP and MRP1 in human placental bio-disposition of pravastatin. Biochem Pharmacol 156:467–478CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ahmadimoghaddam D, Staud F (2013) Transfer of metformin across the rat placenta is mediated by organic cation transporter 3 (OCT3/SLC22A3) and multidrug and toxin extrusion 1 (MATE1/SLC47A1) protein. Reprod Toxicol 39:17–22CrossRefGoogle Scholar
  3. Ahmadimoghaddam D, Hofman J, Zemankova L, Nachtigal P, Dolezelova E, Cerveny L et al (2012) Synchronized activity of organic cation transporter 3 (Oct3/Slc22a3) and multidrug and toxin extrusion 1 (Mate1/Slc47a1) transporter in transplacental passage of MPP+ in rat. Toxicol Sci 128:471–481CrossRefGoogle Scholar
  4. Ahmadimoghaddam D, Zemankova L, Nachtigal P, Dolezelova E, Neumanova Z, Cerveny L et al (2013) Organic cation transporter 3 (OCT3/SLC22A3) and multidrug and toxin extrusion 1 (MATE1/SLC47A1) transporter in the placenta and fetal tissues: expression profile and fetus protective role at different stages of gestation. Biol Reprod 88:55CrossRefGoogle Scholar
  5. Akashi T, Nishimura T, Takaki Y, Takahashi M, Shin BC, Tomi M et al (2016) Layer II of placental syncytiotrophoblasts expresses MDR1 and BCRP at the apical membrane in rodents. Reprod Toxicol 65:375–381CrossRefGoogle Scholar
  6. Akita H, Suzuki H, Hirohashi T, Takikawa H, Sugiyama Y (2002) Transport activity of human MRP3 expressed in Sf9 cells: comparative studies with rat MRP3. Pharm Res 19:34–41CrossRefGoogle Scholar
  7. Aleksunes LM, Cui Y, Klaassen CD (2008) Prominent expression of xenobiotic efflux transporters in mouse extraembryonic fetal membranes compared to placenta. Drug Metab Dispos 36:1960–1970CrossRefPubMedPubMedCentralGoogle Scholar
  8. Al-Saleh E, Al-Harmi J, Al-Rashdan I, Al-Shammari M, Nandakumaran M (2007) Maternal-fetal transport kinetics of methotrexate in perfused human placenta: in vitro study. J Matern Fetal Neonatal Med 20:411–418CrossRefGoogle Scholar
  9. Al-Saleh E, Al-Harmi J, Nandakumaran M, Al-Shammari M (2008) Transport kinetics of cisplatin in the perfused human placental lobule in vitro. J Matern Fetal Neonatal Med 21:726–731CrossRefGoogle Scholar
  10. Arceci RJ, Croop JM, Horwitz SB, Housman D (1988) The gene encoding multidrug resistance is induced and expressed at high levels during pregnancy in the secretory epithelium of the uterus. Proc Natl Acad Sci U S A 85:4350–4354CrossRefPubMedPubMedCentralGoogle Scholar
  11. Arceci RJ, Baas F, Raponi R, Horwitz SB, Housman D, Croop JM (1990) Multidrug resistance gene expression is controlled by steroid hormones in the secretory epithelium of the uterus. Mol Reprod Dev 25:101–109CrossRefGoogle Scholar
  12. Atkinson DE, Greenwood SL, Sibley CP, Glazier JD, Fairbairn LJ (2003) Role of MDR1 and MRP1in trophoblast cells, elucidated using retroviral gene transfer. Am J Physiol Cell Physiol 285:C584–C591CrossRefGoogle Scholar
  13. Aye IL, Paxton JW, Evseenko DA, Keelan JA (2007) Expression, localisation and activity of ATP binding cassette (ABC) family of drug transporters in human amnion membranes. Placenta 28:868–877CrossRefGoogle Scholar
  14. Azzaroli F, Mennone A, Feletti V, Simoni P, Baglivo E, Montagnani M et al (2007) Clinical trial: modulation of human placental multidrug resistance proteins in cholestasis of pregnancy by ursodeoxycholic acid. Aliment Pharmacol Ther 26:1139–1346CrossRefGoogle Scholar
  15. Azzaroli F, Raspanti ME, Simoni P, Montagnani M, Lisotti A, Cecinato P et al (2013) High doses of ursodeoxycholic acid up-regulate the expression of placental breast cancer resistance protein in patients affected by intrahepatic cholestasis of pregnancy. PLoS One 8:e64101CrossRefPubMedPubMedCentralGoogle Scholar
  16. Bai M, Ma Z, Sun D, Zheng C, Weng Y, Yang X et al (2017) Multiple drug transporters mediate the placental transport of sulpiride. Arch Toxicol 91:3873–3884CrossRefGoogle Scholar
  17. Barros LF, Bustamante JC, Yudilevich DL, Jarvis SM (1991) Adenosine transport and nitrobenzylthioinosine binding in human placental membrane vesicles from brush-border and basal sides of the trophoblast. J Membr Biol 119:151–161CrossRefGoogle Scholar
  18. Barros LF, Yudilevich DL, Jarvis SM, Beaumont N, Young JD, Baldwin SA (1995) Immunolocalisation of nucleoside transporters in human placental trophoblast and endothelial cells: evidence for multiple transporter isoforms. Pflugers Arch 429:394–339CrossRefGoogle Scholar
  19. Behravan J, Piquette-Miller M (2007) Drug transport across the placenta, role of the ABC drug efflux transporters. Expert Opin Drug Metab Toxicol 3:819–830CrossRefGoogle Scholar
  20. Biondi C, Ferretti ME, Lunghi L, Medici S, Cervellati F, Pavan B et al (2010) cAMP efflux from human trophoblast cell lines: a role for multidrug resistance protein (MRP)1 transporter. Mol Hum Reprod 16:481–491CrossRefGoogle Scholar
  21. Blazquez AG, Briz O, Romero MR, Rosales R, Monte MJ, Vaquero J et al (2012) Characterization of the role of ABCG2 as a bile acid transporter in liver and placenta. Mol Pharmacol 81:273–283CrossRefGoogle Scholar
  22. Blazquez AG, Briz O, Gonzalez-Sanchez E, Perez MJ, Ghanem CI, Marin JJ (2014) The effect of acetaminophen on the expression of BCRP in trophoblast cells impairs the placental barrier to bile acids during maternal cholestasis. Toxicol Appl Pharmacol 277:77–85CrossRefGoogle Scholar
  23. Bridges CC, Joshee L, Zalups RK (2012) Placental and fetal disposition of mercuric ions in rats exposed to methylmercury: role of Mrp2. Reprod Toxicol 34:628–634CrossRefPubMedPubMedCentralGoogle Scholar
  24. Briz O, Serrano MA, MacIas RI, Gonzalez-Gallego J, Marin JJ (2003a) Role of organic anion-transporting polypeptides, OATP-A, OATP-C and OATP-8, in the human placenta-maternal liver tandem excretory pathway for foetal bilirubin. Biochem J 371:897–905CrossRefPubMedPubMedCentralGoogle Scholar
  25. Briz O, Macias RI, Serrano MA, González-Gallego J, Bayón JE, Marin JJ (2003b) Excretion of foetal bilirubin by the rat placenta-maternal liver tandem. Placenta 24:462–472CrossRefGoogle Scholar
  26. Briz O, Macias RI, Perez MJ, Serrano MA, Marin JJ (2006) Excretion of fetal biliverdin by the rat placenta-maternal liver tandem. Am J Physiol Regul Integr Comp Physiol 290:R749–R756CrossRefGoogle Scholar
  27. Brown KR (1998) Changes in the use profile of mectizan: 1987–1997. Ann Trop Med Parasitol 92(Suppl 1):S61–S64CrossRefGoogle Scholar
  28. Camus M, Deloménie C, Didier N, Faye A, Gil S, Dauge MC et al (2006) Increased expression of MDR1 mRNAs and P-glycoprotein in placentas from HIV-1 infected women. Placenta 27:699–706CrossRefGoogle Scholar
  29. Capparelli E, Rakhmanina N, Mirochnick M (2005) Pharmacotherapy of perinatal HIV. Semin Fetal Neonatal Med 10:161–175CrossRefGoogle Scholar
  30. Ceckova M, Reznicek J, Ptackova Z, Cerveny L, Müller F, Kacerovsky M et al (2016) Role of ABC and solute carrier transporters in the placental transport of lamivudine. Antimicrob Agents Chemother 60:5563–5572CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ceckova-Novotna M, Pavek P, Staud F (2006) P-glycoprotein in the placenta: expression, localization, regulation and function. Reprod Toxicol 22:400–410CrossRefGoogle Scholar
  32. Cekic D, Bellarosa C, Garcia-Mediavilla MV, Rigato I, Pascolo L, Ostrow JD et al (2003) Upregulation in the expression of multidrug resistance protein Mrp1 mRNA and protein by increased bilirubin production in rat. Biochem Biophys Res Commun 311:891–896CrossRefGoogle Scholar
  33. Cerveny L, Ptackova Z, Ceckova M, Karahoda R, Karbanova S, Jiraskova L et al (2018) Equilibrative nucleoside transporter 1 (ENT1, SLC29A1) facilitates transfer of the antiretroviral drug abacavir across the placenta. Drug Metab Dispos 46:1817–1826CrossRefGoogle Scholar
  34. Cha SH, Sekine T, Kusuhara H, Yu E, Kim JY, Kim DK et al (2000) Molecular cloning and characterization of multispecific organic anion transporter 4 expressed in the placenta. J Biol Chem 275:4507–4512CrossRefGoogle Scholar
  35. Chang TT, Shyu MK, Huang MC, Hsu CC, Yeh SY, Chen MR, Lin CJ (2011) Hypoxia-mediated down-regulation of OCTN2 and PPARα expression in human placentas and in BeWo cells. Mol Pharm 8:117–125CrossRefGoogle Scholar
  36. Chekir C, Nakatsuka M, Noguchi S, Konishi H, Kamada Y, Sasaki A et al (2006) Accumulation of advanced glycation end products in women with preeclampsia: possible involvement of placental oxidative and nitrative stress. Placenta 27:225–233CrossRefGoogle Scholar
  37. Chen YH, Wang JP, Wang H, Sun MF, Wei LZ, Wei W et al (2005) Lipopolysaccharide treatment downregulates the expression of the pregnane X receptor, cyp3a11 and mdr1a genes in mouse placenta. Toxicology 211:242–252CrossRefGoogle Scholar
  38. Chishu T, Sai Y, Nishimura T, Sato K, Kose N, Nakashima E (2008) Potential of various drugs to inhibit nucleoside uptake in rat syncytiotrophoblast cell line, TR-TBT 18d-1. Placenta 29:461–467CrossRefGoogle Scholar
  39. Clayette P, Jorajuria S, Dormont D (2000) Significance of P-glycoprotein for the pharmacology and clinical use of HIV protease inhibitors. AIDS 14:235–236CrossRefGoogle Scholar
  40. Cleal JK, Glazier JD, Ntani G, Crozier SR, Day PE, Harvey NC et al (2011) Facilitated transporters mediate net efflux of amino acids to the fetus across the basal membrane of the placental syncytiotrophoblast. J Physiol 589:987–997CrossRefPubMedPubMedCentralGoogle Scholar
  41. Clifton VL, Read MA, Leitch IM, Giles WB, Boura AL, Robinson PJ et al (1995) Corticotropin-releasing hormone-induced vasodilatation in the human fetal-placental circulation: involvement of the nitric oxide-cyclic guanosine 3′,5′-monophosphate-mediated pathway. J Clin Endocrinol Metab 80:2888–2893PubMedGoogle Scholar
  42. Coles LD, Lee IJ, Hassan HE, Eddington ND (2009a) Distribution of saquinavir, methadone, and buprenorphine in maternal brain, placenta, and fetus during two different gestational stages of pregnancy in mice. J Pharm Sci 98:2832–2846CrossRefGoogle Scholar
  43. Coles LD, Lee IJ, Voulalas PJ, Eddington ND (2009b) Estradiol and progesterone-mediated regulation of P-GP in P-GP overexpressing cells (NCI-ADR-RES) and placental cells (JAR). Mol Pharm 6:1816–1825CrossRefGoogle Scholar
  44. Collier AC, Ganley NA, Tingle MD, Blumenstein M, Marvin KW, Paxton JW et al (2002) UDP-glucuronosyltransferase activity, expression and cellular localization in human placenta at term. Biochem Pharmacol 63:409–419CrossRefGoogle Scholar
  45. Collier AC, Keelan JA, Van Zijl PE, Paxton JW, Mitchell MD, Tingle MD (2004) Human placental glucuronidation and transport of 3’azido-3′-deoxythymidine and uridine diphosphate glucuronic acid. Drug Metab Dispos 32:813–820CrossRefGoogle Scholar
  46. Cui T, Liu Y, Men X, Xu Z, Wu L, Liu S et al (2009) Bile acid transport correlative protein mRNA expression profile in human placenta with intrahepatic cholestasis of pregnancy. Saudi Med J 30:1406–1410PubMedGoogle Scholar
  47. Cygalova L, CeckovaM PP, Staud F (2008) Role of breast cancer resistance protein (Bcrp/Abcg2) in fetal protection during gestation in rat. Toxicol Lett 178:176–180CrossRefGoogle Scholar
  48. do Imperio GE, Bloise E, Javam M, Lye P, Constantinof A, Dunk C et al (2018) Chorioamnionitis induces a specific signature of placental ABC transporters associated with an increase of mir-331-5p in the human preterm placenta. Cell Physiol Biochem 45:591–604CrossRefGoogle Scholar
  49. Dunk CE, Pappas JJ, Lye P, Kibschull M, Javam M, Bloise E et al (2018) P-glycoprotein (P-GP)/ABCB1 plays a functional role in extravillous trophoblast (EVT) invasion and is decreased in the pre-eclamptic placenta. J Cell Mol Med 22:5378–5393CrossRefPubMedPubMedCentralGoogle Scholar
  50. el-Ashmawy IM, el-Nahas AF, Bayad AE (2011) Teratogenic and cytogenetic effects of ivermectin and its interaction with P-glycoprotein inhibitor. Res Vet Sci 90:116–123CrossRefGoogle Scholar
  51. Endres CJ, Moss AM, Ishida K, Govindarajan R, Unadkat JD (2016) The role of the equilibrative nucleoside transporter 1 on tissue and fetal distribution of ribavirin in the mouse. Biopharm Drug Dispos 37:336–344CrossRefPubMedPubMedCentralGoogle Scholar
  52. Escudero C, Casanello P, Sobrevia L (2008) Human equilibrative nucleoside transporters 1 and 2 may be differentially modulated by A2B adenosine receptors in placenta microvascular endothelial cells from pre-eclampsia. Placenta 29:816–825CrossRefGoogle Scholar
  53. Estiú MC, Monte MJ, Rivas L, Moirón M, Gomez-Rodriguez L, Rodriguez-Bravo T et al (2015) Effect of ursodeoxycholic acid treatment on the altered progesterone and bile acid homeostasis in the mother-placenta-foetus trio during cholestasis of pregnancy. Br J Clin Pharmacol 79:316–329CrossRefPubMedPubMedCentralGoogle Scholar
  54. Evseenko DA, Paxton JW, Keelan JA (2006) ABC drug transporter expression and functional activity in trophoblast-like cell lines and differentiating primary trophoblast. Am J Physiol Regul Integr Comp Physiol 290:R1357–R1365CrossRefGoogle Scholar
  55. Evseenko DA, Murthi P, Paxton JW, Reid G, Emerald BS, Mohankumar KM et al (2007) The ABC transporter BCRP/ABCG2 is a placental survival factor, and its expression is reduced in idiopathic human fetal growth restriction. FASEB J 21:3592–3605CrossRefGoogle Scholar
  56. Farrell J, Menconi MJ, Keates AC, Kelly CP (2002) P-glycoprotein-170 inhibition significantly reduces cortisol and ciclosporin efflux from human intestinal epithelial cells and T lymphocytes. Aliment Pharmacol Ther 16:1021–1023CrossRefGoogle Scholar
  57. Francois LN, Gorczyca L, Du J, Bircsak KM, Yen E, Wen X et al (2017) Down-regulation of the placental BCRP/ABCG2 transporter in response to hypoxia signaling. Placenta 51:57–63CrossRefPubMedPubMedCentralGoogle Scholar
  58. Furuya K, Yoshida T, Takagi S, Kanbegawa A, Yamashita H (1976) Radioimmunoassay of 16alpha-hydroxy-dehydroepiandrosterone and its sulfate. Steroids 27:797–812CrossRefGoogle Scholar
  59. Gedeon C, Behravan J, Koren G, Piquette-Miller M (2006) Transport of glyburide by placental ABC transporters: implications in fetal drug exposure. Placenta 27:1096–1102CrossRefGoogle Scholar
  60. Ghoneim RH, Kojovic D, Piquette-Miller M (2017) Impact of endotoxin on the expression of drug transporters in the placenta of HIV-1 transgenic (HIV-Tg) rats. Eur J Pharm Sci 102:94–102CrossRefGoogle Scholar
  61. Gil S, Saura R, Forestier F, Farinotti R (2005) P-glycoprotein expression of the human placenta during pregnancy. Placenta 26:268–270CrossRefGoogle Scholar
  62. Govindarajan R, Bakken AH, Hudkins KL, Lai Y, Casado FJ, Pastor-Anglada M et al (2007) In situ hybridization and immunolocalization of concentrative and equilibrative nucleoside transporters in the human intestine, liver, kidneys, and placenta. Am J Physiol Regul Integr Comp Physiol 293:R1809–R1822CrossRefGoogle Scholar
  63. Griffiths M, Yao SY, Abidi F, Phillips SE, Cass CE, Young JD et al (1997) Molecular cloning and characterization of a nitrobenzylthioinosine-insensitive (ei) equilibrativenucleoside transporter from human placenta. Biochem J 328:739–743CrossRefPubMedPubMedCentralGoogle Scholar
  64. Grube M, Meyer Zu Schwabedissen H, Draber K, Präger D, Möritz KU, Linnemann K et al (2005) Expression, localization, and function of the carnitine transporter octn2 (slc22a5) in human placenta. Drug Metab Dispos 33:31–37CrossRefGoogle Scholar
  65. Grube M, Reuther S, Meyer Zu Schwabedissen H, Köck K, Draber K, Ritter CA et al (2007) Organic anion transporting polypeptide 2B1 and breast cancer resistance protein interact in the transepithelial transport of steroid sulfates in human placenta. Drug Metab Dispos 35:30–35CrossRefPubMedPubMedCentralGoogle Scholar
  66. Gude NM, Roberts CT, Kalionis B, King RG (2004) Growth and function of the normal human placenta. Thromb Res 114:397–407CrossRefGoogle Scholar
  67. Guzmán-Gutiérrez E, Arroyo P, Salsoso R, Fuenzalida B, Sáez T, Leiva A et al (2014) Role of insulin and adenosine in the human placenta microvascular and macrovascular endothelial cell dysfunction in gestational diabetes mellitus. Microcirculation 21:26–37CrossRefGoogle Scholar
  68. Hagenbuch B (2007) Cellular entry of thyroid hormones by organic anion transporting polypeptides. Best Pract Res Clin Endocrinol Metab 21:209–221CrossRefGoogle Scholar
  69. Han LW, Gao C, Mao Q (2018) An update on expression and function of P-GP/ABCB1 and BCRP/ABCG2 in the placenta and fetus. Expert Opin Drug Metab Toxicol 14:817–829CrossRefPubMedPubMedCentralGoogle Scholar
  70. Hirano T, Yasuda S, Osaka Y, Asari M, Kobayashi M, Itagaki S et al (2008) The inhibitory effects of fluoroquinolones on L-carnitine transport in placental cell line BeWo. Int J Pharm 351:113–118CrossRefGoogle Scholar
  71. Hirohashi T, Suzuki H, Takikawa H, Sugiyama Y (2000) ATP-dependent transport of bile salts by rat multidrug resistance-associated protein 3 (Mrp3). J Biol Chem 275:2905–2910CrossRefGoogle Scholar
  72. Hnat MD, Meadows JW, Brockman DE, Pitzer B, Lyall F, Myatt L (2005) Heat shock protein-70 and 4-hydroxy-2-nonenal adducts in human placental villous tissue of normotensive, preeclamptic and intrauterine growth restricted pregnancies. Am J Obstet Gynecol 193:836–840CrossRefGoogle Scholar
  73. Huang FD, Kung FL, Tseng YC, Chen MR, Chan HS, Lin CJ (2009) Regulation of protein expression and function of OCTN2 in forskolin-induced syncytialization in BeWo cells. Placenta 30:187–194CrossRefGoogle Scholar
  74. Huisman MT, Smit JW, Schinkel AH (2000) Significance of P-glycoprotein for the pharmacology and clinical use of HIV protease inhibitors. AIDS 14:237–242CrossRefGoogle Scholar
  75. Huisman MT, Smit JW, Wiltshire HR, Hoetelmans RM, Beijnen JH, Schinkel AH (2001) P-glycoprotein limits oral availability, brain, and fetal penetration of saquinavir even with high doses of ritonavir. Mol Pharmacol 59:806–813CrossRefGoogle Scholar
  76. Hung TH, Skepper JN, Burton GJ (2001) In vitro ischemia-reperfusion injury in term human placenta as a model for oxidative stress in pathological pregnancies. Am J Pathol 159:1031–1043CrossRefPubMedPubMedCentralGoogle Scholar
  77. Ito S (2001) Transplacental treatment of fetal tachycardia: implications of drug transporting proteins in placenta. Semin Perinatol 25:196–201CrossRefGoogle Scholar
  78. Jauniaux E, Gulbis B, Burton GJ (2003) The human first trimester gestational sac limits rather than facilitates oxygen transfer to the foetus-a review. Placenta 24:S86–S93CrossRefGoogle Scholar
  79. Javam M, Audette MC, Iqbal M, Bloise E, Gibb W, Matthews SG (2014) Effect of oxygen on multidrug resistance in term human placenta. Placenta 35:324–330CrossRefGoogle Scholar
  80. Jiraskova L, Cerveny L, Karbanova S, Ptackova Z, Staud F (2018) Expression of concentrative nucleoside transporters (SLC28A) in the human placenta: effects of gestation age and prototype differentiation-affecting agents. Mol Pharm 15:2732–2741CrossRefGoogle Scholar
  81. Jonker JW, Smit JW, Brinkhuis RF, Maliepaard M, Beijnen JH, Schellens JH et al (2000) Role of breast cancer resistance protein in the bioavailability and fetal penetration of topotecan. J Natl Cancer Inst 92:1651–1656CrossRefGoogle Scholar
  82. Jonker JW, Buitelaar M, Wagenaar E, Van Der Valk MA, Scheffer GL, Scheper RJ et al (2002) The breast cancer resistance protein protects against a major chlorophyll-derived dietary phototoxin and protoporphyria. Proc Natl Acad Sci U S A 99:15649–15654CrossRefPubMedPubMedCentralGoogle Scholar
  83. Joshi AA, Vaidya SS, St-Pierre MV, Mikheev AM, Desino KE, Nyandege AN et al (2016) Placental ABC transporters: biological impact and pharmaceutical significance. Pharm Res 33:2847–2878CrossRefPubMedPubMedCentralGoogle Scholar
  84. Kalabis GM, Kostaki A, Andrews MH, Petropoulos S, Gibb W, Matthews SG (2005) Multidrug resistance phosphoglycoprotein (ABCB1) in the mouse placenta: fetal protection. Biol Reprod 73:591–597CrossRefGoogle Scholar
  85. Kalabis GM, Petropoulos S, Wd G, Matthews SG (2007) Breast cancer resistance protein (Bcrp1/Abcg2) in mouse placenta and yolk sac: ontogeny and its regulation by progesterone. Placenta 28:1073–1081CrossRefGoogle Scholar
  86. Khong TY, De Wolf F, Robertson WB, Brosens I (1986) Inadequate maternal vascular response to placentation in pregnancies complicated by pre-eclampsia and by small for gestational age infants. Br J Obstet Gynaecol 93:1049–1059CrossRefGoogle Scholar
  87. Kim WY, Benet LZ (2004) P-glycoprotein (P-GP/MDR1)-mediated efflux of sex-steroid hormones and modulation of P-GP expression in vitro. Pharm Res 21:1284–1293CrossRefGoogle Scholar
  88. Kimber-Trojnar Z, Marciniak B, Leszczyńska-Gorzelak B, Trojnar M, Oleszczuk J (2008) Glyburide for the treatment of gestational diabetes mellitus. Pharmacol Rep 60:308–318PubMedGoogle Scholar
  89. Kingdom J, Huppertz B, Seaward G, Kaufmann P (2000) Development of the placental villous tree and its consequences for fetal growth. Eur J Obstet Gynecol Reprod Biol 92:35–43CrossRefGoogle Scholar
  90. Kleinman CS, Nehgme RA (2004) Cardiac arrhythmias in the human fetus. Pediatric Cardiol 25:234–251CrossRefGoogle Scholar
  91. Kliman HJ, Quaratella SB, Setaro AC, Siegman EC, Subha ZT, Tal R et al (2018) Pathway of maternal serotonin to the human embryo and fetus. Endocrinology 159:1609–1629CrossRefGoogle Scholar
  92. Kool M, van der Linden M, de Haas M, Scheffer GL, de Vree JM, Smith AJ et al (1999) MRP3, an organic anion transporter able to transport anti-cancer drugs. Proc Natl Acad Sci U S A 96:6914–6919CrossRefPubMedPubMedCentralGoogle Scholar
  93. Kummu M, Sieppi E, Koponen J, Laatio L, Vähäkangas K, Kiviranta H et al (2015) Organic anion transporter 4 (OAT 4) modifies placental transfer of perfluorinated alkyl acids PFOS and PFOA in human placental ex vivo perfusion system. Placenta 36:1185–1191CrossRefGoogle Scholar
  94. Lahjouji K, Elimrani I, Lafond J, Leduc L, Qureshi IA, Mitchell GA (2004) L-carnitine transport in human placental brush-border membranes is mediated by the sodium-dependent organic cation transporter OCTN2. Am J Physiol Cell Physiol 287:C263–C269CrossRefGoogle Scholar
  95. Lankas GR, Wise LD, Cartwright ME, Pippert T, Umbenhauer DR (1998) Placental P-glycoprotein deficiency enhances susceptibility to chemically induced birth defects in mice. Reprod Toxicol 12:457–463CrossRefGoogle Scholar
  96. Leazer TM, Klaassen CD (2003) The presence of xenobiotic transporters in rat placenta. Drug Metab Dispos 31:153–167CrossRefGoogle Scholar
  97. Lee NY, Sai Y, Nakashima E, Ohtsuki S, Kang YS (2011) 6-Mercaptopurine transport by equilibrative nucleoside transporters in conditionally immortalized rat syncytiotrophoblast cell lines TR-TBTs. J Pharm Sci 100:3773–3782CrossRefGoogle Scholar
  98. Lee N, Hebert MF, Prasad B, Easterling TR, Kelly EJ, Unadkat JD (2013) Effect of gestational age on mRNA and protein expression of polyspecific organic cation transporters during pregnancy. Drug Metab Dispos 41:2225–2232CrossRefPubMedPubMedCentralGoogle Scholar
  99. Lee N, Hebert MF, Wagner DJ, Easterling TR, Liang CJ, Rice K et al (2018) Organic Cation transporter 3 facilitates fetal exposure to metformin during pregnancy. Mol Pharmaco 94:1125–1131CrossRefGoogle Scholar
  100. Lin JH (2003) Drug-drug interaction mediated by inhibition and induction of P-glycoprotein. Adv Drug Deliv Rev 55:53–58CrossRefGoogle Scholar
  101. Lin Y, Bircsak KM, Gorczyca L, Wen X, Aleksunes LM (2017) Regulation of the placental BCRP transporter by PPAR gamma. J Biochem Mol Toxicol 31.  https://doi.org/10.1002/jbt.21880
  102. Lofthouse EM, Brooks S, Cleal JK, Hanson MA, Poore KR, O’Kelly IM et al (2015) Glutamate cycling may drive organic anion transport on the basal membrane of human placental syncytiotrophoblast. J Physiol 593:4549–4559CrossRefPubMedPubMedCentralGoogle Scholar
  103. Lofthouse EM, Cleal JK, O’Kelly IM, Sengers BG, Lewis RM (2018) Estrone sulphate uptake by the microvillous membrane of placental syncytiotrophoblast is coupled to glutamate efflux. Biochem Biophys Res Commun 506:237–242CrossRefPubMedPubMedCentralGoogle Scholar
  104. Loubière LS, Vasilopoulou E, Bulmer JN, Taylor PM, Stieger B, Verrey F et al (2010) Expression of thyroid hormone transporters in the human placenta and changes associated with intrauterine growth restriction. Placenta 31:295–304CrossRefGoogle Scholar
  105. Luckhardt M, Leiser R, Kingdom J, Malek A, Sager R, Kaisig C et al (1996) Effect of physiologic perfusion–fixation on the morphometrically evaluated dimensions of the term placental cotyledon. J Soc Gynecol Investig 3:166–171CrossRefGoogle Scholar
  106. Lye P, Bloise E, Dunk C, Javam M, Gibb W, Lye SJ et al (2013) Effect of oxygen on multidrug resistance in the first trimester human placenta. Placenta 34:817–823CrossRefGoogle Scholar
  107. Lye P, Bloise E, Javam M, Gibb W, Lye SJ, Matthews SG (2015) Impact of bacterial and viral challenge on multidrug resistance in first- and third-trimester human placenta. Am J Pathol 185:1666–1675CrossRefGoogle Scholar
  108. Lye P, Bloise E, Nadeem L, Gibb W, Lye SJ, Matthews SG (2018) Glucocorticoids modulate multidrug resistance transporters in the first trimester human placenta. J Cell Mol Med 22:3652–3660CrossRefPubMedPubMedCentralGoogle Scholar
  109. Ma Z, Yang X, Jiang T, Bai M, Zheng C, Zeng S et al (2017) Multiple SLC and ABC transporters contribute to the placental transfer of entecavir. Drug Metab Dispos 45:269–278CrossRefGoogle Scholar
  110. Maher JM, Slitt AL, Cherrington NJ, Cheng X, Klaassen CD (2005) Tissue distribution and hepatic and renal ontogeny of the multidrug resistance-associated protein (Mrp) family in mice. Drug Metab Dispos 33:947–955CrossRefGoogle Scholar
  111. Manceau S, Giraud C, Declèves X, Scherrmann JM, Artiguebieille F, Goffinet F et al (2012) ABC drug transporter and nuclear receptor expression in human cytotrophoblasts: influence of spontaneous syncytialization and induction by glucocorticoids. Placenta 33:927–932CrossRefGoogle Scholar
  112. Marín JJ, Macías RI, Briz O, Pérez MJ, Serrano MA (2005) Molecular bases of the excretion of fetal bile acids and pigments through the fetal liver-placenta-maternal liver pathway. Ann Hepatol 4:70–76CrossRefGoogle Scholar
  113. Mark PJ, Augustus S, Lewis JL, Hewitt DP, Waddell BJ (2009) Changes in the placental glucocorticoid barrier during rat pregnancy: impact on placental corticosterone levels and regulation by progesterone. Biol Reprod 80:1209–1215CrossRefPubMedPubMedCentralGoogle Scholar
  114. Marzolini C, Rudin C, Decosterd LA, Telenti A, Schreyer A, Biollaz J et al (2002) Transplacental passage of protease inhibitors at delivery. AIDS 16:889–893CrossRefPubMedPubMedCentralGoogle Scholar
  115. Mason CW, Buhimschi IA, Buhimschi CS, Dong Y, Weiner CP, Swaan PW (2011) ATP-binding cassette transporter expression in human placenta as a function of pregnancy condition. Drug Metab Dispos 39:1000–1007CrossRefPubMedPubMedCentralGoogle Scholar
  116. Mason CW, Lee GT, Dong Y, Zhou H, He L, Weiner CP (2014) Effect of prostaglandin E2 on multidrug resistance transporters in human placental cells. Drug Metab Dispos 42:2077–2086CrossRefPubMedPubMedCentralGoogle Scholar
  117. Matalon ST, Drucker L, Fishman A, Ornoy A, Lishner M (2008) The role of heat shock protein 27 in extravillous trophoblast differentiation. J Cell Biochem 103:719–729CrossRefGoogle Scholar
  118. Mathias AA, Hitti J, Unadkat JD (2005) P-glycoprotein and breast cancer resistance protein expression in human placentae of various gestational ages. Am J Physiol Regul Integr Comp Physiol 289:R963–R969CrossRefGoogle Scholar
  119. May K, Minarikova V, Linnemann K, Zygmunt M, Kroemer HK, Fusch C et al (2008) Role of the multidrug transporter proteins ABCB1 and ABCC2, in the diaplacental transport of talinolol in the term human placenta. Drug Metab Dispos 36:740–744CrossRefGoogle Scholar
  120. Meyer zu Schwabedissen HE, Jedlitschky G, Gratz M, Haenisch S, Linnemann K, Fusch C et al (2005a) Variable expression of MRP2 (ABCC2) in human placenta: influence of gestational age and cellular differentiation. Drug Metab Dispos 33:896–904CrossRefGoogle Scholar
  121. Meyer Zu Schwabedissen HE, Grube M, Heydrich B, Linnemann K, Fusch C, Kroemer HK et al (2005b) Expression, localization, and function of MRP5 (ABCC5), a transporter for cyclic nucleotides, in human placenta and cultured human trophoblasts: effects of gestational age and cellular differentiation. Am J Pathol 166:39–48CrossRefPubMedPubMedCentralGoogle Scholar
  122. Meyer Zu Schwabedissen HE, Grube M, Dreisbach A, Jedlitschky G, Meissner K, Linnemann K et al (2006) Epidermal growth factor-mediated activation of the map kinase cascade results in altered expression and function of ABCG2 (BCRP). Drug Metab Dispos 34:524–533CrossRefGoogle Scholar
  123. Mölsä M, Heikkinen T, Hakkola J, Hakala K, Wallerman O, Wadelius M et al (2005) Functional role of P-glycoprotein in the human blood-placental barrier. Clin Pharmacol Ther 78:123–131CrossRefGoogle Scholar
  124. Myllynen P, Kummu M, Kangas T, Ilves M, Immonen E, Rysä J et al (2008) ABCG2/BCRP decreases the transfer of a food-born chemical carcinogen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in perfused term human placenta. Toxicol Appl Pharmacol 232:210–217CrossRefGoogle Scholar
  125. Nagashige M, Ushigome F, Koyabu N, Hirata K, Kawabuchi M, Hirakawa T et al (2003) Basal membrane localization of MRP1 in human placental trophoblast. Placenta 24:951–958CrossRefGoogle Scholar
  126. Nishimura M, Naito S (2005) Tissue-specific mRNA expression profiles of human ATP-binding cassette and solute carrier transporter superfamilies. Drug Metab Pharmacokinet 20:452–477CrossRefGoogle Scholar
  127. Noguchi S, Nishimura T, Fujibayashi A, Maruyama T, Tomi M, Nakashima E (2015) Organic anion transporter 4-mediated transport of olmesartan at basal plasma membrane of human placental barrier. J Pharm Sci 104:3128–3135CrossRefGoogle Scholar
  128. Osses N, Sobrevia L, Cordova C, Jarvis SM, Yudilevich DL (1995) Transport and metabolism of adenosine in diabetic human placenta. Reprod Fertil Dev 7:1499–1503CrossRefGoogle Scholar
  129. Oudijk MA, Ruskamp JM, Ambachtsheer BE, Ververs TF, Stoutenbeek P, Visser GH et al (2002) Drug treatment of fetal tachycardias. Paediatr Drugs 4:49–63CrossRefGoogle Scholar
  130. Pascolo L, Fernetti C, Garcia-Mediavilla MV, Ostrow JD, Tiribelli C (2001) Mechanisms for the transport of unconjugated bilirubin in human trophoblastic BeWo cells. FEBS Lett 495:94–99CrossRefGoogle Scholar
  131. Pascolo L, Fernetti C, Pirulli D, Crovella S, Amoroso A, Tiribelli C (2003) Effects of maturation on RNA transcription and protein expression of four MRP genes in human placenta and in BeWo cells. Biochem Biophys Res Commun 303:259–265CrossRefGoogle Scholar
  132. Patel P, Weerasekera N, Hitchins M, Boyd CA, Johnston DG, Williamson C (2003) Semi quantitative expression analysis of MDR3, FIC1, BSEP, OATP-A, OATP-C,OATP-D, OATP-E and NTCP gene transcripts in 1st and 3rd trimester human placenta. Placenta 24:39–44CrossRefPubMedPubMedCentralGoogle Scholar
  133. Pawłowski KM, Mucha J, Majchrzak K, Motyl T, Król M (2013) Expression and role of PGP, BCRP, MRP1 and MRP3 in multidrug resistance of canine mammary cancer cells. BMC Vet Res 9:119CrossRefPubMedPubMedCentralGoogle Scholar
  134. Petropoulos S, Gibb W, Matthews SG (2010) Effect of glucocorticoids on regulation of placental multidrug resistance phosphoglycoprotein (P-GP) in the mouse. Placenta 31:803–810CrossRefPubMedPubMedCentralGoogle Scholar
  135. Petropoulos S, Gibb W, Matthews SG (2011) Glucocorticoid regulation of placental breast cancer resistance protein (Bcrp1) in the mouse. Reprod Sci 18:631–639CrossRefPubMedPubMedCentralGoogle Scholar
  136. Petrovic V, Piquette-Miller M (2010) Impact of polyinosinic/polycytidylic acid on placental and hepatobiliary drug transporters in pregnant rats. Drug Metab Dispos 38:1760–1766CrossRefGoogle Scholar
  137. Petrovic V, Piquette-Miller M (2015) Polyinosinic/polycytidylic acid-mediated changes in maternal and fetal disposition of lopinavir in rats. Drug Metab Dispos 43:951–957CrossRefPubMedPubMedCentralGoogle Scholar
  138. Petrovic V, Wang J-H, Piquette-Miller M (2008) Effect of endotoxin on the expression of placental drug transporters and glyburide disposition in pregnant rats. Drug Metab Dispos 36:1944–1950CrossRefPubMedPubMedCentralGoogle Scholar
  139. Petrovic V, Kojovic D, Cressman A, Piquette-Miller M (2015) Maternal bacterial infections impact expression of drug transporters in human placenta. Int Immunopharmacol 26:349–356CrossRefGoogle Scholar
  140. Pfeifer E, Parrott J, Lee GT, Domalakes E, Zhou H, He L et al (2018) Regulation of human placental drug transporters in HCV infection and their influence on direct acting antiviral medications. Placenta 69:32–39CrossRefPubMedPubMedCentralGoogle Scholar
  141. Pollex E, Lubetsky A, Koren G (2008) The role of placental breast cancer resistance protein in the efflux of glyburide across the human placenta. Placenta 29:743–747CrossRefGoogle Scholar
  142. Rabe T, Hösch R, Runnebaum B (1983) Diagnosis of intrauterine fetal growth retardation (IUGR) and placental insufficiency by a dehydroepiandrosterone sulfate (DHAS) loading test. Biol Res Pregnancy Perinatol 4:130–136PubMedGoogle Scholar
  143. Razak AA, Leach L, Ralevic V (2018) Impaired vasocontractile responses to adenosine in chorionic vessels of human term placenta from pregnant women with pre-existing and gestational diabetes. Diabetes Vasc Dis 15:528–540CrossRefGoogle Scholar
  144. Ritvos O (1988) Modulation of steroidogenesis in choriocarcinoma cells by choleratoxin, phorbol ester, epidermal growth factor and insulin-like growth factor I. Mol Cell Endocrinol 59:125–133CrossRefGoogle Scholar
  145. Rizwan AN, Burckhardt G (2007) Organic anion transporters of the SLC22 family: biopharmaceutical, physiological, and pathological roles. Pharm Res 24:450–470CrossRefGoogle Scholar
  146. Rytting E, Audus KL (2007) Effects of low oxygen levels on the expression and function of transporter OCTN2 in BeWo cells. J Pharm Pharmacol 59:1095–1102CrossRefGoogle Scholar
  147. Rytting E, Audus KL (2008) Contributions of phosphorylation to regulation of OCTN2 uptake of carnitine are minimal in BeWo cells. Biochem Pharmacol 75:745–751CrossRefGoogle Scholar
  148. Salomόn C, Westermeier F, Puebla C, Arroyo P, Guzmán-Gutiérrez E, Pardo F et al (2012) Gestational diabetes reduces adenosine transport in human placental microvascular endothelium, an effect reversed by insulin. PLoS One 7:e40578CrossRefGoogle Scholar
  149. Sata R, Ohtani H, Tsujimoto M, Murakami H, Koyabu N, Nakamura T et al (2005) Functional analysis of organic cation transporter 3 expressed in human placenta. J Pharmacol Exp Ther 315:888–895CrossRefGoogle Scholar
  150. Sato K, Sugawara J, Sato T, Mizutamari H, Suzuki T, Ito A et al (2003) Expression of organic anion transporting polypeptide E (OATP-E) in human placenta. Placenta 24:144–148CrossRefGoogle Scholar
  151. Sato K, Sai Y, Nishimura T, Chishu T, Shimpo S, Kose N et al (2009) Influx mechanism of 2′,3′-dideoxyinosine and uridine at the blood-placenta barrier. Placenta 30:263–269CrossRefPubMedPubMedCentralGoogle Scholar
  152. Sawai K, Azuma C, Koyama M, Hashimoto K, Kimura T, Samejima Y et al (1996) The novel role of 3′,5′-guanosine monophosphate (cGMP) on the differentiation of trophoblasts: comparison with the effects of 3′,5′-adenosine monophosphate (cAMP). Early Pregnancy 2:244–252PubMedPubMedCentralGoogle Scholar
  153. Schweigmann H, Sánchez-Guijo A, Ugele B, Hartmann K, Hartmann MF, Bergmann M et al (2014) Transport of the placental estriol precursor 16α-hydroxy-dehydroepiandrosterone sulfate (16α-OH-DHEAS) by stably transfected OAT4-, SOAT-, and NTCP-HEK293 cells. J Steroid Biochem Mol Biol 143:259–265CrossRefPubMedPubMedCentralGoogle Scholar
  154. Serrano MA, Bayón JE, Pascolo L, Tiribelli C, Ostrow JD, Gonzalez-Gallego J et al (2002) Evidence for carrier-mediated transport of unconjugated bilirubin across plasma membrane vesicles from human placental trophoblast. Placenta 23:527–535CrossRefPubMedPubMedCentralGoogle Scholar
  155. Serrano MA, Macias RI, Vallejo M, Briz O, Bravo A, Pascual MJ et al (2003) Effect of ursodeoxycholic acid on the impairment induced by maternal cholestasis in the rat placenta-maternal liver tandem excretory pathway. J Pharmacol Exp Ther 305:515–524CrossRefPubMedPubMedCentralGoogle Scholar
  156. Serrano MA, Macias RI, Briz O, Monte MJ, Blazquez AG, Williamson C et al (2007) Expression in human trophoblast and choriocarcinoma cell lines, BeWo, Jeg-3 and JAr of genes involved in the epatobiliary-like excretory function of the placenta. Placenta 28:107–117CrossRefPubMedPubMedCentralGoogle Scholar
  157. Shekhawat PS, Yang HS, Bennett MJ, Carter AL, Matern D, Tamai I et al (2004) Carnitine content and expression of mitochondrial beta-oxidation enzymes in placentas of wild-type (OCTN2(+/+)) and OCTN2 null (OCTN2(−/−)) mice. Pediatr Res 56:323–328CrossRefPubMedPubMedCentralGoogle Scholar
  158. Shekhawat PS, Sonne S, Matern D, Ganapathy V (2018) Embryonic lethality in mice due to carnitine transporter OCTN2 defect and placental carnitine deficiency. Placenta 69:71–73CrossRefPubMedPubMedCentralGoogle Scholar
  159. Shibata E, Ejima K, Nanri H, Toki N, Koyama C, Ikeda M et al (2001) Enhanced protein levels of protein thiol/disulphide oxidoreductases in placentae from pre-eclamptic subjects. Placenta 22:566–572CrossRefPubMedPubMedCentralGoogle Scholar
  160. Shuster DL, Bammler TK, Beyer RP, MacDonald JW, Tsai JM, Frederico M, Farin FM et al (2013) Gestational age-dependent changes in gene expression of metabolic enzymes and transporters in pregnant mice. Drug Metab Dispos 41:332–342CrossRefPubMedPubMedCentralGoogle Scholar
  161. Sikkel E, Pasman SA, Oepkes D, Kanhai HH, Vandenbussche FP (2004) On the origin of amniotic fluid bilirubin. Placenta 25:463–468CrossRefPubMedPubMedCentralGoogle Scholar
  162. Slot AJ, Molinski SV, Cole SP (2011) Mammalian multidrug-resistance proteins (MRPs). Essays Biochem 50:179–207CrossRefGoogle Scholar
  163. Smit JW, Huisman MT, van Tellingen O, Wiltshire HR, Schinkel AH (1999) Absence or pharmacological blocking of placental P-glycoprotein profoundly increases fetal drug exposure. J Clin Invest 104:1441–1447CrossRefPubMedPubMedCentralGoogle Scholar
  164. Song D, Gou J, Han F, Zhang W, Wang Y, Wang Y (2013) Establishment of an in vitro model of the human placental barrier by placental slice and Ussing chamber. Biosci Biotechnol Biochem 77:1030–1034CrossRefGoogle Scholar
  165. Staud F, Vackova Z, Pospechova K, Pavek P, Ceckova M, Libra A et al (2006) Expression and transport activity of breast cancer resistance protein (Bcrp/Abcg2) in dually perfused rat placenta and HRP-1 cell line. J Pharmacol Exp Ther 319:53–62CrossRefPubMedPubMedCentralGoogle Scholar
  166. St-Pierre MV, Serrano MA, Macias RIR, Dubs U, Hoechli M, Lauper U et al (2000) Expression of members of the multidrug resistance protein family in human term placenta. Am J Physiol Regul Integr Comp Physiol 279:R1495–R1503CrossRefPubMedPubMedCentralGoogle Scholar
  167. St-Pierre MV, Hagenbuch B, Ugele B, Meier PJ, Stallmach T (2002) Characterization of an organic anion-transporting polypeptide (OATP-B) in human placenta. J Clin Endocrinol Metab 87:1856–1863CrossRefPubMedPubMedCentralGoogle Scholar
  168. St-Pierre MV, Stallmach T, Freimoser Grundschober A, Dufour JF, Serrano MA, Marin JJ et al (2004) Temporal expression profiles of organic anion transport proteins in placenta and fetal liver of the rat. Am J Physiol Regul Integr Comp Physiol 287:R1505–R1516CrossRefPubMedPubMedCentralGoogle Scholar
  169. Straka E, Ellinger I, Balthasar C, Scheinast M, Schatz J, Szattler T et al (2016) Mercury toxicokinetics of the healthy human term placenta involve amino acid transporters and ABC transporters. Toxicology 340:34–42CrossRefPubMedPubMedCentralGoogle Scholar
  170. Sun M, Kingdom J, Baczyk D, Lye SJ, SG SGM, Gibb W (2006) Expression of the multidrug resistance P-glycoprotein, (ABCB1 glycoprotein) in the human placenta decreases with advancing gestation. Placenta 27:602–609CrossRefPubMedPubMedCentralGoogle Scholar
  171. Szilagyi JT, Vetrano AM, Laskin JD, Aleksunes LM (2017) Localization of the placental BCRP/ ABCG2 transporter to lipid rafts: role for cholesterol in mediating efflux activity. Placenta 55:29–36CrossRefPubMedPubMedCentralGoogle Scholar
  172. Szilagyi JT, Gorczyca L, Brinker A, Buckley B, Laskin JD, Aleksunes LM (2018) Placental BCRP/ABCG2 transporter prevents fetal exposure to the estrogenic mycotoxin zearalenone. Toxicol Sci.  https://doi.org/10.1093/toxsci/kfy303
  173. Takagi A, Nishimura T, Akashi T, Tomi M, Nakashima E (2017) Contribution of equilibrative nucleoside transporter (ENT) 2 to fluorouracil transport in rat placental trophoblast cells. Drug Metab Pharmacokinet 32:151–156CrossRefGoogle Scholar
  174. Takeuchi T, Yoneyama Y, Suzuki S, Sawa R, Otsubo Y, Araki T (2001) Regulation of platelet aggregation in vitro by plasma adenosine in preeclampsia. Gynecol Obstet Investig 51:36–39CrossRefGoogle Scholar
  175. Tatebe S, Sinicrope FA, Kuo MT (2002) Induction of multidrug resistance proteins MRP1 and MRP3 and gamma-glutamylcysteine synthetase gene expression by nonsteroidal anti-inflammatory drugs in human colon cancer cells. Biochem Biophys Res Commun 290:1427–1433CrossRefGoogle Scholar
  176. Tomi M, Nishimura T, Nakashima E (2011) Mother-to-fetus transfer of antiviral drugs and the involvement of transporters at the placental barrier. J Pharm Sci 100:3708–3718CrossRefGoogle Scholar
  177. Tomi M, Miyata Y, Noguchi S, Nishimura S, Nishimura T, Nakashima E (2014) Role of protein kinase A in regulating steroid sulfate uptake for estrogen production in human placental choriocarcinoma cells. Placenta 35:658–660CrossRefGoogle Scholar
  178. Tomi M, Eguchi H, Ozaki M, Tawara T, Nishimura S, Higuchi K et al (2015) Role of OAT4 in uptake of estriol precursor 16α-hydroxydehydroepiandrosterone sulfate into human placental syncytiotrophoblasts from fetus. Endocrinology 156:2704–2712CrossRefGoogle Scholar
  179. Ugele B, St-Pierre MV, Pihusch M, Bahn A, Hantschmann P (2003) Characterization and identification of steroid sulfate transporters of human placenta. Am J Physiol Endocrinol Metab 284:E390–E398CrossRefGoogle Scholar
  180. Ugele B, Bahn A, Rex-Haffner M (2008) Functional differences in steroid sulfate uptake of organic anion transporter 4 (OAT4) and organic anion transporting polypeptide 2B1 (OATP2B1) in human placenta. J Steroid Biochem Mol Biol 111:1–6Google Scholar
  181. Ushigome F, Takanaga H, Matsuo H, Yanai S, Tsukimori K, Nakano H et al (2000) Human placental transport of vinblastine, vincristine, digoxin and progesterone: contribution of P-glycoprotein. Eur J Pharmacol 408:1–10CrossRefGoogle Scholar
  182. Utoguchi N, Chandorkar GA, Avery M, Audus KL (2000) Functional expression of P-glycoprotein in primary cultures of human cytotrophoblasts and BeWo cells. Reprod Toxicol 14:217–224CrossRefGoogle Scholar
  183. Vähäkangas K, Myllynen P (2009) Drug transporters in the human blood-placental barrier. Bri J Pharmacol 158:665–678CrossRefGoogle Scholar
  184. Vaidya SS, Walsh SW, Gerk PM (2009) Formation and efflux of ATP-binding cassette transporter substrate 2,4-dinitrophenyl-S-glutathione from cultured human term placental villous tissue fragments. Mol Pharm 6:1689–1702CrossRefGoogle Scholar
  185. Vásquez G, Sanhueza F, Vásquez R, González M, San Martín R, Casanello P et al (2004) Role of adenosine transport in gestational diabetes-induced L-arginine transport and nitric oxide synthesis in human umbilical vein endothelium. J Physiol 560:111–122CrossRefPubMedPubMedCentralGoogle Scholar
  186. Vinot C, Gavard L, Tréluyer JM, Manceau S, Courbon E, Scherrmann JM et al (2013) Placental transfer of maraviroc in an ex vivo human cotyledon perfusion model and influence of ABC transporter expression. Antimicrob Agents Chemother 57:1415–1420CrossRefPubMedPubMedCentralGoogle Scholar
  187. Wang H, Wu X, Hudkins K, Mikheev A, Zhang H, Gupta A et al (2006a) Expression of the breast cancer resistance protein (Bcrp1/Abcg2) in tissues from pregnant mice: effects of pregnancy and correlations with nuclear receptors. Am J Physiol Endocrinol Metab 291:E1295–E1304CrossRefGoogle Scholar
  188. Wang H, Zhou L, Gupta A, Vethanayagam RR, Zhang Y, Unadkat JD et al (2006b) Regulation of BCRP/ABCG2 expression by progesterone and 17β-estradiol in human placental BeWo cells. Am J Physiol Endocrinol Metab 290:E798–E807CrossRefGoogle Scholar
  189. Wang H, Unadkat JD, Mao Q (2008) Hormonal regulation of BCRP expression in human placental BeWo cells. Pharm Res 25:444–452CrossRefGoogle Scholar
  190. Wang H, Yan Z, Dong M, Zhu X, Wang H, Wang ZM (2012) Alteration in placental expression of bile acids transporters OATP1A2, OATP1B1, OATP1B3 in intrahepatic cholestasis of pregnancy. Arch Gynecol Obstet 285:1535–1540CrossRefGoogle Scholar
  191. Wijnholds J, Mol CA, van Deemter L, de Haas M, Scheffer GL, Baas F et al (2000) Multidrug-resistance protein 5 is a multispecific organic anion transporter able to transport nucleotide analogs. Proc Natl Acad Sci U S A 97:7476–7481CrossRefPubMedPubMedCentralGoogle Scholar
  192. Williams PJ, Mistry HD, Morgan L (2012) Folate transporter expression decreases in the human placenta throughout pregnancy and in pre-eclampsia. Pregnancy Hypertens 2:123–131CrossRefGoogle Scholar
  193. Wu HH, Choi S, Levitt P (2016) Differential patterning of genes involved in serotonin metabolism and transport in extra-embryonic tissues of the mouse. Placenta 42:74–83CrossRefPubMedPubMedCentralGoogle Scholar
  194. Xia Y, Dong Y, Zhao X, Di L, Li J (2018) Transport mechanism of ursodeoxycholic acid in human placental BeWo cells. Biopharm Drug Dispos 39:335–343CrossRefGoogle Scholar
  195. Xu HL, Gavrilyuk V, Wolde HM, Baughman VL, Pelligrino DA (2004) Regulation of rat pial arteriolar smooth muscle relaxation in vivo through multidrug resistance protein 5-mediated cGMP efflux. Am J Physiol Heart Circ Physiol 286:H2020–H2027CrossRefGoogle Scholar
  196. Yamahara K, Itoh H, Chun TH, Ogawa Y, Yamashita J, Sawada N et al (2003) Significance and therapeutic potential of the natriuretic peptides/cGMP/cGMP-dependent protein kinase pathway in vascular regeneration. Proc Natl Acad Sci U S A 100:3404–3409CrossRefPubMedPubMedCentralGoogle Scholar
  197. Yamane Y, Furuichi M, Song R, Van NT, Mulcahy RT, Ishikawa T et al (1998) Expression of multidrug resistance protein/GS-X pump and gamma-glutamylcysteine synthetasegenes is regulated by oxidative stress. J Biol Chem 273:31075–31085CrossRefGoogle Scholar
  198. Yamashita F, Ohtani H, Koyabu N, Ushigome F, Satoh H, Murakami H et al (2006) Inhibitory effects of angiotensin II receptor antagonists and leukotriene receptor antagonists on the transport of human organic anion transporter 4. J Pharm Pharmacol 58:1499–1505CrossRefGoogle Scholar
  199. Yan Z, Li E, He L, Wang J, Zhu X, Wang H et al (2015) Role of OATP1B3 in the transport of bile acids assessed using first-trimester trophoblasts. J Obstet Gynaecol Res 41:392–401CrossRefGoogle Scholar
  200. Yang XH, Liu SY, Xing AY (2014) Molecular regulation of organic anion transporting polypeptide 1A2 (OATP1A2) by taurocholic acid in Bewo cells. Cell Mol Biol 60:22–26PubMedGoogle Scholar
  201. Yao SY, Ng AM, Muzyka WR, Griffiths M, Cass CE, Baldwin SA et al (1997) Molecular cloning and functional characterization of nitrobenzylthioinosine (NBMPR)-sensitive (es) and NBMPR-insensitive (ei) equilibrative nucleoside transporter proteins (rENT1 and rENT2) from rat tissues. J Biol Chem 272:28423–28430CrossRefGoogle Scholar
  202. Yasuda S, Itagaki S, Hirano T, Iseki K (2005) Expression level of ABCG2 in the placenta decreases from the mid stage to the end of gestation. Biosci Biotechnol Biochem 69:1871–1876CrossRefGoogle Scholar
  203. Yeboah D, Sun M, Kingdom J, Baczyk D, Lye SJ, Matthews SG et al (2006) Expression of breast cancer resistance protein (BCRP/ABCG2) in human placenta throughout gestation and at term before and after labor. Can J Physiol Pharmacol 84:1251–1258CrossRefGoogle Scholar
  204. Yeboah D, Kalabis GM, Sun M, Ou RC, Matthews SG, Gibb W (2008) Expression and localisation of breast cancer resistance protein (BCRP) in human fetal membranes and decidua and the influence of labour at term. Reprod Fertil Dev 20:328–334CrossRefGoogle Scholar
  205. Yoneyama Y, Sawa R, Suzuki S, Shin S, Power GG, Araki T (1996) The relationship between uterine artery Doppler velocimetry and umbilical venous adenosine levels in pregnancies complicated by preeclampsia. Am J Obstet Gynecol 174:267–271CrossRefGoogle Scholar
  206. Yoneyama Y, Suzuki S, Sawa R, Yoneyama K, Power GG, Araki T (2002) Increased plasma adenosine concentrations and the severity of preeclampsia. Obstet Gynecol 100:1266–1270PubMedGoogle Scholar
  207. Zhang Y, Wang H, Unadkat JD, Mao Q (2007) Breast cancer resistance protein 1 limits fetal distribution of nitrofurantoin in the pregnant mouse. Drug Metab Dispos 35:2154–2158CrossRefGoogle Scholar
  208. Zhou F, Tanaka K, Soares MJ, You G (2003) Characterization of an organic anion transport system in a placental cell line. Am J Physiol Endocrinol Metab 285:E1103–E1109CrossRefGoogle Scholar
  209. Zhou F, Illsley NP, You G (2006) Functional characterization of a human organic anion transporter hOAT4 in placental BeWo cells. Eur J Pharm Sci 27:518–523CrossRefGoogle Scholar
  210. Zhou F, Hong M, You G (2007) Regulation of human organic anion transporter 4 by progesterone and protein kinase C in human placental BeWo cells. Am J Physiol Endocrinol Metab 293:E57–E61CrossRefGoogle Scholar
  211. Zhou L, Naraharisetti SB, Wang H, Unadkat JD, Hebert MF, Mao Q (2008) The breast cancer resistance protein (Bcrp1/Abcg2) limits fetal distribution of glyburide in the pregnant mouse: an obstetric-fetal pharmacology research unit network and University of Washington Specialized Center of research study. Mol Pharmacol 73:949–959CrossRefGoogle Scholar
  212. Zwart R, Verhaagh S, Buitelaar M, Popp-Snijders C, Barlow DP (2001) Impaired activity of the extraneuronal monoamine transporter system known as uptake-2 in Orct3/Slc22a3-deficient mice. Mol Cell Biol 21:4188–4196CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.China Pharmaceutical UniversityNanjingChina

Personalised recommendations