Skip to main content

Electrode Formation Using Electrodeposition and Direct Bonding for 3D Integration

  • Chapter
  • First Online:
Novel Structured Metallic and Inorganic Materials

Abstract

This chapter describes a novel low-temperature Au–Au bonding method using nanoporous Au–Ag powder and vacuum ultraviolet irradiation in the presence of oxygen gas (VUV/O3) pretreatment. The nanoporous powder, which was fabricated by dealloying Ag–Au alloy sheet, was used to form the bump structure on the Au substrate by simple filling process, while an Au-coated Si substrate was used as the chip. The VUV/O3-treated bumps and chip were bonded under a bonding pressure of 20 MPa at 200 °C for 20 min in a vacuum atmosphere of 1 kPa. A ligament size of the nanoporous structure on powder surface was found to be grown dramatically during bonding process. The tensile strength reached 10.1 MPa which is 2.3 times higher than that without VUV/O3 treatment. This suggests that organic contaminants on each ligament surface were effectively removed by VUV/O3 treatment, and consequently, the diffusion of gold atoms in the nanoporous powder was significantly promoted to change into bulk structure. The proposed method will be highly a promising method for 3D-LSI and MEMS packaging. And, we investigated the composition, morphology, and dissolution behavior of an Au–Ag nanoporous structure formed by electrodeposition and dealloying. Formation of the films was carried out by changing the bath composition and the annealing temperature. The samples that were annealed at 50 °C before dealloying indicated a finer nanoporous structure. This finer nanoporous structure is connected to the highest bond strength of the evaluated samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Sakuma et al., 3D chip-stacking technology with through-silicon vias and low-volume lead-free interconnection. IBM J. Res. Dev. 52(6), 611–622 (2008)

    Article  CAS  Google Scholar 

  2. K. Takahashi et al., Ultra-high-density interconnection technology of three-dimensional packaging. Microelectron. Reliab. 43(8), 1267–1279 (2003)

    Article  CAS  Google Scholar 

  3. E. Higurashi, T. Imamura, T. Suga, R. Sawada, Low-temperature bonding of laser diode chips on silicon substrates using plasma activation of Au films. IEEE Photon Technol. Lett. 19(24), 1994–1996 (2007)

    Article  CAS  Google Scholar 

  4. K. Tadatomo et al., High output power InGaN ultraviolet light-emitting diodes fabricated on patterned substrates using metalorganic vapor phase epitaxy. Jpn. J. Appl. Phys. 40(6B), L583–L585 (2001)

    Article  CAS  Google Scholar 

  5. H.A.C. Tilmans, M.D.J. Van de Peer, E. Beyne, Indent reflow sealing (IRS) technique—a method for the fabrication of sealed cavities for MEMS devices. J. Microelectromech. Syst. 9(2), 206–217 (2000)

    Article  CAS  Google Scholar 

  6. K.M. Chu et al., Flip-chip bonding of MEMS scanner for laser display using electroplated AuSn solder bump. IEEE Trans. Adv. Packag. 30(1), 27–33 (2007)

    Article  CAS  Google Scholar 

  7. M.J. Wolf, G. Engelmann, L. Dietrich, H. Reichl, Flip chip bumping technology-status and update. Nucl. Instrum. Methods Phys. Res. A 565(1), 290–295 (2006)

    Article  Google Scholar 

  8. T. Braun et al., High-temperature reliability of flip chip assemblies. Microelectron. Reliab. 46(1), 144–154 (2006)

    Article  Google Scholar 

  9. V. Chidambaram, J. Hald, J. Hattel, Development of gold based solder candidates for flip chip assembly. Microelectron. Reliab. 49(3), 323–330 (2009)

    Article  CAS  Google Scholar 

  10. K.N. Tu, K. Zeng, Tin–lead (SnPb) solder reaction in flip chip technology. Mater. Sci. Eng. R. Rep. 34(1), 1–58 (2001)

    Article  Google Scholar 

  11. K. Tanida et al., Micro Cu bump interconnection on 3D chip stacking technology. Jpn. J. Appl. Phys. 43(4B), 2264–2270 (2004)

    Article  CAS  Google Scholar 

  12. L. Qiu et al., Room-temperature Cu micro joining with ultrasonic bonding of cone-shaped bump. Jpn. J. Appl. Phys. 52(4), 04CB101–04CB105 (2013)

    Article  Google Scholar 

  13. Z.G. Chen, Y.H. Kim, A new COP bonding using non-conductive adhesives for LCDs driver IC packaging. Displays 27(3), 130–135 (2006)

    Article  Google Scholar 

  14. S.M. Lee, B.G. Kim, Y.H. Kim, Non-conductive adhesive (NCA) trapping study in chip on glass joints fabricated using Sn bumps and NCA. Mater. Trans. 49(9), 2100–2106 (2008)

    Article  CAS  Google Scholar 

  15. K. Tanida et al., Au bump interconnection in 20 µm pitch on 3D chip stacking technology. Jpn. J. Appl. Phys. 42(4B), 2198–2203 (2003)

    Article  CAS  Google Scholar 

  16. M.M.V. Taklo et al., Strong, high-yield and low-temperature thermocompression silicon wafer-level bonding with gold. J. Micromech. Microeng. 14(7), 884–890 (2004)

    Article  CAS  Google Scholar 

  17. H. Oppermann, L. Dietrich, Nanoporous gold bumps for low temperature bonding. Microelectron. Reliab. 52(2), 356–360 (2012)

    Article  CAS  Google Scholar 

  18. Y.C. Lin et al., Nanoporous gold for MEMS packing applications. IEEJ Trans. Sens. Micromach. 133(2), 31–36 (2013)

    Article  Google Scholar 

  19. R. Takigawa, E. Higurashi, T. Suga, R. Sawada, Room-temperature bonding of vertical-cavity surface-emitting laser chips on Si substrates using Au microbumps in ambient air. Appl. Phys. Exp. 1(11), 1122011–1122012 (2008)

    Google Scholar 

  20. E. Higurashi, D. Chino, T. Suga, R. Sawada, Au–Au surface-activated bonding and its application to optical microsensors with 3-D structure. IEEE J. Sel. Top. Q. Electron. 15(5), 1500–1505 (2009)

    Article  CAS  Google Scholar 

  21. H. Mimatsu et al., Study on low-temperature Au-Au bonding using nanoporous Au-Ag alloy powders as a joint layer, in Technical Digest of the 20th Symposium on Microjoining and Assembly Technology in Electronics(MATE) (Yokohama, 4–5 Feb 2014)

    Google Scholar 

  22. N. Unami, K. Sakuma, J. Mizuno, S. Shoji, Effects of excimer irradiation treatment on thermocompression Au-Au bonding. Jpn. J. Appl. Phys. 49(6), 06GN121-06GN124 (2010)

    Article  Google Scholar 

  23. K. Sakuma et al., Effects of vacuum ultraviolet surface treatment on the bonding interconnections for flip chip and 3-D integration. IEEE Trans. Electron. Packag. Manuf. 33(3), 212–220 (2010)

    Article  CAS  Google Scholar 

  24. A. Okada et al., Vacuum ultraviolet irradiation treatment for reducing Gold-Gold bonding temperature. Mater. Trans. 54(11), 2139–2143 (2013)

    Article  CAS  Google Scholar 

  25. T. Kaneda et al., (2015) Improved low temperature Gold-Gold bonding using nanoporous powder bump using vacuum ultraviolet irradiation pre-treatment, in Proceedings of International Conference on Electronics Packaging and iMAPS All Asia Conference (ICEP-IAAC) 2015 (Kyoto, 14–17 April 2015)

    Google Scholar 

  26. S.J. Yu, M. Fujimaki, K. Kawabe, H. Ohkubo, M. Hattori, Y. Ohki, M. Saito, Y. Wada, Development of a sub-micron processing method with ion implantation for the fabrication of optical communication devices. IEEJ Trans. Fundam. Mater. 125-A(69) (2005)

    Article  Google Scholar 

  27. M. Akazawa, K. Fujimoto, S. Kuramochi, K. Suzuki, M. Saito, in The 27th Annual Conference (The Japan Institute of Electronics Packaging, 15E09, 2013)

    Google Scholar 

  28. A. Pietrikova, E. Kapusanska, Kovove Mater. 29(4), 262 (1991)

    Google Scholar 

  29. K. Mizugaki, K. Wada, K. Sakurada, T. Shintate, J. Yamada, T. Mikoshiba, N. Uehara, M. Yajima, J. Jan. Inst. Electron. Packag. 9(7), 546–549 (2006)

    Google Scholar 

  30. M. Saito, J. Mizuno, H. Nishikubo, H. Fujiwara, T. Homma, Preparation of electrodeposited Pt nano patterned electrode using UV-nano imprinting lithography. ECS Trans. 16, 131–136 (2008)

    Google Scholar 

  31. J. Erlebacher, M.J. Aziz, A. Karmer, N. Dimitrov, K. Sieradzki, Evolution of nanoporosity in dealloying. Nature 1410, 450–453 (2001)

    Article  Google Scholar 

  32. Z. Zhang, Y. Wang, Z. Qi, W. Zhang, J. Qin, J. Frenzel, Generalized fabrication of nanoporous metals (Au, Psd, Pt, Ag, and Cu). J. Phys. Chem. 113, 12629–12636 (2009)

    CAS  Google Scholar 

  33. Y.K. Chen-Wiegart, S. Wang, I. McNulty, D.C. Dunand, Effect of Ag-Au composition and acid concentration on dealloying front velocity and cracking during nanoporous gold formation. Acta Mater. 61, 5561–5570 (2013)

    Article  CAS  Google Scholar 

  34. I.C. Oppenheim, D.J. Trevor, C.E.D. Chidsey, P.L. Trevor, K. Sieradzki, In situ scanning tunneling microscopy of corrosion of silver-gold alloys. Science 254, 687–689 (1991)

    Article  CAS  Google Scholar 

  35. K. Sieradzki, N. Dimitrov, D. Movrin, C. McCall, N. Vasiljevic, J. Erlebacher, The Dealloying Critical Potential. J. Electrochem. Soc. 149, B370–B377 (2002)

    Article  CAS  Google Scholar 

  36. M. Haokamada, Y. Chino, M. Mabuchi, Nanoporous surface fabricated on metal sheets by allying/dealloying technique. Mater. Lett. 64, 2341–2343 (2010)

    Article  Google Scholar 

  37. S. Parida, D. Kramer, C.A. Volkert, H. RÖsner, J. Erlebacher, J. Weissmüller, Volume change during the formation of nanoporous gold by dealloying. J. Phys. Lett. 97, 035504-1–035504-4 (2006)

    Google Scholar 

  38. H. Mimatsu, J. Mizuno, M. Saito, T. Kasahara, H. Nishikawa, S. Shoji, Low-temperature Au-Au bonding using nanoporous Au-Ag sheets. J. Appl. Phys. 52, 050204-1-3 (2013)

    Article  Google Scholar 

  39. H. Siyu, L. Xinyu, L. Qingyu, M. Miamwu, L. Tengfa, W. Hongqiang, J. Zhiliang, The preparation of nanoporous gold electrodes by electrochemical alloying/dealloing process at room temperature and its properties. Mater. Lett. 64, 2296–2298 (2010)

    Article  Google Scholar 

  40. L.H. Qian, M.W. Chen, Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation. Appl. Phys. Lett. 91, 083105-1-3 (2007)

    Article  Google Scholar 

  41. M. Saito, K. Matsunaga, J. Mizuno, H. Nishikawa, in 5th Electronics System-Integration Technology Conference, ESTC 2014, Category Number CFP14TEM-ART; Code 109411. Article number 6962819 (2014)

    Google Scholar 

  42. H. Mimatsu et al., Low-temperature gold-gold bonding using selective formation of nanoporous powders for bump interconnects, in Proceedings of the 27th IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (San Francisco, 26–30 Jan 2014)

    Google Scholar 

  43. J. Erlebacher et al., Evolution of nanoporosity in dealloying. Nature 410(6827), 450–453 (2001)

    Article  CAS  Google Scholar 

  44. S. Parida et al., Volume change during the formation of nanoporous gold by dealloying. Phys. Rev. Lett. 97(3), 035504-1–035504-4 (2006)

    Article  Google Scholar 

  45. Y.H. Tan et al., Surface area and pore size characteristics of nanoporous gold subjected to thermal, mechanical, or surface modification studied using gas adsorption isotherms, cyclic voltammetry, thermogravimetric analysis, and scanning electron microscopy. J. Mater. Chem. 22(14), 6733–6745 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is partly supported by Japan Ministry of Education, Culture, Sports Science & Technology (MEXT) Grant-in-Aid for Scientific Basic Research (S) No. 23226010 and Scientific Basic Research (B) No. 2528924. The authors thank for MEXT Nanotechnology Platform Support Project of Waseda University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Mizuno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaneda, T. et al. (2019). Electrode Formation Using Electrodeposition and Direct Bonding for 3D Integration. In: Setsuhara, Y., Kamiya, T., Yamaura, Si. (eds) Novel Structured Metallic and Inorganic Materials. Springer, Singapore. https://doi.org/10.1007/978-981-13-7611-5_39

Download citation

Publish with us

Policies and ethics