Skip to main content

Volatile Organic Compounds (VOCs) Control

  • Chapter
  • First Online:
Air Pollution Control and Design

Abstract

VOCs, which is short for Volatile Organic Compounds, are organic chemicals with low boiling point and high vapor pressure at room temperature. They are numerous and ubiquitous, making them very complicated to define.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A:

Heat transfer area

B, F, D:

Molar velocity

ci:

Concentration

cm:

Explosive limit of mixture

cw, cp, c’p:

Heat capacity

E:

Activation energy

Ei:

Henry's coefficient

f:

Liquefied fraction

g:

Gravity acceleration

G’, L’:

Mass flow velocity

ΔH:

Latent heat

Hi:

Solubility coefficient

k, m:

Empirical parameter

k1, k2:

Rate constant of kinetic model

K:

Heat transfer coefficient

n:

Reaction order

P:

Pressure

qe, q:

Adsorption capacity of activated carbon

Q:

Quantity of heat

r:

Reaction rate

R:

Universal gas constant

Δtm:

Log mean temperature difference

T:

Reaction temperature

xi, yi, zi:

Molar fraction

η:

Removal efficiency

μ:

Liquid viscosity

ρg, ρL:

Density

Φ:

Packing factor

References

  1. Aydin Berenjian NC, Malmiri HJ (2012) volatile organic compounds removal methods: a review. Am J Biochem Biotechnol 8(4):220–229

    Article  Google Scholar 

  2. Faisal I, Khan AKG (2000) Removal of volatile organic compounds from polluted air. J Loss Prev Process Ind 13:527–545

    Article  Google Scholar 

  3. Nikhil Sharma AKA, Eastwood P, Gupta T, Singh AP (2018) Air pollution and control. Springer, Singapore

    Book  Google Scholar 

  4. Colon J, Alvarez C, Vinot M, Lafuente FJ, Ponsa S, Sanchez A, Gabriel D (2017) Characterization of odorous compounds and odor load in indoor air of modern complex MBT facilities. Chem Eng J 313:1311–1319

    Article  CAS  Google Scholar 

  5. USEPA (2002) EPA Air Pollution Control Cost Manual. USA

    Google Scholar 

  6. Burn J, Henk J, Bloemen T (1993) Chemistry and analysis of volatile organic compounds in the environment. Springer-Science&Business Media, New Delhi

    Google Scholar 

  7. Hao J, Ma G, Wang S (2010) Air pollution control engineering, 3 edn. Higher Edution Press

    Google Scholar 

  8. Poschl U (2005) Atmospheric aerosols: composition, transformation, climate and health effects. Angewandte Chem Int Ed 44(46):7520–7540. https://doi.org/10.1002/anie.200501122

    Article  CAS  Google Scholar 

  9. Khan FI, Ghoshal AK (2000) Removal of volatile organic compounds from polluted air. J Loss Prev Process Ind 13(6):527–545. https://doi.org/10.1016/s0950-4230(00)00007-3

    Article  Google Scholar 

  10. Meeyoo V, Lee JH, Trimm DL, Cant NW (1998) Hydrogen sulphide emission control by combined adsorption and catalytic combustion. Catal Today 44(1–4):67–72. https://doi.org/10.1016/s0920-5861(98)00174-6

    Article  CAS  Google Scholar 

  11. Stenberg U, Westerholm R, Alsberg T (1985) Enrichment of gaseous compounds from diluted gasoline exhausts–a comparison between adsorption and cryogenic condensation. Environ Int 11(2–4):119–124. https://doi.org/10.1016/0160-4120(85)90004-2

    Article  CAS  Google Scholar 

  12. Dwivedi P, Gaur V, Sharma A, Verma N (2004) Comparative study of removal of volatile organic compounds by cryogenic condensation and adsorption by activated carbon fiber. Sep Purif Technol 39(1–2):23–37. https://doi.org/10.1016/j.seppur.2003.12.016

    Article  CAS  Google Scholar 

  13. YueDong M, ShaoFeng Z, XinYang X (2006) Advances in applied low-temperature plasma technology. Physics 35(2):140–146

    Google Scholar 

  14. Wu XC, Huang WW, Zhang YX, Zheng CH, Jiang X, Gao X, Cen KF (2015) Characteristics and uncertainty of industrial VOCs emissions in China. Aerosol Air Qual Res 15(3):1045–1058. https://doi.org/10.4209/aaqr.2014.10.0236

    Article  CAS  Google Scholar 

  15. Madler L, Stark WJ, Pratsinis SE (2002) Flame-made ceria nanoparticles. J Mater Res 17(6):1356–1362

    Article  CAS  Google Scholar 

  16. IUPAC Compendium of Chemical Terminology, 2nd ed. (the “Gold Book”) (1997) Online corrected version: (2006–) “esters”

    Google Scholar 

  17. Hewitt CN (1999) Reactive hydrocarbons in the atmosphere. Academic Press, California

    Google Scholar 

  18. Valenciano R, Aylon E, Izquierdo MT (2015) A critical short review of equilibrium and kinetic adsorption models for VOCs breakthrough curves modelling. Adsorpt Sci Technol 33(10):851–869. https://doi.org/10.1260/0263-6174.33.10.851

    Article  CAS  Google Scholar 

  19. Repelewicz M, Choma J (2008) Influence of chemical modification on porous structure and surface properties of activated carbons. Pol J Chem 82(1–2):3–9

    CAS  Google Scholar 

  20. SaE C, Harold M (eds) (1984) Handbook of air pollution control technology. John Wiley & Sons, New York

    Google Scholar 

  21. Lewis WK, McAdams WH (1928) Computation methods in countercurrent absorption systems. Ind Eng Chem 20(1):253–257. https://doi.org/10.1021/Ie50219a013

    Article  CAS  Google Scholar 

  22. Fahmy YM, Fornasiero P, Zinoviev S, Miertus S (2007) Air pollition control technologies. International Centre for Science and High Technology, Trieste

    Google Scholar 

  23. Messerle L, Mallis LM, Hatch PJ (1989) An inexpensive sample holder for storage and introduction of air-sensitive organometallic compounds into a mass-spectrometer with inert-atmosphere blanketing. J Chem Educ 66(7):618–618. https://doi.org/10.1021/ed066p618

    Article  CAS  Google Scholar 

  24. Zhang X, Gao B, Creamer AE, Cao C, Li Y (2017) Adsorption of VOCs onto engineered carbon materials: a review. J Hazard Mater 338:102–123

    Article  CAS  Google Scholar 

  25. Zhao X, Ma Q, Lu G (1998) VOC removal: comparison of MCM-41 with hydrophobic zeolites and activated carbon. Energy Fuels 12(6):1051–1054

    Article  CAS  Google Scholar 

  26. Yan B, Zhang H (2017) Studies on the adsorption properity of VOC by palygorskite, silica gel and activated carbon. Build Energy Environ

    Google Scholar 

  27. Yaakob Z, Kamarudin SK, Kamaruzaman I, Ibrahim A (2008) Adsorption equilibria of propane on activated carbon and molecular sieves. In: Wseas International conference on system science and simulation in engineering. pp 372–377

    Google Scholar 

  28. Lina YC, Chang FT, Bai H, Pei BS (2005) Control of VOCs emissions by condenser pre-treatmentin a semiconductor fab. J Hazard Mater 120:9–14

    Article  Google Scholar 

  29. Lines JR, Smith AE (2000) Condensers control and reclaim VOCs: technological advances increase recovery of costly product. Environ Health Saf 6

    Google Scholar 

  30. Wang XY, Ran L, Dai Y, Lu YJ, Dai QG (2014) Removal of Cl adsorbed on Mn-Ce-La solid solution catalysts during CVOC combustion. J Colloid Interface Sci 426:324–332. https://doi.org/10.1016/j.jcis.2013.10.007

    Article  CAS  Google Scholar 

  31. Rasmussen SB, Kustov A, Due-Hansen J, Siret B, Tabaries F, Fehrmann R (2006) Characterization and regeneration of Pt-catalysts deactivated in municipal waste flue gas. Appl Catal B 69(1):10–16

    Article  CAS  Google Scholar 

  32. Agency USEP (2000) VOC destruction controls. vol EPA/452/B-02–001

    Google Scholar 

  33. Vaart DRVD, Vatvuk WM, Wehe AH (1991) Thermal and catalytic incinerators for the control of VOCs. J Air Waste Manag Assoc 41(1):92–98

    Article  Google Scholar 

  34. Kaebnick EG (1989) Catching our breath: next steps for reducing urban ozone. Government Printing Office, Washington, U.S

    Google Scholar 

  35. Kleinheinz GT, Wright PC (2009) Biological odor and VOC control process. Humana Press

    Book  Google Scholar 

  36. Wang S, Zhang L, Long C, Li A (2014) Enhanced adsorption and desorption of VOCs vapor on novel micro-mesoporous polymeric adsorbents. J Colloid Interface Sci 428:185–190

    Article  CAS  Google Scholar 

  37. Biard PF, Couvert A, Giraudet S (2017) Volatile organic compounds absorption in packed column: theoretical assessment of water, DEHA and PDMS 50 as absorbents. J Ind Eng Chem

    Google Scholar 

  38. Asian Journal of Atmospheric Environment (2017). vol 11

    Google Scholar 

  39. Wang X, Chen J, Cheng T, Zhang R, Wang X (2014) Particle number concentration, size distribution and chemical composition during haze and photochemical smog episodes in Shanghai. J Environ Sci 26(9):1894–1902

    Article  Google Scholar 

  40. Bai Y, Huang ZH, Kang F (2013) Synthesis of reduced graphene oxide/phenolic resin-based carbon composite ultrafine fibers and their adsorption performance for volatile organic compounds and water. J Mater Chem A 1(33):9536–9543

    Article  CAS  Google Scholar 

  41. Rene ER, Mohammad BT, Veiga MC, Kennes C (2012) Biodegradation of BTEX in a fungal biofilter: Influence of operational parameters, effect of shockloads and substrate stratification. Biores Technol 166:204–213

    Article  Google Scholar 

  42. Saini VK, Pires J (2017) Development of metal organic framework-199 immobilized zeolite foam for adsorption of common indoor VOCs. J Environ Sci 55 (Suppl. C):321–330. doi:https://doi.org/10.1016/j.jes.2016.09.017

  43. Gupta AK, Modi BA (2018) Selection of sustainable technology for VOC abatement in an industry: an integrated AHP–QFD approach. J Inst Eng 3:1–14

    Google Scholar 

  44. Spivey JJ (2010) Recovery of volatile organics from small industrial sources. Environ Prog Sustainable Energy 7(1):31–40

    Google Scholar 

  45. Moretti EC (2002) Reduce VOC and HAP emissions. Chem Eng Prog 98(6):30–40

    CAS  Google Scholar 

  46. Calinescu I, Bulearca A, Ighigeanu D, Martin D, Matei C, Trifan A (2009) Hybrid technology with microwaves, electron beams and catalysts for VOCs removals. J Microwave Power Electromagn Energy A Publ Int Microwave Power Inst 43(3):4–11

    Article  Google Scholar 

  47. Kiared K, Bibeau L, Brezezinski R, Viel G, Heitz M (2010) Biological elimination of VOCs in biofilter. Environ Prog Sustainable Energy 15(3):148–152

    Google Scholar 

  48. Long Guilin CL (2017) Thinking on the treatment of volatile organic compounds. Pollut Control Technol 30(2):77–79

    Google Scholar 

  49. Yue L (2018) Discussion on VOC emission and control measures. Environ Pollut Cont 9:65–66

    Google Scholar 

  50. Deng Rui ZF, Jiang T, Yaxiong H, Yinghao C (2014) Emission and control measures and suggestions of VOC. Mater Rev 28(24):378 384

    Google Scholar 

  51. Jinhu H (2018) Causes of VOCs and their control measures. Ind Prod 44(1):154–155

    Google Scholar 

  52. He C, Cheng J, Zhang X, Douthwaite M, Pattisson S, Hao Z (2019) Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources. Chem Rev 119(7):4471–4568. https://doi.org/10.1021/acs.chemrev.8b00408

    Article  CAS  Google Scholar 

  53. Qiao B, Wang A, Yang X, Allard LF, Jiang Z, Cui Y, Liu J, Li J, Zhang T (2011) Single-atom catalysis of CO oxidation using Pt(1)/FeO(x). Nat Chem 3(8):634–641. https://doi.org/10.1038/nchem.1095

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pen-Chi Chiang .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chiang, PC., Gao, X. (2022). Volatile Organic Compounds (VOCs) Control. In: Air Pollution Control and Design. Springer, Singapore. https://doi.org/10.1007/978-981-13-7488-3_4

Download citation

Publish with us

Policies and ethics