Advertisement

Overview: Role of Drug Transporters in Drug Disposition and Its Clinical Significance

  • Xiaodong LiuEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1141)

Abstract

Absorption, distribution, and excretion of drugs are involved in drug transport across plasma membrane, most of which are mediated by drug transporters. These drug transporters are generally divided into solute carrier (SLC) family and ATP-binding cassette (ABC) family. These transporters not only mediate transport of therapeutic drugs across membrane but also transport various kinds of endogenous compounds. Thus besides being participated in disposal of drug and its clinical efficacy/toxicity, these transporters also play vital roles in maintaining cell homeostasis via regulating transport of endogenous compounds. This chapter will outline classification of drug transporters, their roles in drug disposal/drug response, and remote communication between tissues/organs.

Keywords

Remote communication Drug transporter-metabolism interplay ATP-binding cassette family transporters Solute carriers 

Notes

Acknowledgments

The project was in part supported by the National Natural Science Foundation of China (No. 81872930; 81573490) and “Double First-Class” University project (No. CPU2018GY22).

References

  1. Akanuma S, Hosoya K, Ito S, Tachikawa M, Terasaki T, Ohtsuki S (2010) Involvement of multidrug resistance-associated protein 4 in efflux transport of prostaglandin E (2) across mouse blood-brain barrier and its inhibition by intravenous administration of cephalosporins. J Pharmacol Exp Ther 333:912–919CrossRefGoogle Scholar
  2. Akanuma S, Uchida Y, Ohtsuki S, Tachikawa M, Terasaki T, Hosoya K (2011) Attenuation of prostaglandin E2 elimination across the mouse blood-brain barrier in lipopolysaccharide- induced inflammation and additive inhibitory effect of cefmetazole. Fluids Barriers CNS 8:24CrossRefGoogle Scholar
  3. Brinar M, Cukovic-Cavka S, Bozina N, Ravic KG, Markos P, Ladic A et al (2013) MDR1 polymorphisms are associated with inflammatory bowel disease in a cohort of Croatian IBD patients. BMC Gastroenterol 13:57CrossRefGoogle Scholar
  4. Bugnicourt JM, Godefroy O, Chillon JM, Choukroun G, Massy ZA (2013) Cognitive disorders and dementia in CKD: the neglected kidney-brain axis. J Am Soc Nephrol 24:353–363CrossRefGoogle Scholar
  5. Davidson J, Abul HT, Milton AS, Rotondo D (2001) Cytokines and cytokine inducers stimulate prostaglandin E2 entry into the brain. Pflugers Arch 442:526–533CrossRefGoogle Scholar
  6. de Waart DR, Paulusma CC, Kunne C, Oude Elferink RP (2006) Multidrug resistance associated protein 2 mediates transport of prostaglandin E2. Liver Int 26:362–368CrossRefGoogle Scholar
  7. Dean M, Rzhetsky A, Allikmets R (2001) The human ATP-binding cassette(ABC) transporter superfamily. Genome Res 11:1156–1166CrossRefGoogle Scholar
  8. Elbaz A, Moisan F (2008) Update in the epidemiology of Parkinson’s disease. Curr Opin Neurol 21:454–460CrossRefGoogle Scholar
  9. Fan Y, Liu XD (2018) Alterations in expression and function of abc family transporters at blood-brain barrier under liver failure and their clinical significances. Pharmaceutics 10:102CrossRefGoogle Scholar
  10. Guleria VS, Dhillon M, Gill S, Naithani N (2014) Ceftriaxone induced drug rash with eosinophilia and systemic symptoms. J Res Pharm Pract 3:72–74CrossRefGoogle Scholar
  11. Heinig M, Johnson RJ (2006) Role of uric acid in hypertension, renal disease, and metabolic syndrome. Cleve Clin J Med 73:1059–1064CrossRefGoogle Scholar
  12. Hosoya K, Tachikawa M (2011) Roles of organic anion/cation transporters at the blood–brain and blood–cerebrospinal fluid barriers involving uremic toxins. Clin Exp Nephrol 15:478–485CrossRefGoogle Scholar
  13. Hyndman D, Liu S, Miner JN (2016) Urate handling in the human body. Curr Rheumatol Rep 18:34CrossRefGoogle Scholar
  14. Jin S, Wang XT, Liu L, Yao D, Liu C, Zhang M et al (2013) P-glycoprotein and multidrug resistance-associated protein 2 are oppositely altered in brain of rats with thioacetamide-induced acute liver failure. Liver Int 33:274–282CrossRefGoogle Scholar
  15. Jing X, Liu X, Wen T, Xie S, Yao D, Liu X et al (2010) Combined effect of epileptic seizure and drug induction resulted in overexpression of P-glycoprotein in brain of kindled rats. Brit J Pharmacol 159:1511–1522CrossRefGoogle Scholar
  16. Kalliokoski A, Niemi M (2009) Impact of OATP transporters on pharmacokinetics. Brit J Pharmacol 158:693–705CrossRefGoogle Scholar
  17. Kanai N, Lu R, Satriano JA, Bao Y, Wolkoff AW, Schuster VL (1995) Identification and characterization of a prostaglandin transporter. Science 268:866–869CrossRefGoogle Scholar
  18. Klaassen CD, Aleksunes LM (2010) Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol Rev 62:1–96CrossRefGoogle Scholar
  19. Lagas JS, van der Kruijssen CM, van de Wetering K, Beijnen JH, Schinkel AH (2009) Transport of diclofenac by breast cancer resistance protein (ABCG2) and stimulation of multidrug resistance protein 2 (ABCC2)-mediated drug transport by diclofenac and benzbromarone. Drug Metab Dispos 37:129–136CrossRefGoogle Scholar
  20. Lagas JS, Sparidans RW, Wagenaar E, Beijnen JH, Schinkel AH (2010) Hepatic clearance of reactive glucuronide metabolites of diclofenac in the mouse is dependent on multiple ATP-binding cassette efflux transporters. Mol Pharmacol 77:687–694CrossRefGoogle Scholar
  21. Lin L, Yee SW, Kim RB, Giacomini KM (2015) SLC transporters as therapeutic targets: emerging opportunities. Na Rev Drug Discov 14:543–560CrossRefGoogle Scholar
  22. Liu L, Liu XD (2014) Alterations in function and expression of ABC transporters at blood-brain barrier under diabetes and the clinical significances. Front Pharmacol 5:273CrossRefGoogle Scholar
  23. Liu D, Ji L, Tong X, Pan B, Han JY, Huang Y et al (2011) Human apolipoprotein A-I induces cyclooxygenase-2 expression and prostaglandin I-2 release in endothelial cells through ATP-binding cassette transporter A1. Am J Physiol Cell Physiol 301:C739–C748CrossRefGoogle Scholar
  24. Lu H, Klaassen C (2008) Gender differences in mRNA expression of ATP-binding cassette efflux and bile acid transporters in kidney, liver, and intestine of 5/6 nephrectomized rats. Drug Metab Dispos 36:16–23CrossRefGoogle Scholar
  25. Naud J, Nolin TD, Leblond FA, Pichette V (2012) Current understanding of drug disposition in kidney disease. J Clin Pharmacol 52:10S–22SCrossRefGoogle Scholar
  26. Nigam SK (2015) What do drug transporters really do? Nat Rev Drug Discov 14:29–44CrossRefGoogle Scholar
  27. Nigam SK, Wu W, Bush KT, Hoenig MP, Blantz RC, Bhatnagar V (2015) Handling of drugs, metabolites, and uremic toxins by kidney proximal tubule drug transporters. Clin J Am Soc Nephrol 10:2039–2049CrossRefGoogle Scholar
  28. Oizumi K, Onuma K, Watanabe A, Motomiya M (1989) Clinical study of drug fever induced by parenteral administration of antibiotics. Tohoku J Exp Med 159:45–56CrossRefGoogle Scholar
  29. Quazi F, Molday RS (2011) Lipid transport by mammalian ABC proteins. Essays Biochem 50:265–290CrossRefGoogle Scholar
  30. Reginato AM, Mount DB, Yang I, Choi HK (2012) The genetics of hyperuricaemia and gout. Nat Rev Rheumatol 8:610–621CrossRefGoogle Scholar
  31. Roth M, Obaidat A, Hagenbuch B (2012) OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Brit J Pharmaco 165:1260–1287CrossRefGoogle Scholar
  32. Sánchez-Moreno C, Dashe JF, Scott T, Thaler D, Folstein MF, Martin A (2004) Decreased levels of plasma vitamin C and increased concentrations of inflammatory and oxidative stress markers after stroke. Stroke 35:163–168CrossRefGoogle Scholar
  33. Schinkel AH, Jonker JW (2012) Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev 64:138–153CrossRefGoogle Scholar
  34. Scialis RJ, Csanaky IL, Goedken MJ, Manautou JE (2015) Multidrug resistance-associated protein 3 plays an important role in protection against acute toxicity of diclofenac. Drug Metab Dispos 43:944–950CrossRefGoogle Scholar
  35. Sharma K, Karl B, Mathew AV, Gangoiti JA, Wassel CL, Saito R et al (2013) Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease. J Am Soc Nephrol 24:1901–1912CrossRefGoogle Scholar
  36. Shiraya K, Hirata T, Hatano R, Nagamori S, Wiriyasermkul P, Jutabha P (2010) A novel transporter of SLC22 family specifically transports prostaglandins and co-localizes with 15-hydroxyprostaglandin dehydrogenase in renal proximal tubules. J Biol Chem 285:22141–22151CrossRefGoogle Scholar
  37. Shitara Y, Maeda K, Ikejiri K, Yoshida K, Horie T, Sugiyama Y (2013) Clinical significance of organic anion transporting polypeptides (OATPs) in drug disposition: their roles in hepatic clearance and intestinal absorption. Biopharm Drug Dispos 34:45–78CrossRefGoogle Scholar
  38. Shu N, Hu M, Ling Z, Liu P, Wang F, Xu P et al (2016) The enhanced atorvastatin hepatotoxicity in diabetic rats was partly attributed to the upregulated hepatic Cyp3a and SLCO1B1. Sci Rep 6:33072CrossRefGoogle Scholar
  39. Slot AJ, Molinski SV, Cole SP (2011) Mammalian multidrug-resistance proteins(MRPs). Essays Biochem 50:179–207CrossRefGoogle Scholar
  40. Staud F, Cerveny L, Ahmadimoghaddam D, Ceckova M (2013) Multidrug and toxin extrusion proteins (MATE/SLC47); role in pharmacokinetics. Int J Biochem Cell Biol 45:2007–2011CrossRefGoogle Scholar
  41. Stefková J, Poledne R, Hubácek JA (2004) ATP-binding cassette (ABC) transporters in human metabolism and diseases. Physiol Res 53:235–243PubMedGoogle Scholar
  42. Tachikawa M, Ozeki G, Higuchi T, Akanuma S, Tsuji K, Hosoya K (2012a) Role of the blood-cerebrospinal fluid barrier transporter as a cerebral clearance system for prostaglandin E2 produced in the brain. J Neurochem 123:750–760CrossRefGoogle Scholar
  43. Tachikawa M, Tsuji K, Yokoyama R, Higuchi T, Ozeki G, Yashiki A et al (2012b) A clearance system for prostaglandin D2, a sleep-promoting factor, in cerebrospinal fluid: role of the blood-cerebrospinal barrier transporters. J Pharmacol Exp Ther 343:608–616CrossRefGoogle Scholar
  44. Tachikawa M, Hosoya K, Terasaki T (2014) Pharmacological significance of prostaglandin E2 and D2 transport at the brain barriers. Adv Pharmacol 71:337–360CrossRefGoogle Scholar
  45. Takada T, Ichida K, Matsuo H, Nakayama A, Murakami K, Yamanashi Y et al (2014) ABCG2 dysfunction increases serum uric acid by decreased intestinal urate excretion. Nucleosides Nucleotides Nucleic Acids 33:275–281CrossRefGoogle Scholar
  46. Tamai I (2013) Pharmacological and pathophysiological roles of carnitine/organic cation transporters (OCTNs: SLC22A4, SLC22A5 and Slc22a21). Biopharm Drug Dispos 34:29–44CrossRefGoogle Scholar
  47. Toh S, Wada M, Uchiumi T, Inokuchi A, Makino Y, Horie Y et al (1999) Genomic structure of the canalicular multispecific organic anion-transporter gene (MRP2/cMOAT) and mutations in the ATP-binding-cassette region in Dubin-Johnson syndrome. Am J Hum Genet 64:739–746CrossRefGoogle Scholar
  48. van der Deen M, de Vries EG, Timens W, Scheper RJ, Timmer-Bosscha H, Postma DS (2005) ATP-binding cassette (ABC) transporters in normal and pathological lung. Respir Res 6:59CrossRefGoogle Scholar
  49. Wang F, Miao MX, Sun BB, Wang ZJ, Tang XG, Chen Y et al (2017) Acute liver failure enhances oral plasma exposure of zidovudine in rats by downregulation of hepatic UGT2B7 and intestinal P-GP. Acta Pharmacol Sin 38:1554–1565CrossRefGoogle Scholar
  50. Wilartratsami S, Jutasompakorn P, Luksanapruksa P (2014) Cefazolin-related fever in postoperative spine surgery: a case report. J Med Assoc Thail 97:S144–S148Google Scholar
  51. Wu W, Dnyanmote AV, Nigam SK (2011) Remote communication through solute carriers and ATP binding cassette drug transporter pathways: an update on the remote sensing and signaling hypothesis. Mol Pharmacol 79:795–805CrossRefGoogle Scholar
  52. Zhang Y, Han YH, Putluru SP, Matta MK, Kole P, Mandlekar S et al (2016) Diclofenac and its acyl glucuronide: determination of in vivo exposure in human subjects and characterization as human drug transporter substrates in vitro. Drug Metab Dispos 44:320–328CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.China Pharmaceutical UniversityNanjingChina

Personalised recommendations