Skip to main content

Plant Growth-Promoting Rhizobacteria: Harnessing Its Potential for Sustainable Plant Disease Management

  • Chapter
  • First Online:

Abstract

The sustainable plant disease management includes the use of beneficial microbes for the effective and sustained production of crop/plants. Numerous species of soil bacteria/rhizobacteria and fungi exist in the rhizosphere of plants which can counteract the pathogenic organisms and stimulate plant growth through direct/indirect mode of action. The plant growth-promoting rhizobacteria (PGPRs), viz., Pseudomonas, Bacillus, and Streptomyces, have been well exploited by scientists for the management of plant diseases in economically important agricultural and horticultural crops. In nature, interactions between the pathogenic and beneficial microbes take place which decides the existence of the pathogen in the rhizosphere region. Interaction of PGPR with pathogens in the rhizosphere may lead to an expression of innate immune response of defense genes in the plants which can counter the pathogen infection. This review helps in understanding the dynamics and existence of PGPR in the soil, their role in disease management, and their interaction with the pathogens which explore the possibility of identifying new proteins/genes in host-pathogen interaction. In addition, commercial production of bioagents with the suitable carrier material and delivery system play a major role in managing plant diseases under field conditions. The exploration for PGPR and study of their modes of action are escalating at a rapid pace, as efforts are made to exploit them commercially as bioinoculants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abd-Allah EF, El-Didamony G (2007) Effect of seed treatment of Arachis hypogaea with Bacillus subtilis on nodulation in biocontrol of southern blight (Sclerotium rolfsii) disease. Phytoparasitica 35:8–12

    Article  Google Scholar 

  • Ahamad S, Srivastava M, Ahamad S, Srivastana M (2000) Biological controls of dry root rot of chickpea with plant products and antagonistic microorganisms. Ann Agric Res 21:450–451

    Google Scholar 

  • Ahangar MA, Dar GH, Bhat ZA (2012) Growth response and nutrient uptake of blue pine (Pinus wallichiana) seedlings inoculated with rhizosphere microorganisms under temperate nursery conditions of Kashmir. Ann Forest Res 55:217–227

    Google Scholar 

  • Akgül DS, Mirik M (2008) Biocontrol of Phytophthora capsici on pepper plants by Bacillus megaterium strains. J Plant Pathol 90:29–34

    Google Scholar 

  • Akhtar MS, Siddiqui ZA (2007) Biocontrol of root rot disease complex with Glomus intraradices, Pseudomonas putida and Paecilomyces polymyxa. Australas Plant Pathol 36:175–180

    Article  Google Scholar 

  • Al-Mughrabi KI (2010) Biological control of Fusarium dry rot and other potato tuber diseases using Pseudomonas fluorescens and Enterobacter cloacae. Biol Control 53:280–284

    Article  Google Scholar 

  • Amer GA, Utkhede RS (2000) Developments of formulations of biological agents for management of root rot of lettuce and cucumber. Can J Microbiol 46:809–816

    Article  CAS  PubMed  Google Scholar 

  • Amith KN, Momol MT, Kloepper JW, Marois JW, Olson SM, Jones JB (2004) Efficacy of plant growth-promoting rhizobacteria, acibenzolar-S-methyl and soil amendment for integrated management of bacterial wilt on tomato. Plant Dis 88:669–673

    Article  Google Scholar 

  • Amusa NA, Odunbaku OA (2007) Biological control of bacterial diseases of plants in Nigeria: problems and prospects. Res J Agric Biol Sci 3:979–982

    Google Scholar 

  • Anjaiah V, Koedam N, Nowak-Thompson B, Loper JE, Hofte M, Tambong JT, Cornelis P (1998) Involvement of phenazines and anthranilate in the antagonism of Pseudomonas aeruginosa PNA1 and Tn5 derivatives toward Fusarium spp. and Pythium spp. Mol Plant-Microbe Interact 11:847–854

    Article  CAS  Google Scholar 

  • Anjaiah V, Cornelis P, Koedam N (2003) Effect of genotype and root colonization in biological control of fusarium wilts in pigeonpea and chickpea by Pseudomonas aeruginosa PNA1. Can J Microbiol 49:85–91

    Article  CAS  PubMed  Google Scholar 

  • Anjaiah V, Thakur RP, Koedam N (2006) Evaluation of bacteria and Trichoderma for biocontrol of preharvest seed infection by Aspergillus flavus in groundnut. Biocontrol Sci Tech 16:431–436

    Article  Google Scholar 

  • Annapurna K, Kumar A, Kumar LV, Govindasamy V, Bose P, Ramadoss D (2013) PGPR-Induced Systemic Resistance (ISR) in plant disease management. In: Maheshwari D (ed) Bacteria in agrobiology: disease management. Springer, Berlin, pp 405–425

    Chapter  Google Scholar 

  • Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32:1559–1570

    Article  CAS  PubMed  Google Scholar 

  • Bahme JB, Schroth MN (1987) Spatial-temporal colonization patterns of a rhizobacterium on underground organs of potato. Phytopathology 77:1093–1100

    Article  Google Scholar 

  • Barea JM (2015) Future challenges and perspectives for applying microbial biotechnology in sustainable agriculture based on a better understanding of plant-microbiome interactions. J Soil Sci Plant Nutr 15:261–282

    CAS  Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Aguilar CA (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778

    Article  CAS  PubMed  Google Scholar 

  • Baron SS, Teranova G, Rowe JJ (1997) Molecular mechanism of the antimicrobial action of pyocyanin. Curr Microbiol 18:223–230

    Article  CAS  Google Scholar 

  • Benhamou N, Kloepper JW, Quadt-Hallmann A, Tuzun S (1996) Induction of defense-related ultrastructural modifications in pea root tissues inoculated with endophytic bacteria. Plant Physiol 112:919–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benhamou N, Gagne S, IeQuere D, Dehbi L (2000) Bacteria-mediated induced resistance in cucumber: beneficial effect of the endophytic bacterium Serratia plymuthica on the protection against infection by Pythium ultimum. Phytopathology 90:45–56

    Article  CAS  PubMed  Google Scholar 

  • Benson DM, Baker R (1970) Rhizosphere competition in model soil systems. Phytopathology 60:1058–1061

    Article  CAS  Google Scholar 

  • Bharathi R, Vivekananthan R, Harish S, Ramanathan A, Samiyappan R (2004) Rhizobacteria based bio-formulations for the management of fruit rot infection in chillies. Crop Prot 23:835–843

    Article  Google Scholar 

  • Bora T, Ozakran H, Van Griensven LJLD (2000) Biological control of some important mushroom diseases in Turkey by fluorescent pseudomonads. Science and cultivation of edible fungi. Proceedings of 15th International Congress on the Science and Cultivation of Edible Fungi, Maastricht, Netherlands, pp 689–693

    Google Scholar 

  • Bora T, Ozaktan H, Gore E, Aslan E (2004) Biological control of Fusarium oxysporum f. sp. melonis by wettable powder formulations of the two strains of Pseudomonas putida. J Phytopathol 152:471–475

    Article  Google Scholar 

  • Boukaew S, Chuenchit S, Petcharat V (2011) Evaluation of Streptomyces spp. for biological control of Sclerotium root and stem rot and Ralstonia wilt of chilli pepper. BioControl 56:365–374

    Article  Google Scholar 

  • Bradley GG, Punja ZK (2010) Composts containing fluorescent pseudomonads suppress Fusarium root and stem rot development on greenhouse cucumber. Can J Microbiol 56:896–905

    Article  CAS  PubMed  Google Scholar 

  • Brovko SP, Brovko GA (2000) Rhizoplane protects cucumbers from root rots. Kartofel’ I Ovosh 2:47

    Google Scholar 

  • Bull CT, Weller DM, Thomashow LS (1991) Relationship between root colonization and suppression of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens 2-79. Phytopathology 81:954–959

    Article  Google Scholar 

  • Burkhead KD, Schisler DA, Slininger PJ (1994) Pyrrolnitrin production by biological control agent Pseudomonas cepacia B37w in culture and in colonized wounds of potatoes. Appl Environ Microbiol 60:2031–2039

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buysens S, Poppe J, Hofte M (1994) Role of siderophores in plant growth stimulation and antagonism by Pseudomonas aeruginosa 7NSK2. In: Ryder MH, Stephens PM, Bowen GD (eds) Improving plant productivity with rhizosphere bacteria. CSIRO, Adelaide, pp 139–141

    Google Scholar 

  • Callan NW, Mathre DE, Miller JB (1990) Bio-priming seed treatment for biological control of Pythium ultimum preemergence damping-off in sh2 sweet corn. Plant Dis 74:368–372

    Article  Google Scholar 

  • Carrillo-Castaneda G, Munoz JJ, Peralta-Videa JR, Gomez E, Gardea-Torresdey JL (2003) Plant growth-promoting bacteria promote copper and iron translocation from root to shoot in alfalfa seedlings. J Plant Nutr 26:1801–1814

    Article  CAS  Google Scholar 

  • Carruthers FL, Shum-Thomas T, Conner AJ, Mahanty HK (1995) The significance of antibiotic production by Pseudomonas aureofaciens PA 147–2 for biological control of Phytophthora megasperma root rot of asparagus. Plant Soil 170:339–344

    Article  CAS  Google Scholar 

  • Cartwright DK, Chilton WS, Benson DM (1995) Pyrrolnitrin and phenazine production by Pseudomonas cepacia, strain 5.5B, a biocontrol agent of Rhizoctonia solani. Appl Microbiol Biotechnol 43:211–216

    Article  CAS  Google Scholar 

  • Chakravarty G, Kalita MC (2011) Comparative evaluation of organic formulations of Pseudomonas fluorescens based biopesticides and their application in the management of bacterial wilt of brinjal (Solanum melongena L.). Afr J Biotechnol 10:7174–7182

    Google Scholar 

  • Chatterjee S, Chatterjee S, Lad SJ, Phansalkar MS, Rupp RH, Ganguli BN, Fehlhaber HW, Kogler H (1992) Mersacidin, a new antibiotic from Bacillus. Fermentation, isolation, purification and chemical characterization. J Antibiot (Tokyo) 45:832–838

    Article  CAS  Google Scholar 

  • Chen TW, Wu WS (1999) Biological control of carrot black rot. J Phytopathol 147:99–104

    Article  Google Scholar 

  • Chernin LS, Fuente LDL, Sobolov V, Haran S, Vorgias CE, Oppenheim AB, Chet I (1997) Molecular cloning, structural analysis, and expression in Escherichia coli of a chitinase gene from Enterobacter agglomerans. Appl Environ Microbiol 63:834–839

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chet I, Benhamou N, Harman S (1998) Mycoparasitism and lytic enzymes. In: Harman GE, Kubick CP (eds) Trichoderma and Gliocladium, vol 2. Taylor and Francis, London, pp 153–172

    Google Scholar 

  • Chin-A-Woeng TFC, Bloemberg GV, Van der Bij AJ, Van der Drift KMGM, Schripse-ma J, Kroon B, Scheffer RJ, Keel C, Bakker PAHM, Tichy H, de Bruijn FJ, Thomas-Oates JE, Lugtenberg BJJ (1998) Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. radices lycopersici. Mol Plant-Microbe Interact 11:1069–1077

    Article  CAS  Google Scholar 

  • Collins DP, Jacobsen BJ (2003) Optimizing a Bacillus subtilis isolate for biological control of sugar beet cercospora leaf spot. Biol Control 26:153–161

    Article  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Constantinescu F (2001) Extraction and identification of antifungal metabolites produced by some B. subtilis strains. Analele Institutului de Cercetari Pentru Cereale Protectia Plantelor 31:17–23

    Google Scholar 

  • Crawford DL, Lynch JM, Whipps JM, Ousley MA (1993) Isolation and characterization of actinomycete antagonists of a fungal root pathogen. Appl Environ Microbiol 59:3899–3905

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crepin A, Barbey C, Cirou A, Tannières M, Orange N, Feuilloley M, Dessaux Y, Burini J, Faure D, Latour X (2012) Biological control of pathogen communication in the rhizosphere: a novel approach applied to potato soft rot due to Pectobacterium atrosepticum. Plant Soil 358:27–37

    Article  CAS  Google Scholar 

  • Cronin D, Moenne-Loccoz Y, Fenton A, Dunne C, Dowling DN, Gara FO (1997) Ecological interaction of a biocontrol Pseudomonas fluorescens strain producing 2,4-diacetylphloroglucinol with the soft rot potato pathogen Erwinia carotovora subsp. atroseptica. FEMS Microbiol Ecol 23:95–106

    Google Scholar 

  • Crowley DE (2006) Microbial siderophores in the plant rhizospheric. In: Barton LL, Abadía J (eds) Iron nutrition in plants and Rhizospheric microorganisms. Springer, Dordrecht, pp 169–198

    Chapter  Google Scholar 

  • Das IK, Indira S, Annapurna A, Prabhakar SN (2008) Biocontrol of charcoal rot in sorghum by fluorescent pseudomonads associated with the rhizosphere. Crop Protect 27:1407–1414

    Article  Google Scholar 

  • de Bruijn I, de Kock MJD, Yang M, de Waard P, van Beek TA, Raaijmakers JM (2007) Genome based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics in Pseudomonas species. Mol Microbiol 63:417–428

    Article  PubMed  CAS  Google Scholar 

  • De Meyer G, Hofte M (1997) Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. Phytopathology 87:588–593

    Article  PubMed  Google Scholar 

  • Dekkers LC, de Weger LA, Wijffelman CA, Spaink HP, Lugtenberg BJJ (1998a) A two-component system plays an important role in the root-colonising ability of Pseudomonas fluorescens strain WCS365. Mol Plant-Microbe Interact 11:45–56

    Article  CAS  PubMed  Google Scholar 

  • Dekkers LC, Phoelich CC, van der Fits L, Lugtenberg BJJ (1998b) A site-specific recombinase is required for competitive root colonization by Pseudomonas fluorescens WCS365. Proc Natl Acad Sci U S A 95:7051–7056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dekkers LC, Mulders IHM, Phoelich CC, Chin-A-Woeng TFC, Wijfjes AHM, Lugtenberg BJJ (2000) The colonization gene of the tomato-Fusarium oxysporum f. sp. radicis-lycopersici biocontrol strain Pseudomonas fluorescens WCS365 can improve root colonization of other wild-type Pseudomonas spp. bacteria. Mol Plant-Microbe Interact 13:1177–1183

    Article  CAS  PubMed  Google Scholar 

  • Dennis C, Webster J (1971) Antagonistic properties of species-groups of Trichoderma: II. Production of volatile antibiotics. Trans Br Mycol Soc 57:363–369

    Article  Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth promoting effects of diazotrophs in the rhizosphere. CRC Crit Rev Plant Sci 22:107–149

    Article  CAS  Google Scholar 

  • Dodd SL, Stewart A (1992) Biological control of Pythium induced damping-off of beetroot (Beta vulgaris) in the glasshouse. NZJ. Crop Horticult Sci 20:421–426

    Article  Google Scholar 

  • Doke N, Ramirez AV, Tomiyama K (1987) Systemic induction of resistance in potato Phytophthora infestans by local treatment with hyphal wall components of the fungus. J Phytopathol 119:232–239

    Article  Google Scholar 

  • Domenech J, Reddy MS, Kloepper JW, Ramos B, Gutierrez-Mañero J (2006) Combined application of the biological product LS213 with Bacillus, Pseudomonas or Chryseobacterium for growth promotion and biological control of soilborne diseases in pepper and tomato. BioControl 51:245–258

    Article  CAS  Google Scholar 

  • Dong YH, Zhang XF, Xu JL, Zhang LH (2004) Insecticidal Bacillus thuringiensis silences Erwinia carotovora virulence by a new form of microbial antagonism, signal interference. Appl Environ Microbiol 70:954–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duijff BJ, Meijer JW, Bakker P, Schippers B (1993) Siderophore-mediated competition for iron and induced resistance in the suppression of Fusarium wilt of carnation by fluorescent Pseudomonas spp. Neth J Plant Pathol 99:5–6

    Article  Google Scholar 

  • Dunne C, Moenne-Loccoza Y, McCarthya J, Higginsa P, Powellb J, Dowlinga DN, O’Gara F (1998) Combining proteolytic and phloroglucinol-producing bacteria for improved biocontrol of Pythium-mediated damping-off of sugar beet. Plant Pathol 47:299–307

    Article  Google Scholar 

  • Elander RP, Mabe JA, Hamill RH, Gorman M (1968) Metabolism of tryptophans by Pseudomonas aureofaciens VI. Production of pyrrolnitrin by selected Pseudomonas species. Appl Microbiol 16:753–758

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elliot LF, Lynch JM (1995) The international workshop on establishment of microbial inocula in soils: cooperative research project on biological resource management of the Organization for Economic Cooperation and Development (OECD). Am J Altern Agric 10:50–73

    Article  Google Scholar 

  • El-Sayed AK, Hothersall J, Cooper SM, Stephens E, Simpson TJ, Thomas CM (2003) Characterization of the mupirocin biosynthesis gene cluster from Pseudomonas fluorescens NCIMB 10586. Chem Biol 10:410–430

    Article  Google Scholar 

  • Erdogan O, Benlioglu K (2010) Biological control of Verticillium wilt on cotton by the use of fluorescent Pseudomonas spp. under field conditions. Biol Control 53:39–45

    Article  Google Scholar 

  • Faisal MP, Nagendran K, Karthikeyan G, Raguchander T, Prabakar K (2014) Water in oil based PGPR formulation of Pseudomonas fluorescens (FP7) showed enhanced resistance against Colletotrichum musae. Crop Prot 65:186–193

    Article  CAS  Google Scholar 

  • Fernando WGD, Nakkeeran S, Zhang Y, Sarchuk S (2007) Biological control of Sclerotinia sclerotiorum (Lib.) de Bary by Pseudomonas and Bacillus species on canola petals. Crop Protect 26:100–107

    Article  Google Scholar 

  • Flaishman M, Eyal Z, Voisard C, Haas D (1990) Suppression of Septoria tritici by phenazine or siderophore-deficient mutants of Pseudomonas. Curr Microbiol 20:121–124

    Article  CAS  Google Scholar 

  • Folman LB, De Klein MJEM, Postma J, van Veen JA (2004) Production of antifungal compounds by Lysobacter enzymogenes isolate 3.1 T8 under different conditions in relation to its efficacy as a biocontrol agent of Pythium aphanidermatum in cucumber. Biol Control 31:145–154

    Article  CAS  Google Scholar 

  • Forlani GM, Mantelli M, Nielsen E (1999) Biochemical evidence for multiple acetoin-forming enzymes in cultured plant cells. Phytochemistry 50:255–262

    Article  CAS  Google Scholar 

  • Frankowski J, Lorito M, Scala F, Schmidt R, Berg G, Bahl H (2001) Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Arch Microbiol 176:421–426

    Article  CAS  PubMed  Google Scholar 

  • Fridlender M, Inbar J, Chet I (1993) Biological control of soilborne plant pathogens by a ß-1,3 glucanase producing Pseudomonas cepacia. Soil Biol Biochem 25:1211–1221

    Article  CAS  Google Scholar 

  • Fuller AT, Mellows G, Woolford M, Banks GT, Barrow KD, Chain EB (1971) Pseudomonic acid: an antibiotic produced by Pseudomonas fluorescens. Nature 234:416–417

    Article  CAS  PubMed  Google Scholar 

  • Furuya S, Mochizuki M, Aoki Y, Kobayashi H, Takayanagi T, Shimizu M, Suzuki S (2011) Isolation and characterization of Bacillus subtilis KS1 for the biocontrol of grapevine fungal diseases. Biocontrol Sci Tech 21:705–720

    Article  Google Scholar 

  • Gamard P, Sauriol F, Benhamou N, Belanger RR, Paulitz TC (1997) Novel butyrolactones with antifungal activity produced by Pseudomonas aureofaciens strain 63–28. J Antibiot 50:742–749

    Article  CAS  Google Scholar 

  • Gange AC, Gadhave KR (2018) Plant growth-promoting rhizobacteria promote plant size inequality. Sci Rep 8:13828

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Geels FP, Schippers B (1983) Selection of antagonist fluorescent Pseudomonas spp. And their root colonization and persistence following treatment of seed potatoes. Phytopathol Z 108:193–206

    Article  Google Scholar 

  • Georgakopoulos DG, Fiddaman P, Leifert C, Malathrakis NE (2002) Biological control of cucumber and sugarbeet damping-off caused by Pythium ultimum with bacterial and fungal antagonists. J Appl Microbiol 92:1078–1086

    Article  CAS  PubMed  Google Scholar 

  • Glass JR, Johnson KB, Powelson ML (2001) Assessment of barriers to prevent the development of potato tuber blight caused by Phytophthora infestans. Plant Dis 85:521–528

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Hindawi Publishing Corporation, Scientifica, Waterloo

    Google Scholar 

  • Gnanamanickam SS (2006) Plant-associated bacteria. Springer, Dordrecht

    Book  Google Scholar 

  • Gnanamanickam SS, Mew TW (1992) Biological control of blast disease of rice (Oryza sativa L.) with antagonistic bacteria and its mediation by a Pseudomonas antibiotic. Ann Phytopathol Soc Jpn 58:380–385

    Article  Google Scholar 

  • Grosch R, Faltin F, Lottmann J, Kofoet A, Berg G (2005) Effectiveness of 3 antagonistic bacterial isolates to control Rhizoctonia solani Kuhn on lettuce and potato. Can J Microbiol 51:345–353

    Article  CAS  PubMed  Google Scholar 

  • Gu Q, Yang Y, Yuan Q, Shi G, Wu L, Lou Z, Huo R, Wu H, Borriss R, Gao X (2017) Bacillomycin D produced by Bacillus amyloliquefaciens is involved in the antagonistic interaction with the plant-pathogenic fungus Fusarium graminearum. Appl Environ Microbiol 83:e01075–e01017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo T, Liao M (2014) Suppression of Rhizoctonia solani and induction of host plant resistance by Paenibacillus kribbensis PS04 towards controlling of rice sheath blight. Biocontrol Sci Tech 24:116–121

    Article  Google Scholar 

  • Gupta CP, Dubey RC, Maheshwari DK (2002) Plant growth enhancement, suppression of Macrophomina phaseolina causing charcoal rot of pea nut by fluorescent Pseudomonas. Biol Fertil Soils 35:295–301

    Google Scholar 

  • Gurusiddaiah S, Weller DM, Sarkar A, Cook RJ (1986) Characterization of an antibiotic produced by a strain of Pseudomonas fluorescens inhibitory to Gaeumannomyces graminis var. tritici and Pythium spp. Antimicrob Agents Chemother 29:488–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutterson N, Layton TJ, Ziegle JS, Warren GJ (1986) Molecular cloning of genetic determinants for inhibition of fungal growth by a fluorescent pseudomonad. J Bacteriol 165:696–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagedorn C, Nelson N, Skwara JE (1990) Evaluation of a Pseudomonas fluorescens strain for repression of seedling disease. Va J Sci 41:492–500

    Google Scholar 

  • Harish S, Kavino M, Kumar N, Saravanakumar D, Soorianathasundaram K, Samiyappan R (2008a) Biohardening with plant growth promoting rhizosphere and endophytic bacteria induces systemic resistance against Banana bunchy top virus. Appl Soil Ecol 39(2):187–200

    Article  Google Scholar 

  • Harish S, Saravanakumar D, Radjacommare R, Ebenezar EG, Seetharaman K (2008b) Use of plant extracts and biocontrol agents for the management of brown spot disease in rice. BioControl 53:555–567

    Article  Google Scholar 

  • Harish S, Kavino M, Kumar N, Samiyappan R (2009a) Differential expression of pathogenesis-related proteins and defense enzymes in banana: interaction between endophytic bacteria, Banana bunchy top virus and Pentalonia nigronervosa. Biocontrol Sci Tech 19(8):843–857

    Article  Google Scholar 

  • Harish S, Kavino M, Kumar N, Balasubramanian P, Samiyappan R (2009b) Induction of defense-related proteins by mixtures of plant growth promoting endophytic bacteria against Banana bunchy top virus. Biol Control 51(1):16–25

    Article  CAS  Google Scholar 

  • Hashimoto M, Hattori K (1966a) Oxypyrrolnitrin: a metabolite of Pseudomonas. Chem Pharm Bull 14:1314–1316

    Article  CAS  Google Scholar 

  • Hashimoto M, Hattori K (1966b) Isopyrrolnitrin: a metabolite from Pseudomonas. Bull Chem Soc Jpn 39:410

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto M, Hattori K (1968) A new metabolite from Pseudomonas pyrrolnitrica. Chem Pharm Bull 16:1144

    CAS  Google Scholar 

  • Hegde GM, Anahosur KH (2001) Evaluations of fungitoxicants against fruit rot of chilli and their effect on bio-chemical constituents. Karnataka J Agric Sci 14:836–838

    Google Scholar 

  • Hjort K, Bergstrom M, Adesina MF, Jansson JK, Smalla K, Sjoling S (2010) Chitinase genes revealed and compared in bacterial isolates, DNA extracts and a metagenomic library from a phytopathogen-suppressive soil. FEMS Microbiol Ecol 71:197–207

    Article  CAS  PubMed  Google Scholar 

  • Hofte M, Boelens J, Verstrete W (1991) Seed protection and promotion of seedling emergence by the plant growth beneficial Pseudomonas strains 7NSK2 and ANP15. Soil Biol Biochem 23:407–410

    Article  Google Scholar 

  • Hong T-Y, Meng M (2003) Biochemical characterization and antifungal activity of an endo-1, 3-b-glucanase of Paenibacillus sp. isolated from garden soil. Appl Microbiol Biotechnol 61:472–478

    Article  CAS  PubMed  Google Scholar 

  • Howell CR, Stipanovic RD (1979) Control of Rhizoctonia solani on cotton seedlings with Pseudomonas fluorescens with an antibiotic produced by the bacterium. Phytopathology 69:480–482

    Article  CAS  Google Scholar 

  • Howie WJ, Suslow TV (1991) Role of antibiotic biosynthesis in the inhibition of Pythium ultimum in the cotton spermosphere and rhizosphere by Pseudomonas fluorescens. Mol Plant Microb Interact 4:393–399

    Article  CAS  Google Scholar 

  • Hultberg M, Alsanius B, Sundin P (2000) In vivo and in vitro interactions between Pseudomonas fluorescens and Pythium ultimum in the suppression of damping-off in tomato seedlings. Biol Control 19:1–8

    Article  Google Scholar 

  • Iavicoli A, Boutet E, Buchala A, Metraux JP (2003) Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHAO. Mol Plant-Microbe Interact 16:851–858

    Article  CAS  PubMed  Google Scholar 

  • Idris AH, Labuschagne N, Korsten L (2008) Suppression of Pythium ultimum root rot of sorghum by rhizobacterial isolates from Ethiopian and South Africa. Biol Control 45:72–84

    Article  Google Scholar 

  • Ishida AKN, Souza RM, Resende MLV, Cavalcanti FR, Oliveira DL, Pozza EA (2008) Rhizobium and acibenzolar- S -methyl (ASM) in resistance induction against bacterial blight and expression of defense responses in cotton. Trop Plant Pathol 33:27–34

    Article  Google Scholar 

  • Jacques P (2011) Surfactin and other lipopeptides from Bacillus spp. Microbiol Monogr 20:57–91

    Article  Google Scholar 

  • Jadhav HP, Sayyed RZ (2016) Hydrolytic enzymes of rhizospheric microbes in crop protection. MOJ Cell Sci Rep 3(5):135–136

    Google Scholar 

  • Jayaraj J, Radhakrishnan NV, Kannan R, Sakthivel K, Suganya D, Venkatesan S, Velazhahan R (2005) Development of new formulations of Bacillus subtilis for management of tomato damping-off caused by Pythium aphanidermatum. Biocontrol Sci Tech 15:55–65

    Article  Google Scholar 

  • Jayashree K, Shanmugam V, Raguchander T, Ramanathan A, Samiyappan R (2000) Evaluation of Pseudomonas fluorescens (Pf1) against blackgram and sesame root-rot disease. J Biol Control 14:55–61

    Google Scholar 

  • Jetiyanon K, Fowler WD, Kloepper JW (2003) Broad-spectrum protection against several pathogens by PGPR mixtures under field conditions in Thailand. Plant Dis 87:1390–1394

    Article  PubMed  Google Scholar 

  • Ji P, Campbell HL, Kloepper JW, Jones JB, Suslow TV, Wilson M (2006) Integrated biological control of bacterial speck and spot of tomato under field conditions using foliar biological control agents and plant growth-promoting rhizobacteria. Biol Control 36:358–367

    Article  Google Scholar 

  • Ji GH, Wei LF, He YQ, Wu YP, Bai XH (2008) Biological control of rice bacterial blight by Lysobacter antibioticus strain 13–1. Biol Control 45:288–296

    Article  Google Scholar 

  • Jiang ZQ, Guo YH, Li SM, Qi HY, Guo JH (2006) Evaluation of biocontrol efficiency of different Bacillus preparations and field application methods against Phytophthora blight of bell pepper. Biol Control 36:216–223

    Article  Google Scholar 

  • Jiao Y, Yoshihara T, Ishikuri S, Uchino H, Ichihara A (1996) Structural identification of cepaciamide A, a novel fungitoxic compound from Pseudomonas cepacia D-202. Tetrahedron Lett 37:1039–1042

    Article  CAS  Google Scholar 

  • Jochum CC, Osborne LE, Yuen GY (2006) Fusarium head blight biological control with Lysobacter enzymogenes strain C3. Biol Control 39:336–344

    Article  Google Scholar 

  • Johri BN, Sharma A, Virdi JS (2003) Rhizobacterial diversity in India and its influence on plant health. In: Ghose TK, Ghosh P (eds) Advances in biochemical engineering/biotechnology, 84. Springer, Berlin, pp 49–89

    Google Scholar 

  • Jung WJ, An KN, Jin YL, Park RD, Lim KT, Kim KY, Kim TH (2003) Biological control of damping off caused by Rhizoctonia solani using chitinase producing Paenibacillus illinoisensis KJA-424. Soil Biol Biochem 35:1261–1264

    Article  CAS  Google Scholar 

  • Kageyama K, Nelson EB (2003) Differential inactivation of seed exudates stimulation of Pythium ultimum sporangium germination by Enterobacter cloacae influences biological control efficacy on different plant species. Appl Environ Microbiol 69:1114–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamalakannan A, Mohan L, Amutha G, Chitra K, Parthiban VK (2003) Effect of volatile and diffusible compounds of biocontrol agents against Coleus forskohlii root rot pathogens. In: Symposium on recent development in the diagnosis and management of plant diseases.18–20 Dec. Dharwad, Karnataka, p 92

    Google Scholar 

  • Kamensky M, Ovadis M, Chet I, Chernin L (2003) Soil-borne strain IC14 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrytis cinerea and Sclerotinia sclerotiorum diseases. Soil Biol Biochem 35:323–331

    Article  CAS  Google Scholar 

  • Kanajanamaneesathian M, Wiwattanapatapee R, Pengnoo A, Oungbho K, Chumthong A (2007) Efficacy of novel formulations of Bacillus megaterium in suppressing sheath blight of rice caused by Rhizoctonia solani. Plant Pathol J 6:195–201

    Article  Google Scholar 

  • Kandan A, Ramiah M, Vasanthi VJ, Radjacommare R, Nandakumar R, Ramanathan A, Samiyappan R (2005) Use of Pseudomonas fluorescens based formulations for management of Tomato spotted wilt virus (TSWV) and enhanced yield in tomato. Biocontrol Sci Tech 15:553–569

    Article  Google Scholar 

  • Kanjanamaneesathian M, Wiwattanapatapee R, Pengnoo A, Oungbho K, Chumthong A (2007) Efficacy of novel bioformulation of Bacillus megaterium, in suppressing rice sheath blight caused by Rhizoctonia solani. Plant Pathol J 6(2):195–201

    Article  Google Scholar 

  • Karpagavalli S, Marimuthu T, Jayaraj J, Ramabadran R (2002) An integrated approach to control rice blast through nutrients and biocontrol agent. Res Crops 2:197–202

    Google Scholar 

  • Karthikeyan V, Gnanamanickam SS (2008) Biological control of Setaria blast (Magnaporthe grisea) with bacterial strains. Crop Protect 27:263–267

    Article  Google Scholar 

  • Kavino M, Harish S, Kumar N, Saravanakumar D, Samiyappan R (2010) Effect of chitinolytic PGPR on growth, yield and physiological attributes of banana (Musa spp.) under field conditions. Appl Soil Ecol 45(2):71–77

    Article  Google Scholar 

  • Keel C, Defago G (1997) Interactions between beneficial soil bacteria and root pathogens: mechanisms and ecological impact. In: Gange AC, Brown VK (eds) Multitrophic interactions in terrestrial system. Blackwell Science, Oxford, pp 27–47

    Google Scholar 

  • Keel C, Schiner U, Maurhofer M, Voisard C, Laville J, Burger U, Wirthner P, Haas D, Defago G (1992) Suppression of root diseases by Pseudomonas fluorescens CHA0: importance of the bacterial secondary metabolite 2,4- Diacetylphloroglucinol. Mol Plant-Microbe Interact 5:4–13

    Article  CAS  Google Scholar 

  • Khalimi K, Suprapta DN (2011) Induction of plant resistance against soybean stunt virus using some formulations of Pseudomonas aeruginosa. J ASSAAS 17:98–105

    Google Scholar 

  • Khan MR, Akram M (2000) Effects of certain antagonistic fungi and rhizobacteria on wilt disease complex of tomato caused by Meloidogyne incognita and Fusarium oxysporum f. sp. lycopersici. Nematol Mediterr 28:139–144

    Google Scholar 

  • Khan MR, Doohan FM (2009) Bacterium-mediated control of Fusarium head blight disease of wheat and barley and associated mycotoxin contamination of grain. Biol Control 48:42–47

    Article  Google Scholar 

  • Khan MR, O’Brien E, Carney BF, Doohan FM (2010) A fluorescent pseudomonad shows potential for the control of net blotch disease of barley. Biol Control 54(1):41–45

    Article  Google Scholar 

  • Kildea S, Ransbotyn V, Khan MR, Fagan B, Gerald L, Mullins E, Doohan FM (2008) Bacillus megaterium shows potential for the biocontrol of Septoria tritici blotch of wheat. Biol Control 47(1):37–45

    Article  Google Scholar 

  • Kim ST, Yun SC (2011) Biocontrol with Myxococcus sp. KYC 1126 against anthracnose in hot pepper. Plant Pathol J 27:156–163

    Article  Google Scholar 

  • Kim BS, Lee JY, Hwang BK (2000) In vivo control and in vitro antifungal activity of rhamnolipid B, a glycolipid antibiotic, against Phytophthora capsici and Colletotrichum orbiculare. Pest Manag Sci 56:1029–1035

    Article  CAS  Google Scholar 

  • Kim HJ, Kim YK, Kim TS, Park KS, Yeh WH (2006) Biological control of postharvest diseases by Pantoea agglomerans 59-4 on garlic bulbs. In: 27th International horticulture congress exhibition (IHC 2006), 13–19 Aug 2006, COEX (Convention & Exhibition), Seoul, Korea, p 494

    Google Scholar 

  • Kim YC, Jung H, Kim KY, Park SK (2008) An effective biocontrol formulation against Phytophthora blight of pepper using growth mixtures of combined chitinolytic bacteria under different field conditions. Eur J Plant Pathol 120:373–382

    Article  Google Scholar 

  • Kim IP, Ryu J, Kim YH, ChI YT (2010) Production of biosurfactant lipopeptides iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J Microbiol Biotechnol 20(1):138–145

    CAS  PubMed  Google Scholar 

  • Kishore GK, Pande S, Podile AR (2005a) Biological control of collar rot disease with broad-spectrum antifungal bacteria associated with groundnut. Can J Microbiol 51:123–132

    Article  CAS  PubMed  Google Scholar 

  • Kishore GK, Pande S, Podile AR (2005b) Biological control of late leaf spot of peanut (Arachis hypogaea) with chitinolytic bacteria. Phytopathology 95:1157–1165

    Article  CAS  PubMed  Google Scholar 

  • Kloepper JW, Adesemaye AO (2009) Plant microbe interaction in enhanced fertilizer use and efficiency. Appl Microbiol Biotechnol 85:1–12

    Article  PubMed  CAS  Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the 4th international conference on plant pathogenic bacteria, vol 2. Station de Pathologie Ve’ge’tale et de Phytobacte’riologie, INRA, Angers, France, pp 879–882

    Google Scholar 

  • Kloepper JW, Rodriguez-Kabana R, Mcinroy JA, Young RW (1992) Rhizosphere bacteria antagonistic to soybean cyst (Heterodera glycines) and root-knot (Meloidogyne incognita) nematodes: identification by fatty acid analysis and frequency of biological control activity. Plant Soil 139:75–84

    Article  CAS  Google Scholar 

  • Kong Q, Shan S, Liu Q, Wang X, Yu F (2010) Biocontrol of Aspergillus flavus on peanut kernels by use of a strain of Bacillus megaterium. Int J Food Microbiol 139:31–35

    Article  CAS  PubMed  Google Scholar 

  • Koomen I, Jeffris P (1993) Effects of antagonistic microorganisms on the post-harvest development of Colletotrichum gloeosporioides on mango. Plant Pathol 42:230–237

    Article  Google Scholar 

  • Krishnamurthy J, Gnanamanickam SS (1998) Biological control of rice blast by Pseudomonas fluorescens strain pf7-14: evaluation of a marker gene and formulations. Biol Control 13:158–165

    Article  Google Scholar 

  • Kucheryava N, Fiss M, Auling G, Kroppenstedt RM (1999) Isolation and characterization of epiphytic bacteria from the phyllosphere of apple, antagonistic in vitro to Venturia inaequalis, the causal agent of apple scab. Syst Appl Microbiol 22:472–478

    Article  CAS  Google Scholar 

  • Kumar KVK, Yellareddygari SK, Reddy MS, Kloepper JW, Lawrence KS, Zhou XG, Sudini H, Groth DE, Raju SK, Miller ME (2012) Efficacy of Bacillus subtilis MBI 600 against sheath blight caused by Rhizoctonia solani and on growth and yield of rice. Rice Sci 19:55–63

    Article  Google Scholar 

  • Kumar P, Thakur S, Dhingra GK, Singh A, Pal MK, Harshvardhan K, Dubey RC, Maheshwari DK (2018) Inoculation of siderophore producing rhizobacteria and their consortium for growth enhancement of wheat plant. Biocatal Agric Biotechnol S1878–8181(18):30154–30153

    Google Scholar 

  • Lagopodi AL (2009) Biological control of three Colletotrichum lindemuthianum races using Pseudomonas chlororaphis PCL1391 and Pseudomonas fluorescens WCS365. Biol Control 49:139–145

    Article  Google Scholar 

  • Lampis G, Deidda D, Maullu C, Petruzzelli S, Pompei R (1996) Karalicin, a new biologically active compound from Pseudomonas fluorescens/putida. I. Production, isolation, physico-chemical properties and structure elucidation. J Antibiot 49:260–262

    Article  CAS  Google Scholar 

  • Landa BB, Navas-Cortés JA, Jiménez-Díaz RM (2004) Integrated management of Fusarium wilt of chickpea with sowing date, host resistance and biological control. Phytopathology 94:946–960

    Article  PubMed  Google Scholar 

  • Lee JT, Bae DW, Park SH, Shim CK, Kwak YS, Kim HK (2001) Occurrence and biological control of postharvest decay in onion caused by fungi. Plant Pathol J 17:141–148

    Google Scholar 

  • Leeman M, van Pelt JA, den Ouden FM, Heinsbroek M, Bakker PAHM, Schippers B (1995) Induction of systemic resistance by Pseudomonas fluorescens in radish cultivars differing in susceptibility to fusarium wilt, using a novel bioassay. Eur J Plant Pathol 101:655–664

    Article  Google Scholar 

  • Leeman M, Den Ouden FM, van Pelt JA, Dirks FPM, Steiji H (1996) Iron availability affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology 86:149–155

    Article  CAS  Google Scholar 

  • Leisso RS, Miller PR, Burrows ME (2009) The influence of biological and fungicidal seed treatments on chickpea (Cicer arietinum) damping-off. Can J Plant Pathol 31:38–46

    Article  CAS  Google Scholar 

  • Levenfors JP, Eberhard TH, Levenfors JL, Gerhardson B, Hökeberg M (2008) Biological control of snow mould (Microdochium nivale) in winter cereals by Pseudomonas brassicacearum MA250. BioControl 53:651–665

    Article  Google Scholar 

  • Ligon JM, Hill DS, Hammer PE, Torkewitz NR, Hofmann D, Kempf HJ, van Pee KH (2000) Natural products with antifungal activity from Pseudomonas biocontrol bacteria. Pest Manag Sci 56:688–695

    Article  CAS  Google Scholar 

  • Lim HS, Kim YS, Kim SD (1991) Pseudomonas stutzeri YPL-1 genetic transformation and antifungal mechanism against Fusarium solani, an agent of plant root rot. Appl Environ Microbiol 57:510–516

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Kloepper JW, Tuzun S (1995) Induction of systemic resistance in cucumber against bacterial leaf spot by plant growth promoting rhizobacteria. Phytopathology 85:843–847

    Article  Google Scholar 

  • Liu W, Sutton JC, Grodzinski B, Kloepper JW, Reddy MS (2007) Biological control of Pythium root rot of Chrysanthemum in small-scale hydroponic units. Phytoparasitica 35:159–117

    Article  Google Scholar 

  • Liu K, Garrett C, Fadamiro H, Kloepper JW (2016) Induction of systemic resistance in Chinese cabbage against black rot by plant growth-promoting rhizobacteria. Biol Control 99:8–13

    Article  Google Scholar 

  • Loper JE, Paulsen I, Bruck DJ, Pechy-Tarr M, Keel C, Gross H (2008) Genomics of secondary metabolite production by Pseudomonas fluorescens Pf-5. Phytopathology 98(6S):94

    Google Scholar 

  • Lu XY, Li SZ, Li QS, Kong LX, Liu J, Ma P, Gao SG (2006) Screening of bacteria as biocontrol agent against corn leaf spot and study on its optimal culture medium. Chin J Biol Control 22:47–53

    Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Mahadevan B, Crawford DL (1997) Properties of the chitinase of the antifungal biocontrol agent Streptomyces lydicus WYEC108. Enzym Microb Technol 20:489–493

    Article  CAS  Google Scholar 

  • Manikandan R, Saravanakumar D, Rajendran L, Raguchander T, Samiyappan R (2010) Standardization of liquid formulation of Pseudomonas fluorescens Pf1 for its efficacy against Fusarium wilt of tomato. Biol Control 54:83–89

    Article  Google Scholar 

  • Manjula K, Podile AR (2001) Chitin supplemented formulations improve biocontrol and plant growth promoting efficiency of Bacillus subtilis AF1. Can J Microbiol 47:618–625

    Article  CAS  PubMed  Google Scholar 

  • Mao W, Lumsden RD, Lewis JA, Hebbar PK (1998) Seed treatment using pre-infiltration and biocontrol agents to reduce damping-off of corn caused by species of Pythium and Fusarium. Plant Dis 82:294–299

    Article  CAS  PubMed  Google Scholar 

  • Martinez C, Michaud M, Belanger RR, Tweddell RJ (2002) Identification of soils suppressive against Helminthosporium solani, the causal agent of potato silver scurf. Soil Biol Biochem 34:1861–1868

    Article  CAS  Google Scholar 

  • Matilla MA, Ramos JL, Bakker PA, Doornbos R, Badri DV, Vivanca JM, Ramoz-Gonzalez MI (2010) Pseudomonas putida KT2440 causes induced systemic resistance and changes in Arabidopsis root exudation. Environ Microbiol Rep 2:381–388

    Article  CAS  PubMed  Google Scholar 

  • Maurhofer M, Hase C, Meuwly P, Metraux JP, Defago G (1994) Induction of systemic resistance of tobacco to tobacco necrosis virus by the root colonizing Pseudomonas fluorescens strain CHAO: influence of the gag A gene and of pyoverdine production. Phytopathology 84:678–684

    Article  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  PubMed  Google Scholar 

  • Mazzola M, Funnell DL, Raaijmakers JM (2004) Wheat cultivar-specific selection of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas species from resident soil populations. Microbiol Ecol 48:338–348

    Article  CAS  Google Scholar 

  • McManus PS, Ravenscroft AV, Fulbright DW (1993) Inhibition of Tilletia laevis teliospore germination and suppression of common bunt of wheat by Pseudomonas fluorescens. Plant Dis 77:1012–1015

    Article  Google Scholar 

  • Meena B, Radhajayalakshmi R, Vidhyasekaran P, Velazhahan R (1999) Effect of foliar application of Pseudomonas fluorescens on activities of phenylalanine ammonia-lyase, chitinase and beta-1,3-glucanase and accumulation of phenolics in rice. Acta Phytopathol Entomol Hungar 34:307–315

    Article  CAS  Google Scholar 

  • Mew TW, Rosales AM (1992) Control of Rhizoctonia sheath blight and other diseases by rice seed bacterization. In: Tjamos ES, Papavizas GC, Cook RJ (eds) Biological control of plant diseases. Plenum, New York, pp 113–123

    Chapter  Google Scholar 

  • Michereff SJ, Silveira NSS, Reis A, Mariano RLR (1994) Epiphytic bacteria antagonistic to Curvularia leaf spot of yam. Microb Ecol 28:101–110

    Article  CAS  PubMed  Google Scholar 

  • Miller CM, Miller RV, Kenny DG, Redgrave B, Sears J, Condron MM, Teplow DB, d Strobel GA (1998) Ecomycins, unique antimycotics from Pseudomonas viridiflava. J Appl Microbiol 84:937–944

    Article  CAS  PubMed  Google Scholar 

  • Milner JL, Silo-Suh L, Lee JC, He HY, Clardy J, Handelsman J (1996) Production of kanosamine by Bacillus cereus UW85. Appl Environ Microbiol 62:3061–3065

    CAS  PubMed  PubMed Central  Google Scholar 

  • Minaxi NL, Yadav RC, Saxena J (2012) Characterization of multifaceted Bacillus sp. RM-2 for its use as plant growth promoting bioinoculant for crops grown in semi-arid deserts. Appl Soil Ecol 59:124–135

    Article  Google Scholar 

  • Minuto A, Spadaro D, Garibaldi A, Gullino ML (2006) Control of soilborne pathogens of tomato using a commercial formulation of Streptomyces griseoviridis and solarization. Crop Prot 25:468–475

    Article  Google Scholar 

  • Moenne-Loccoz Y, Naughton M, Higgins P, Powell J, O’Connor B, O’Gara F (1999) Effect of inoculum preparation and formulation on survival and biocontrol efficacy of Pseudomonas fluorescens F113. J Appl Microbiol 86:108–116

    Article  Google Scholar 

  • Mondal KK, Singh RP, Dureja P, Verma JP (2000) Secondary metabolites of cotton rhizobacteria in the suppression of bacterial blight of cotton. Indian Phytopathol 53:22–27

    Google Scholar 

  • Muis A, Quimiob AJ (2006) Biological control of banded leaf and sheath blight disease (Rhizoctonia solani Kuhn) in corn with formulated Bacillus subtilis BR23. Indones J Agric Sci 7:1–7

    Article  Google Scholar 

  • Nakkeeran S, Kavitha K, Mathiyazhagan S, Fernando WGD, Chandrasekar G, Renukadevi P (2004) Induced systemic resistance and plant growth promotion by Pseudomonas chlororaphis strain PA-23 and Bacillus subtilis strain CBE4 against rhizome rot of turmeric (Curcuma longa L.). Can J Plant Pathol 26:417–418

    Google Scholar 

  • Nakkeeran S, Dilantha FWG, Sidduqui ZA (2005) Plant growth promoting rhizobacteria formulations and its scope in commercialization for the management of pests and diseases. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Netherlands, pp 257–296

    Google Scholar 

  • Nandakumar R, Babu S, Viswanathan R, Sheela J, Raguchander T, Samiyappan R (2001) A new bio-formulation containing plant growth promoting rhizobacterial mixture for the management of sheath blight and enhanced grain yield in rice. BioControl 46:493–510

    Article  Google Scholar 

  • Nandeeshkumar P, Ramachandrakini K, Prakash HS, Niranjana SR, Shetty HS (2008) Induction of resistance against downy mildew on sunflower by rhizobacteria. J Plant Interact 3:256–262

    Article  Google Scholar 

  • Naseby DC, Way JA, Bainton NJ, Lynch JM (2001) Biocontrol of Pythium in the pea rhizosphere by antifungal metabolite producing and non-producing Pseudomonas strains. J Appl Microbiol 90:421–429

    Article  CAS  PubMed  Google Scholar 

  • Nayaka SC, Shankar ACU, Reddy MS, Niranjana SR, Prakash HS, Shetty HS, Mortensen CN (2009) Control of Fusarium verticillioides, cause of ear rot of maize, by Pseudomonas fluorescens. Pest Manag Sci 65:769–775

    Article  CAS  PubMed  Google Scholar 

  • Nelson EB (1988) Biological control of Pythium seed rot and pre-emergence damping-off of cotton with Enterobacter cloacae and Erwinia herbicola applied as seed treatments. Plant Dis 72:140–142

    Article  Google Scholar 

  • Nielsen MN, Sorensen J, Fels J, Pedersen HC (1998) Secondary metabolite- and endochitinase dependent antagonism toward plant-pathogenic microfungi of Pseudomonas fluorescens isolates from sugar beet rhizosphere. Appl Environ Microbiol 64:3563–3569

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen TH, Christophersen C, Anthoni U, Sorensen J (1999) Viscosinamide, a new cyclic depsipeptide with surfactant and antifungal properties produced by Pseudomonas fluorescens DR54. J Appl Microbiol 86:80–90

    Article  Google Scholar 

  • Nielsen TH, Thrane C, Christophersen C, Anthoni U, Sørensen J (2000) Structure, production characteristics and fungal antagonism of tensin—a new antifungal cyclic lipopeptide from Pseudomonas fluorescens strain 96.578. J Appl Microbiol 89:992–1001

    Article  CAS  PubMed  Google Scholar 

  • Nyfeler R, Ackermann P (1992) Phenylpyrroles, a new class of agricultural fungicides related to the natural antibiotic pyrrolnitrin. In: Baker DR, Fenyes JG, Steffens JJ (eds) Synthesis and chemistry of agrochemicals III, ACS symposium series, vol 504, pp 395–404

    Chapter  Google Scholar 

  • Okigbo RN (2002) Mycoflora of tuber surface of white yam (Dioscorea rotundata Poir) and postharvest control of pathogens with Bacillus subtilis. Mycopathologia 156:81–85

    Article  Google Scholar 

  • Olivain C, Alabouvette C, Steinberg C (2004) Production of a mixed inoculum of Fusarium oxysporum Fo47 and Pseudomonas fluorescens C7 to control Fusarium diseases. Biol Sci Technol 14:227–238

    Article  Google Scholar 

  • Omar I, O’Neill TM, Rossall S (2006) Biological control of Fusarium crown and root rot of tomato with antagonistic bacteria and integrated control when combined with the fungicide carbendazim. Plant Pathol 55:92–99

    Article  CAS  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125

    Article  CAS  PubMed  Google Scholar 

  • Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpigny JL, Thonart P (2007) Brief report Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090

    Article  CAS  PubMed  Google Scholar 

  • Ordentlich A, Elad Y, Chet I (1988) The role of chitinase of Serratia marcescens in biocontrol of Sclerotium rolfsii. Phytopathology 78:84–88

    CAS  Google Scholar 

  • Pahari A, Pradhan A, Maity S, Mishra BB (2017) Carrier based formulation of plant growth promoting Bacillus species and their effect on different crop plants. Int J Curr Microbiol App Sci 6:379–385

    Article  CAS  Google Scholar 

  • Pal KK, Gardener BM (2006) Biological control of plant pathogens. Plant Health Instructor 2:1117–1142

    Google Scholar 

  • Pal KK, Tilak KVBR, Saxena AK, Dey R, Singh CS (2001) Suppression of maize root diseases caused by Macrophomina phaseolina, Fusarium moniliforme and Fusarium graminearum by plant growth promoting rhizobacteria. Microbiol Res 156:209–223

    Article  CAS  PubMed  Google Scholar 

  • Palumbo JD, Yuen GY, Jochum CC, Tatum K, Kobayashi DY (2005) Mutagenesis of beta 1,3-glucanase genes in Lysobacter enzymogenes strain C3 results in reduced biological control activity toward Bipolaris leaf spot of tall fescue and Pythium damping-off of sugar beet. Phytopathology 95:701–707

    Article  CAS  PubMed  Google Scholar 

  • Park CS, Paulitz TC, Baker R (1988) Biocontrol of Fusarium wilt of cucumber resulting from interactions between Pseudomonas putida and nonpathogenic isolates of Fusarium oxysporum. Phytopathology 78:190–194

    Article  Google Scholar 

  • Parke JL, Rand RE, Joy AE, King EB (1991) Biological control of Aphanomyces root rot and Pythium damping–off of peas by Pseudomonas cepacia and Pseudomonas fluorescens applied to seeds. Plant Dis 75:987–992

    Article  Google Scholar 

  • Parthasarathy S, Thiribhuvanamala G, Subramanium KS, Prabakar K (2016) Bacterial antagonists and hexanal-induced systemic resistance of mango fruits against Lasiodiplodia theobromae causing stem-end rot. J Plant Interact 11:158–166

    Article  CAS  Google Scholar 

  • Pathma J, Rahul GR, Kamaraj Kennedy R, Subashri R, Sakthivel N (2011) Secondary metabolite production by bacterial antagonists. J Biol Control 25(3):165–181

    Google Scholar 

  • Paulitz TC (1991) Effect of Pseudomonas putida on the stimulation of Pythium ultimum by seed volatiles of pea and soyabean. Phytopathology 81:1282–1287

    Article  CAS  Google Scholar 

  • Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, Buckler ES, Ley RE (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci U S A 110:6548–6553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira de Melo FM, Fiore MF, Beraldo de Moraes LA, Silva-Stenico ME, Scramin S, Teixeira MA, Melo IS (2009) Antifungal compound produced by the cassava endophyte Bacillus pumilus maIIIm4a. Sci Agric 66:583–592

    Article  CAS  Google Scholar 

  • Pereira P, Nesci A, Castillo C, Etcheverry M (2010) Impact of bacterial biological control agents on fumonisin B1 content and Fusarium verticillioides infection of field-grown maize. Biol Control 53:258–266

    Article  CAS  Google Scholar 

  • Petatan-Sagahon I, Anducho-Reyes MA, Silvo-Rojas HV, Arana-Cuenca A, Tellez-Jurado A, Cardenas-Alvarez IO (2011) Isolation of bacteria with antifungal activity against the phytopathogenic fungi Stenocarpella maydis and Stenocarpella macrospora. Int J Mol Sci 12:5522–5537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierson LS, Thomashow LS (1992) Cloning of heterologous expression of phenazine biosynthesis locus from Pseudomonas aureofaciens 30–84. Mol Plant-Microbe Interact 53:330–339

    Article  Google Scholar 

  • Ping W, Feng XM, Wang GX, Dong B, Li FL (1999) Screening and identification of PGPR strains isolated from rhizosphere of winter wheat. J Huazhong Agric Univ 18:352–356

    Google Scholar 

  • Prashanthi SK, Kulkarni S, Anahosur KH, Kulkarni S (2000) Management of safflower root rot caused by Rhizoctonia bataticola by antagonistic microorganisms. Plant Dis Res 15:146–150

    Google Scholar 

  • Raaijmakers JM, van der Sluis I, Koster M, Bakker P, Weisbeek PJ, Schippers B (1995) Utilization of heterologous siderophores and rhizosphere competence of fluorescent Pseudomonas spp. Can J Microbiol 41:126–135

    Article  CAS  Google Scholar 

  • Rabindran R, Vidhyasekaran P (1996) Development of a formulation of Pseudomonas fluorescens PfALR2 for management of rice sheath blight. Crop Prot 15:715–721

    Article  Google Scholar 

  • Radhapriya P, Ramachandran A, Palani P (2018) Indigenous plant growth-promoting bacteria enhance plant growth, biomass, and nutrient uptake in degraded forest plants. 3 Biotechnol 8:154

    Google Scholar 

  • Radjacommare R, Nandakumar R, Kandan A, Suresh S, Bharathi M, Raguchander T, Samiyappan R (2002) Pseudomonas fluorescens based bioformulation for the management of sheath blight and leaf folder in rice. Crop Prot 21:671–677

    Article  Google Scholar 

  • Rais A, Zahra J, Faluk SF, Yusuf H, Muhammad NH (2017) Bacillus spp., a bio-control agent enhances the activity of antioxidant defense enzymes in rice against Pyricularia oryzae. PLoS One 12:e0187412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raj SN, Chaluvaraju G, Amruthesh KN, Shetty HS, Reddy MS, Kloepper JW (2003) Induction of growth promotion and resistance against downy mildew on pearl millet (Pennisetum glaucum) by rhizobacteria. Plant Dis 87:380–384

    Article  PubMed  Google Scholar 

  • Rajappan K, Ramaraj B (1999) Evaluations of fungal and bacterial antagonists against Fusarium moniliforme causing wilt of cauliflower. Ann Plant Protect Sci 7:205–207

    Google Scholar 

  • Ramamoorthy V, Viswanathan R, Raguchander T, Prakasam V, Samiyappan R (2001) Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Prot 20:1–11

    Article  CAS  Google Scholar 

  • Rozsnyay ZD, Hevesi M, Klement Z, Vajana L (1992) Biological control against canker and dieback diseases of apricots. Acta Phytopathol Entomol Hung 27:551–556

    Google Scholar 

  • Russo A, Basaglia M, Tola E, Casella S (2001) Survival, root colonisation and biocontrol capacities of Pseudomonas fluorescens F113 LacZY in dry alginate microbeads. J Ind Microbiol Biotechnol 27:337–342

    Article  CAS  PubMed  Google Scholar 

  • Ryu C-M, Kim J, Choi O, Kim SH, Park CS (2006) Improvement of biological control capacity of Paenibacillus polymyxa E681 by seed pelleting on sesame. Biol Control 39:282–289

    Article  Google Scholar 

  • Sabaratnam S, Traquair JA (2002) Formulation of a Streptomyces biocontrol agent for the suppression of Rhizoctonia damping-off in tomato transplants. Biol Control 23:245–253

    Article  CAS  Google Scholar 

  • Sadfi N, Chérif M, Hajlaoui MR, Boudabbous A (2002) Biological control of the potato tubers dry rot caused by Fusarium roseum var. sambucinum under greenhouse, field and storage conditions using Bacillus spp. isolates. J Phytopathol 150:640–648

    Article  Google Scholar 

  • Sadoma MT, El-Sayed ABB, El-Moghazy SM (2011) Biological control downy mildew diseases of maize caused by Peronosclerospora sorghi using certain biocontrol agents alone or in combination. J Agric Res Kafer El-Sheikh Univ:37

    Google Scholar 

  • Saikia R, Kumar R, Arora DK, Gogoi DK, Azad P (2006) Pseudomonas aeruginosa inducing rice resistance against Rhizoctonia solani: production of salicylic acid and peroxidases. Folia Microbiol 51:375–380

    Article  CAS  PubMed  Google Scholar 

  • Sakthivel N, Gnanamanickam SS (1987) Evaluation of Pseudomonas fluorescens strains for suppression of sheath-rot disease and enhancement of grain yield in rice, Oryza sativa L. Appl Environ Microbiol 53:2056–2059

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sakthivel N, Sunish Kumar R (2008) Dimer of phenazine-1-carboxylic acid and to the process of preparation thereof. USPTO 7,365,194 B2

    Google Scholar 

  • Saravanakumar D, Harish S, Loganathan M, Vivekananthan R, Rajendran L, Raguchander T, Samiyappan R (2007a) Rhizobacterial bioformulation for the effective management of Macrophomina root rot in mungbean. Archiv Phytopathol Plant Protect 40:323–337

    Article  Google Scholar 

  • Saravanakumar D, Vijayakumar C, Kumar N, Samiyappan R (2007b) PGPR induced defense responses in tea plants against blister blight disease. Crop Prot 26:556–565

    Article  Google Scholar 

  • Saravanakumar D, Lavanya N, Muthumeena K, Raguchander T, Samiyappan R (2009) Fluorescent pseudomonad mixtures mediate disease resistance in rice plants against sheath rot (Sarocladium oryzae) disease. BioControl 54:273–286

    Article  Google Scholar 

  • Sasirekha B, Srividya S (2016) Siderophore production by Pseudomonas aeruginosa FP6, a biocontrol strain for Rhizoctonia solani and Colletotrichum gloeosporioides causing diseases in chilli. Agric Nat Resour 50:250–256

    CAS  Google Scholar 

  • Satya VK, Vijayasamundeeswari A, Paranidharan V, Velazhahan R (2011) Burkholderia sp. strain TNAU-1 for biological control of root rot in mungbean (Vigna radiata L.) caused by Macrophomina phaseolina. J Plant Protect Res 51:273–278

    Article  Google Scholar 

  • Sayyed RZ, Badgujar MD, Sonawane HM, Mhaske MM, Chincholkar SB (2005) Production of microbial iron chelators (siderophores) by fluorescent pseudomonads Indian. J Biotechnol 4:484–490

    CAS  Google Scholar 

  • Scher FM, Baker R (1982) Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens. Phytopathology 72:1567–1573

    Article  CAS  Google Scholar 

  • Scher FΜ, Kloepper JW, Singleton CA (1985) Chemotaxis of fluorescent Pseudomonas spp. to soybean seed exudates in vitro and in soil. Can J Microbiol 31:570–574

    Article  Google Scholar 

  • Schisler DA, Slininger PJ, Kleinkopf G, Bothast RJ, Ostrowski RC (2000) Biological control of Fusarium dry rot of potato tubers under commercial storage conditions. Am J Potato Res 77:29–40

    Article  Google Scholar 

  • Schisler DA, Slininger PJ, Miller JS, Woodell LK, Clayson S, Olsen N (2009) Bacterial antagonists, zoospore inoculum retention time and potato cultivar influence pink rot disease development. Am J Potato Res 86:102–111

    Article  Google Scholar 

  • Schoina C, Stringlis IA, Pantelides IS, Tjamos SE, Paplomatas EJ (2011) Evaluation of application methods and biocontrol efficacy of Paenibacillus alvei strain K-165, against the cotton black root rot pathogen Thielaviopsis basicola. Biol Control 58:68–73

    Article  Google Scholar 

  • Seuk PC, Woo KJ, Hee CO (2001) Biological control of tomato bacterial wilt caused by Ralstonia solanacearum in a rockwool hydroponic system employing Pseudomonas fluorescens B16. Bull OILB/SROP 24:125–128

    Google Scholar 

  • Shanahan P, O’Sullivan DJ, Simpson P, Glennon JD, O’Gara F (1992) Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl Environ Microbiol 58:353–358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shanmugam V, Senthil N, Raguchander T, Ramanathan A, Samiyappan R (2002) Interaction of Pseudomonas fluorescens with Rhizobium for their effect on the management of peanut root rot. Phytoparasitica 30:169–176

    Article  Google Scholar 

  • Shoji J, Hinoo H, Terui Y, Kikuchi J, Hattori T, Ishii K, Matsumoto K, Yoshida T (1989) Isolation of azomycin from Pseudomonas fluorescens. J Antibiot 42:1513–1514

    Article  CAS  Google Scholar 

  • Siddiqui ZA (2005) PGPR: biocontrol and biofertilization. Springer, Dordrecht

    Google Scholar 

  • Siddiqui ZA, Mahmood I, Hayat S, Mahmood I, Hayat S (1998) Biocontrol of Heterodera cajani and Fusarium udum on pigeonpea using Glomus mosseae, Paecilomyces lilacinus and Pseudomonas fluorescens. Thai J Agric Sci 31:310–321

    Google Scholar 

  • Siddiqui IA, Shaukat SS, Sheikh IH, Khan A (2006) Role of cyanide production by Pseudomonas fluorescens CHA0 in suppression of root-knot nematode, Meloidogyne javanica in tomato. World J Microbiol Biotechnol 22:641–650

    Article  CAS  Google Scholar 

  • Silo-Suh LA, Lethbridge BJ, Raffel SJ, He H, Clardy J, Handelsman J (1994) Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl Environ Microbiol 60:2023–2030

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh PP, Shin YC, Park CS, Chung YR (1999) Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology 89:92–99

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Sing BK, Upadhyay RS, Rai B, Lee YS (2002) Biological control of fusarium wilt disease of pigeonpea. Plant Pathol J 18:279–283

    Article  Google Scholar 

  • Singhai PK, Sarma BK, Srivastava JS (2011) Biological management of common scab of potato through Pseudomonas species and vermicompost. Biol Control 57:150–157

    Article  Google Scholar 

  • Slininger PJ, Schisler DA, Ericsson LD, Brandt TL, Frazier MJ, Woodell LK, Olsen NL, Kleinkopf GE (2007) Biological control of postharvest late blight of potatoes. Biocontrol Sci Tech 17:647–663

    Article  Google Scholar 

  • Sorensen D, Nielsen TH, Christophersen C, Sørensen J, Gajhede M (2001) Cyclic lipodecapeptide amphisin from Pseudomonas sp. strain Dss73. Acta Crystallogr C Cryst Struct Commun 57:1123–1124

    Article  CAS  Google Scholar 

  • Sorokina TA, Lipasova VA, Andreeva NB, Khmel IA (1999) The use of bacterial antagonists for the biological control of Fusarium infection on the carnation plants growing in hydroponic solution. Biotekhnonohiya 15:78–82

    Google Scholar 

  • Srinivasan K, Mathivanan N (2011) Plant growth promoting microbial consortia mediated classical biocontrol of Sunflower necrosis virus disease. J Biopest 4:65–72

    Google Scholar 

  • Srivastava S, Bist V, Srivastava S, Singh PC, Trivedi PK, Asif MH, Chauhan PS, Nautiyal CS (2016) Unraveling aspects of Bacillus amyloliquefaciens mediated enhanced production of rice under biotic stress of Rhizoctonia solani. Front Plant Sci 7:587

    PubMed  PubMed Central  Google Scholar 

  • Sticher L, Mauch-Mani B, Metraux JP (1997) Systemic acquired resistance. Annu Rev Phytopathol 35:235–270

    Article  CAS  PubMed  Google Scholar 

  • Sundaramoorthy S, Raguchander T, Ragupathi N, Samiyappan R (2012) Combinatorial effect of endophytic and plant growth-promoting rhizobacteria against wilt disease of Capsicum annuum L. caused by Fusarium solani. Biol Control 60:59–67

    Google Scholar 

  • Sunish Kumar R, Ayyadurai N, Pandiaraja P, Reddy AV, Venkateswarlu Y, Prakash O, Sakthivel N (2005) Characterization of antifungal metabolite produced by a new strain Pseudomonas aeruginosa PUPa3 that exhibits broad-spectrum antifungal activity and biofertilizing traits. J Appl Microbiol 98:145–154

    Article  PubMed  CAS  Google Scholar 

  • Suslow TV (1980) Increased growth and yield of sugar beets by seed treatment with selected Pseudomonas spp. and bacterial culture preservation in frozen or dry film of cellulose methyl ether. Ph.D. thesis, University of California, Los Angeles

    Google Scholar 

  • Swain MR, Ray RC, Nautiyal CS (2008) Biocontrol efficacy of Bacillus subtilis strains isolated from cow dung against post-harvest yam (Dioscorea rotundata L.) pathogens. Curr Microbiol 55:407–411

    Article  CAS  Google Scholar 

  • Sylvia DM, Fuhrmann JJ, Hartel PG, Zuberer DA (1998) Principles and applications of soil microbiology. Prentice-Hall, Englewood

    Google Scholar 

  • Szezech M, Shoda M (2006) The effect of mode of application of Bacillus subtilis RB14-C on its efficacy as a biocontrol agent against Rhizoctonia solani. J Phytopathol 154:370–377

    Article  Google Scholar 

  • Thiribhuvanamala G, Rajeswari E, Duraiswamy S (1999) Biological controls of stem rot of tomato caused by Sclerotium rolfsii Sacc. Madras Agric J 86:30–33

    Google Scholar 

  • Thomashow LS, Weller DM, Bonsall RF, Pierson LS (1990) Production of the antibiotic phenazine-1-carboxylic acid by fluorescent pseudomonas species in the rhizosphere of wheat. Appl Environ Microbiol 56:908–912

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thrane C, Nielsen TH, Nielsen MN, Olsson S, Sorensen J (2000) Viscosinamide producing Pseudomonas fluorescens DR54 exerts biocontrol effect on Pythium ultimum in sugar beet rhizosphere. FEMS Microbiol Ecol 33:139–146

    Article  CAS  PubMed  Google Scholar 

  • Timmusk S, van West P, Gow NA, Huffstutler RP (2009) Paenibacillus polymyxa antagonizes oomycete plant pathogens Phytophthora palmivora and Pythium aphanidermatum. J Appl Microbiol 106:1473–1481

    Article  CAS  PubMed  Google Scholar 

  • Tombolini R, van der Gaag DJ, Gerhardson B, Jansson JK (1999) Colonization pattern of the biocontrol strain Pseudomonas chlororaphis MA342 on barely seeds visualized by using green fluorescent protein. Appl Environ Microbiol 65:3674–3680

    CAS  PubMed  PubMed Central  Google Scholar 

  • Troxler J, Berling C-H, Moenne-Loccoz Y, Keel C, Defago G (1997) Interactions between the biocontrol agent Pseudomonas fluorescens CHA0 and Thielaviopsis basicola in tobacco roots observed by immunofluorescence microscopy. Plant Pathol 46:62–71

    Article  Google Scholar 

  • Umesha S, Dharmesh SM, Shettyt SA, Krishnappa M, Shetty HS (1998) Biocontrol of downy mildew disease of pearl millet using Pseudomonas fluorescens. Crop Prot 17:387–392

    Article  Google Scholar 

  • Uppal AK, El Hadrami A, Adam LR, Tenuta M, Daayf F (2008) Biological control of potato Verticillium wilt under controlled and field conditions using selected bacterial antagonists and plant extracts. Biol Control 44:90–100

    Article  Google Scholar 

  • Utkhede RS, Koch C (2004) Biological treatments to control bacterial canker of greenhouse tomatoes. BioControl 49:305–313

    Article  Google Scholar 

  • Valois D, Fayad K, Barasubiye T, Gagnon M, Dery C, Brzezinski R, Beaulieu C (1996) Glucanolytic actinomycetes antagonistic to Phytophthora fragariae var. rubi, the causal agent of raspberry root rot. Appl Environ Microbiol 62:1630–1635

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Dijk K, Nelson EB (1998) Inactivation of seed exudate stimulants of Pythium ultimum sporangium germination by biocontrol strains of Enterobacter cloacae and other seed associated bacteria. Soil Biol Biochem 30:183–192

    Article  Google Scholar 

  • Van Peer R, Schippers B (1992) Lipopolysaccharides of plant growth-promoting Pseudomonas sp. strain WCS417r induce resistance in carnation to Fusarium wilt. Neth J Plant Pathol 98:129–139

    Article  Google Scholar 

  • Van Peer R, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81:728–734

    Article  Google Scholar 

  • Vanitha S (1998) Control of ragi blast with selected fungicides and plant products. Madras Agric J 85:336–337

    Google Scholar 

  • Velusamy P, Gnanamanickam SS (2003) Plant associated bacteria, 2,4-diacetylphloroglucinol (DAPG) production and suppression of rice bacterial blight in India. Curr Sci 85:1270–1273

    CAS  Google Scholar 

  • Vetter ND, Langill DM, Anjum S, Boisvert-Martel J, Jagdhane RC, Omene E, Zheng H, van Straaten KE, Asiamah I, Krol ES, Sanders DAR, Palmer DRJ (2013) A previously unrecognized kanosamine biosynthesis pathway in Bacillus subtilis. J Am Chem Soc 135:5970–5973

    Article  CAS  PubMed  Google Scholar 

  • Vidhyasekaran P, Muthamilan R (1999) Evaluation of powder formulation of Pseudomonas fluorescens Pf1 for control of rice sheath blight. Biocontrol Sci Tech 9:67–74

    Article  Google Scholar 

  • Vidhyasekaran P, Rabindran R, Muthamilan M, Nayar K, Rajappan K, Subramanian N, Vasumathi K (1997) Development of powder formulation of Pseudomonas fluorescens for control of rice blast. Plant Pathol 46:291–297

    Article  Google Scholar 

  • Vidhyasekaran P, Kamala N, Ramanathan A, Rajappan K, Paranidharan V, Velazhahan R (2001) Induction of systemic resistance by Pseudomonas fluorescens Pf1 against Xanthomonas oryzae pv. oryzae in rice leaves. Phytoparasitica 29:155–166

    Article  Google Scholar 

  • Viswanathan R, Samiyappan R (1999) Induction of systemic resistance by plant growth promoting rhizobacteria against red rot disease caused by Colletotrichum falcatum went in sugarcane. Proc Sugar Technol Assoc India 61:24–39

    Google Scholar 

  • Viswanathan R, Samiyappan R (2002) Induced systemic resistance by fluorescent pseudomonads against red rot disease of sugarcane caused by Colletotrichum falcatum. Crop Prot 21:1–10

    Article  Google Scholar 

  • Vivekananthan R, Ravi M, Saravanakumar D, Kumar N, Prakasam V, Samiyappan R (2004) Microbially induced defense related proteins against postharvest anthracnose infection in mango. Crop Prot 23:1061–1067

    Article  CAS  Google Scholar 

  • Voisard C, Keel C, Haas D, Defago G (1989) Cyanide production by Pseudomonas fluorescens helps suppress black rot of tobacco under gnotobiotic conditions. EMBO J 8:352–358

    Article  Google Scholar 

  • Volpon H, Besson F, Lancelin JM (2000) NMR structure of antibiotics plipastations A and B from Bacillus subtilis inhibitors of phospholipase A. FEBS 485:76–80

    Article  CAS  Google Scholar 

  • Wakelin SA, Walter M, Jaspers M, Stewart A (2002) Biological control of Aphanomyces euteiches root-rot of pea with spore-forming bacteria. Australas Plant Pathol 31:401–407

    Article  Google Scholar 

  • Wang Z, Jiang M, Chen K, Wang K, Muying D, Zalán Z, Hegyi F, Kan J (2018) Biocontrol of Penicillium digitatum on Postharvest Citrus Fruits by Pseudomonas fluorescens. J Food Qual 2910481:10

    Google Scholar 

  • Wei G, Kloepper JW, Tuzun S (1996) Induced systemic resistance to cucumber diseases and increased plant growth by plant growth promoting rhizobacteria under field conditions. Phytopathology 86:221–224

    Article  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Biol 52:487–511

    CAS  Google Scholar 

  • Wilson M, Campbell HL, Ji P, Jones JB, Cuppels DA (2002) Biological control of bacterial speck of tomato under field conditions at several locations in North America. Phytopathology 92:1284–1292

    Article  CAS  PubMed  Google Scholar 

  • Wiwattanapatapee R, Chumthong A, Pengnoo A, Kanjanamaneesathian M (2013) Preparation and evaluation of Bacillus megaterium-alginate microcapsules for control of rice sheath blight disease. World J Microbiol Biotechnol 29:1487–1497

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Wu H, Chen L, Yu X, Rainer B, Gao X (2015) Difficidin and bacilysin from Bacillus amyloliquefaciens FZB42 have antibacterial activity against Xanthomonas oryzae rice pathogens. Sci Rep 5:15–20

    CAS  Google Scholar 

  • Yan Z, Reddy MS, Ryu C-M, McInroy JA, Wilson M, Kloepper JW (2002) Induced systemic protection against tomato late blight elicited by plant growth-promoting rhizobacteria. Phytopathology 92:1329–1333

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Wang B, Wang J, Chen Y, Zhou M (2009) Activity and efficacy of Bacillus subtilis strain NJ-18 against rice sheath blight and Sclerotinia stem rot of rape. Biol Control 51:61–65

    Article  Google Scholar 

  • Yasmin S, Abha Z, Asma I, Muhammad AZ, Sumaira Y, Ghulam R, Muhammad A, Muhammad SM (2016) Plant growth promotion and suppression of bacterial leaf blight in rice by inoculated bacteria. PLoS One 11:e0160688

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yun-feng YE, Qi-qin LI, Gang FU, Gao-qing YUAN, Jian-hua MIAO, Wei LIN (2012) Identification of antifungal substance (Iturin A2) produced by Bacillus subtilis B47 and its effect on southern corn leaf blight. J Integr Agric 11:90–99

    Article  CAS  Google Scholar 

  • Zarandi M, Ebrahimi B, Shahidi GH, Dehkaei F, Padaht I (2009) Biocontrol of rice blast (Magnaporthe oryzae) by use of Streptomyces sindeneusis isolate 263 in greenhouse. Am J Appl Sci 6:194–199

    Article  CAS  Google Scholar 

  • Zeng W, Kirk W, Hao J (2012) Field management of Sclertotinia stem rot of soybean using biological control agents. Biol Control 60:141–147

    Article  Google Scholar 

  • Zhang L, Sun C (2018) Fengycins, cyclic lipopeptides from marine Bacillus subtilis strains, kill the plant-pathogenic fungus Magnaporthe grisea by inducing reactive oxygen species production and chromatin condensation. Appl Environ Microbiol 84:e00445–e00418

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Yuen GY, Sarath G, Penheiter A (2001) Chitinases from the plant disease biocontrol agent, Stenotrophomonas maltophilia C3. Phytopathology 91:204–211

    Article  CAS  PubMed  Google Scholar 

  • Zhang JX, Xue AG, Tambong JT (2009) Evaluation of seed and soil treatments with novel Bacillus subtilis strains for control of soybean root rot caused by Fusarium oxysporum and F. graminearum. Plant Dis 93:1317–1323

    Article  CAS  PubMed  Google Scholar 

  • Zhang JX, Xue AG, Morrison MJ, Meng Y (2011) Impact of time between field application of Bacillus subtilis strains SB01 and SB24 and inoculation with Sclerotinia sclerotiorum on the suppression of Sclerotinia stem rot in soybean. Eur J Plant Pathol 131:95–102

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, for providing opportunity to carry out the work.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harish, S., Parthasarathy, S., Durgadevi, D., Anandhi, K., Raguchander, T. (2019). Plant Growth-Promoting Rhizobacteria: Harnessing Its Potential for Sustainable Plant Disease Management. In: Kumar, A., Meena, V. (eds) Plant Growth Promoting Rhizobacteria for Agricultural Sustainability . Springer, Singapore. https://doi.org/10.1007/978-981-13-7553-8_8

Download citation

Publish with us

Policies and ethics