Advertisement

On the Origin of the Scatter Broadening of Fast Radio Burst Pulses and Astrophysical Implications

Chapter
  • 235 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Fast radio bursts (FRBs) have been identified as extragalactic sources which can make a probe of turbulence in the intergalactic medium (IGM) and their host galaxies. To account for the observed millisecond pulses caused by scatter broadening, we examine a variety of possible models of electron density fluctuations in both the IGM and the host galaxy medium. We find that a short-wave-dominated power-law spectrum of density, which may arise in highly supersonic turbulence with pronounced local dense structures of shock-compressed gas in the host interstellar medium (ISM), can produce the required density enhancements at sufficiently small scales to interpret the scattering timescale of FRBs. It implies that an FRB residing in a galaxy with efficient star formation in action tends to have a broadened pulse. The scaling of the scattering time with dispersion measure (DM) in the host galaxy varies in different turbulence and scattering regimes. The host galaxy can be the major origin of scatter broadening, but contribute to a small fraction of the total DM. We also find that the sheet-like structure of density in the host ISM associated with folded magnetic fields in a viscosity-dominated regime of MHD turbulence cannot give rise to strong scattering. Furthermore, valuable insights into the IGM turbulence concerning the detailed spatial structure of density and magnetic field can be gained from the observed scattering timescale of FRBs. Our results are in favor of the suppression of micro-plasma instabilities and the validity of collisional-MHD description of turbulence properties in the collisionless IGM. This chapter is based on Xu and Zhang (ApJ 832:199, [1]).

References

  1. 1.
    Xu S, Zhang B (2016b) ApJ 832:199ADSCrossRefGoogle Scholar
  2. 2.
    Lorimer DR, Bailes M, McLaughlin MA, Narkevic DJ, Crawford F (2007) Science 318:777ADSCrossRefGoogle Scholar
  3. 3.
    Thornton D et al (2013) Science 341:53ADSCrossRefGoogle Scholar
  4. 4.
    Masui K et al (2015) Nature 528:523ADSCrossRefGoogle Scholar
  5. 5.
    Keane EF et al (2016) Nature 530:453ADSCrossRefGoogle Scholar
  6. 6.
    Petroff E et al (2016) PASA 33:e045Google Scholar
  7. 7.
    Spitler LG et al (2016a) Nature 531:202ADSCrossRefGoogle Scholar
  8. 8.
    Katz JI (2016b) ApJ 818:19ADSCrossRefGoogle Scholar
  9. 9.
    Bhat NDR, Cordes JM, Camilo F, Nice DJ, Lorimer DR (2004) ApJ 605:759ADSCrossRefGoogle Scholar
  10. 10.
    Krishnakumar MA, Mitra D, Naidu A, Joshi BC, Manoharan PK (2015) ApJ 804:23ADSCrossRefGoogle Scholar
  11. 11.
    Cordes JM, Wharton RS, Spitler LG, Chatterjee S, Wasserman I (2016) arXiv:1605.05890
  12. 12.
    Keane EF, Stappers BW, Kramer M, Lyne AG (2012) MNRAS 425:L71ADSCrossRefGoogle Scholar
  13. 13.
    Spitler LG et al (2014) ApJ 790:101ADSCrossRefGoogle Scholar
  14. 14.
    Cordes JM, Lazio TJW (2002) arXiv:astro-ph/0207156 Astrophysics
  15. 15.
    Macquart J-P, Koay JY (2013) ApJ 776:125ADSCrossRefGoogle Scholar
  16. 16.
    Luan J, Goldreich P (2014) ApJ 785:L26ADSCrossRefGoogle Scholar
  17. 17.
    Katz JI (2016a) Modern Phys Lett A 31:1630013ADSCrossRefGoogle Scholar
  18. 18.
    Johnston S, Nicastro L, Koribalski B (1998b) MNRAS 297:108ADSCrossRefGoogle Scholar
  19. 19.
    Caleb M, Flynn C, Bailes M, Barr ED, Hunstead RW, Keane EF, Ravi V, van Straten W (2016) MNRAS 458:708ADSCrossRefGoogle Scholar
  20. 20.
    Yao JM, Manchester RN, Wang N (2016) submittedGoogle Scholar
  21. 21.
    Goldreich P, Sridhar S (1995) ApJ 438:763ADSCrossRefGoogle Scholar
  22. 22.
    Cho J, Vishniac ET (2000) ApJ 539:273ADSCrossRefGoogle Scholar
  23. 23.
    Maron J, Goldreich P (2001) ApJ 554:1175ADSCrossRefGoogle Scholar
  24. 24.
    Cho J, Lazarian A (2003) MNRAS 345:325ADSCrossRefGoogle Scholar
  25. 25.
    Beresnyak A, Lazarian A (2009) ApJ 702:1190ADSCrossRefGoogle Scholar
  26. 26.
    Armstrong JW, Rickett BJ, Spangler SR (1995) ApJ 443:209ADSCrossRefGoogle Scholar
  27. 27.
    Chepurnov A, Lazarian A (2010b) ApJ 710:853ADSCrossRefGoogle Scholar
  28. 28.
    Beresnyak A, Lazarian A, Cho J (2005) ApJ 624:L93ADSCrossRefGoogle Scholar
  29. 29.
    Kowal G, Lazarian A, Beresnyak A (2007) ApJ 658:423ADSCrossRefGoogle Scholar
  30. 30.
    Padoan P, Juvela M, Goodman AA, Nordlund Å (2001) ApJ 553:227ADSCrossRefGoogle Scholar
  31. 31.
    Padoan P, Jimenez R, Nordlund Å, Boldyrev S (2004b) Phys Rev Lett 92:191102ADSCrossRefGoogle Scholar
  32. 32.
    Kim J, Ryu D (2005) ApJ 630:L45ADSCrossRefGoogle Scholar
  33. 33.
    Kritsuk AG, Norman ML, Padoan P (2006) ApJ 638:L25ADSCrossRefGoogle Scholar
  34. 34.
    Haffner LM, Reynolds RJ, Tufte SL (1999) ApJ 523:223ADSCrossRefGoogle Scholar
  35. 35.
    Hill AS, Benjamin RA, Kowal G, Reynolds RJ, Haffner LM, Lazarian A (2008) ApJ 686:363ADSCrossRefGoogle Scholar
  36. 36.
    Larson RB (1981) MNRAS 194:809ADSCrossRefGoogle Scholar
  37. 37.
    Heiles C, Troland TH (2003) ApJ 586:1067ADSCrossRefGoogle Scholar
  38. 38.
    Burkhart B, Collins DC, Lazarian A (2015a) ApJ 808:48ADSCrossRefGoogle Scholar
  39. 39.
    Lazarian A (2006b) American Institute of Physics Conference Series, Vol. 874, Spectral Line Shapes: XVIII, ed. E. Oks & M. S. Pindzola, 301–315Google Scholar
  40. 40.
    Lazarian A (2007b) 2009, Space Sci Rev 143(357)Google Scholar
  41. 41.
    Hennebelle P, Falgarone E (2012) A&A Rev. 20:55ADSCrossRefGoogle Scholar
  42. 42.
    Löhmer O, Kramer M, Mitra D, Lorimer DR, Lyne AG (2001) ApJ 562:L157ADSCrossRefGoogle Scholar
  43. 43.
    Löhmer O, Mitra D, Gupta Y, Kramer M, Ahuja A (2004) A&A 425:569ADSCrossRefGoogle Scholar
  44. 44.
    Lewandowski W, Dembska M, Kijak J, Kowalińska M (2013) MNRAS 434:69ADSCrossRefGoogle Scholar
  45. 45.
    Lewandowski W, Kowalińska M, Kijak J (2015) MNRAS 449:1570ADSCrossRefGoogle Scholar
  46. 46.
    Haverkorn M, Gaensler BM, McClure-Griffiths NM, Dickey JM, Green AJ (2004) ApJ 609:776ADSCrossRefGoogle Scholar
  47. 47.
    Haverkorn M, Brown JC, Gaensler BM, McClure-Griffiths NM (2008) ApJ 680:362ADSCrossRefGoogle Scholar
  48. 48.
    Xu S, Zhang B (2016a) ApJ 824:113ADSCrossRefGoogle Scholar
  49. 49.
    Tielens AGGM (2005) Phys Chem Interstellar MediumGoogle Scholar
  50. 50.
    Haverkorn M, Spangler SR (2013) Space Sci. Rev. 178:483ADSCrossRefGoogle Scholar
  51. 51.
    Hall AN (1980) MNRAS 190:353ADSCrossRefGoogle Scholar
  52. 52.
    Goldreich P, Sridhar S (2006) ApJ 640:L159ADSCrossRefGoogle Scholar
  53. 53.
    Lazarian A (2007a) American Institute of Physics Conference Series, Vol. 932, Turbulence and Nonlinear Processes in Astrophysical Plasmas, ed. D. Shaikh & G. P. Zank, 58–68Google Scholar
  54. 54.
    Santos-Lima R, de Gouveia Dal Pino EM, Kowal G, Falceta-Gonçalves D, Lazarian A, Nakwacki MS (2014) ApJ, 781(84)Google Scholar
  55. 55.
    Schekochihin AA, Cowley SC, Kulsrud RM, Rosin MS, Heinemann T (2008) Phys Rev Lett 100:081301ADSCrossRefGoogle Scholar
  56. 56.
    Lee LC, Jokipii JR (1976) ApJ 206:735ADSCrossRefGoogle Scholar
  57. 57.
    Rickett BJ (1977) ARA&A 15:479ADSCrossRefGoogle Scholar
  58. 58.
    Rickett BJ (1990) ARA&A 28:561ADSCrossRefGoogle Scholar
  59. 59.
    Coles WA, Rickett BJ, Codona JL, Frehlich RG (1987) ApJ 315:666ADSCrossRefGoogle Scholar
  60. 60.
    Lee LC, Jokipii JR (1975) ApJ 201:532ADSCrossRefGoogle Scholar
  61. 61.
    Romani RW, Narayan R, Blandford R (1986) MNRAS 220:19ADSCrossRefGoogle Scholar
  62. 62.
    Lazarian A, Pogosyan D (2000) ApJ 537:720ADSCrossRefGoogle Scholar
  63. 63.
    Lazarian A, Pogosyan D (2004) ApJ 616:943ADSCrossRefGoogle Scholar
  64. 64.
    Esquivel A, Lazarian A (2005) ApJ 631:320ADSCrossRefGoogle Scholar
  65. 65.
    Lazarian A, Pogosyan D (2006) ApJ 652:1348ADSCrossRefGoogle Scholar
  66. 66.
    Stutzki J, Bensch F, Heithausen A, Ossenkopf V, Zielinsky M (1998) A&A 336:697ADSGoogle Scholar
  67. 67.
    Deshpande AA, Dwarakanath KS, Goss WM (2000) ApJ 543:227ADSCrossRefGoogle Scholar
  68. 68.
    Swift JJ (2006) PhD thesis, University of California, BerkeleyGoogle Scholar
  69. 69.
    Cordes JM, Rickett BJ (1998b) ApJ 507(846)Google Scholar
  70. 70.
    Lazarian A, Pogosyan D (2016a) ApJ 818:178ADSCrossRefGoogle Scholar
  71. 71.
    Narayan R (1992) Philosophical Trans Royal Soc Lond Ser A 341:151ADSCrossRefGoogle Scholar
  72. 72.
    Gwinn CR, Bartel N, Cordes JM (1993) ApJ 410:673ADSCrossRefGoogle Scholar
  73. 73.
    Scheuer PAG (1968) Nature 218:920ADSCrossRefGoogle Scholar
  74. 74.
    Rauch M, Sargent WLW, Barlow TA (2001) ApJ 554:823ADSCrossRefGoogle Scholar
  75. 75.
    Zheng W et al (2004) ApJ 605:631ADSCrossRefGoogle Scholar
  76. 76.
    Meiksin AA (2009) Rev Modern Phys 81:1405ADSCrossRefGoogle Scholar
  77. 77.
    Lu Y, Zhu W, Chu Y, Feng L-L, Fang L-Z (2010) MNRAS 408:452ADSCrossRefGoogle Scholar
  78. 78.
    Schuecker P, Finoguenov A, Miniati F, Böhringer H, Briel UG (2004) A&A 426:387ADSCrossRefGoogle Scholar
  79. 79.
    Murgia M, Govoni F, Feretti L, Giovannini G, Dallacasa D, Fanti R, Taylor GB, Dolag K (2004) A&A 424:429ADSCrossRefGoogle Scholar
  80. 80.
    Vogt C, Enßlin TA (2005) A&A 434:67ADSCrossRefGoogle Scholar
  81. 81.
    Ryu D, Kang H, Cho J, Das S (2008) Science 320:909ADSCrossRefGoogle Scholar
  82. 82.
    Churazov E, Forman W, Jones C, Sunyaev R, Böhringer H (2004) MNRAS 347:29ADSCrossRefGoogle Scholar
  83. 83.
    Schekochihin AA, Cowley SC (2006) Phys Plasmas 13:056501ADSCrossRefGoogle Scholar
  84. 84.
    Subramanian K, Shukurov A, Haugen NEL (2006) MNRAS 366:1437ADSCrossRefGoogle Scholar
  85. 85.
    Ryu D, Kang H, Cho J (2010) Astronomical Society of the Pacific Conference Series, Vol. 429, Numerical Modeling of Space Plasma Flows, Astronum-2009, ed. N. V. Pogorelov, E. Audit, & G. P. Zank, 39Google Scholar
  86. 86.
    Bykov AM, Paerels FBS, Petrosian V (2008) Space Sci Rev 134:141ADSCrossRefGoogle Scholar
  87. 87.
    Minter AH, Spangler SR (1996) ApJ 458:194ADSCrossRefGoogle Scholar
  88. 88.
    Spangler SR, Gwinn CR (1990) ApJ 353:L29ADSCrossRefGoogle Scholar
  89. 89.
    Pynzar’ AV, Shishov VI (1999) Astron Rep 43:436ADSGoogle Scholar
  90. 90.
    Cordes JM, Lazio TJW (2003b) eprint arXiv:astro-ph/0301598
  91. 91.
    Roeder RC, Verreault RT (1969) ApJ 155:1047ADSCrossRefGoogle Scholar
  92. 92.
    Cordes JM, Lazio TJ (1991) ApJ 376:123ADSCrossRefGoogle Scholar
  93. 93.
    Braginskii SI (1965) Rev Plasma Phys 1:205ADSGoogle Scholar
  94. 94.
    Ryu D, Kang H, Biermann PL (1998) A&A 335:19ADSGoogle Scholar
  95. 95.
    Xu Y, Kronberg PP, Habib S, Dufton QW (2006) ApJ 637:19ADSCrossRefGoogle Scholar
  96. 96.
    Fabian AC (1994) ARA&A 32:277ADSCrossRefGoogle Scholar
  97. 97.
    Carilli CL, Taylor GB (2002) ARA&A 40:319ADSCrossRefGoogle Scholar
  98. 98.
    Schekochihin AA, Cowley SC, Kulsrud RM, Hammett GW, Sharma P (2005) ApJ 629:139Google Scholar
  99. 99.
    Rincon F, Schekochihin AA, Cowley SC (2015) MNRAS 447:L45ADSCrossRefGoogle Scholar
  100. 100.
    Lazarian A, Beresnyak A (2006) MNRAS 373:1195ADSCrossRefGoogle Scholar
  101. 101.
    Spitzer L (1956) Phys Fully Ionized GasesGoogle Scholar
  102. 102.
    Cho J, Lazarian A, Vishniac ET (2002a) ApJ 566:L49ADSCrossRefGoogle Scholar
  103. 103.
    Cho J, Lazarian A, Vishniac ET (2003b) ApJ 595:812ADSCrossRefGoogle Scholar
  104. 104.
    Lazarian A, Vishniac ET, Cho J (2004) ApJ 603:180ADSCrossRefGoogle Scholar
  105. 105.
    Schekochihin AA, Cowley SC, Taylor SF, Maron JL, McWilliams JC (2004) ApJ 612:276ADSCrossRefGoogle Scholar
  106. 106.
    Braithwaite J (2015) MNRAS 450:3201ADSCrossRefGoogle Scholar
  107. 107.
    Dieter NH, Welch WJ, Romney JD (1976) ApJ 206:L113ADSCrossRefGoogle Scholar
  108. 108.
    Heiles C (1997) ApJ 481:193ADSCrossRefGoogle Scholar
  109. 109.
    Stanimirović S, Weisberg JM, Hedden A, Devine K, Green T, Anderson SB (2004) Ap&SS 292:103ADSCrossRefGoogle Scholar
  110. 110.
    Simon A (1955) Phys Rev 100:1557ADSCrossRefGoogle Scholar
  111. 111.
    McKee CF, Ostriker JP (1977) ApJ 218:148ADSCrossRefGoogle Scholar
  112. 112.
    Haffner LM et al (2009) Rev Modern Phys 81:969ADSCrossRefGoogle Scholar
  113. 113.
    Xu J, Han JL (2015) Res Astron Astrophys 15:1629ADSCrossRefGoogle Scholar
  114. 114.
    Falceta-Gonçalves D, Kowal G, Falgarone E, Chian AC-L (2014) Nonlinear Process Geophys 21:587ADSCrossRefGoogle Scholar
  115. 115.
    Spitler LG et al (2016b) Nature 531:202ADSCrossRefGoogle Scholar
  116. 116.
    Cordes JM, Wasserman I (2016) MNRAS 457:232ADSCrossRefGoogle Scholar
  117. 117.
    Connor L, Sievers J, Pen U-L (2016) MNRAS 458:L19ADSCrossRefGoogle Scholar
  118. 118.
    Lyubarsky Y, Ostrovska S (2016) ApJ 818:74ADSCrossRefGoogle Scholar
  119. 119.
    Popov SB, Postnov KA (2013) arXiv:1307.4924
  120. 120.
    Kulkarni SR, Ofek EO, Neill JD, Zheng Z, Juric M (2014) ApJ 797:70ADSCrossRefGoogle Scholar
  121. 121.
    Dai ZG, Wang JS, Wu XF, Huang YF (2016) ApJ 829:27Google Scholar
  122. 122.
    Gu W-M, Dong Y-Z, Liu T, Ma R, Wang J (2016) ApJ 823:L28ADSCrossRefGoogle Scholar
  123. 123.
    Falcke H, Rezzolla L (2014) A&A 562:A137ADSCrossRefGoogle Scholar
  124. 124.
    Zhang B (2014) ApJ 780:L21ADSCrossRefGoogle Scholar
  125. 125.
    Totani T (2013) PASJ, 65Google Scholar
  126. 126.
    Piro AL (2012) ApJ 755:80ADSCrossRefGoogle Scholar
  127. 127.
    Zhang B (2016a) ApJ 827:L31ADSCrossRefGoogle Scholar
  128. 128.
    Zhang B (2016b) ApJ 822:L14ADSCrossRefGoogle Scholar
  129. 129.
    Wang J-S, Yang Y-P, Wu X-F, Dai Z-G, Wang F-Y (2016) ApJ 822:L7ADSCrossRefGoogle Scholar
  130. 130.
    Liu T, Romero GE, Liu M-L, Li A (2016) ApJ 826:82Google Scholar
  131. 131.
    Katz JI (2014) arXiv:1409.5766
  132. 132.
    Chandran BDG, Cowley SC (1998) Phys Rev Lett 80:3077ADSCrossRefGoogle Scholar
  133. 133.
    Kronberg PP (1994) Reports Progress Phys 57:325ADSCrossRefGoogle Scholar
  134. 134.
    Govoni F, Feretti L (2004) Int J Modern Phys D 13:1549ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.University of Wisconsin-MadisonMadisonUSA

Personalised recommendations