Skip to main content

Role of Macrofungi in Bioremediation of Pollutants

  • Chapter
  • First Online:

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 10))

Abstract

The macrofungi in the galaxy of living beings have newly found biological status. The macrofungi are exploited by industries for enzymes, organic acids, vitamins, antibiotics, and other useful substances and have an active role in biodegradation. They are the factories of enzymes that decompose all types of organic waste. They have a role in solving metal pollution that causes serious effects on human life. Macrofungi play important role in biogeochemical cycling of elements. They have the ability to accumulate and recycle organic and inorganic materials which also include toxic metals. They may be new cost-effective technology for the removal of heavy metals from wastewater by the process of biosorption. They have potential in the management of polycyclic aromatic hydrocarbons. It is able to metabolize and mineralize several PAHs and their analogs. In this way, they have vast potential in the management of ecosystem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abadulla, E., Tzanov, T., Costa, S., Robra, K. H., Cavaco-Paulo, A., & Gubitz, G. M. (2000). Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta. Applied and Environmental Microbiology, 66, 3357–3362.

    Article  CAS  Google Scholar 

  • Ahlawat, O. P., & Sagar, M. P. (2007). Management of spent mushroom substrate: Technical bulletin. Bioresource Technology, 74(1), 35–47.

    Google Scholar 

  • Ahlawat, O. P., Gupta, P., Kumar, S., Sharma, D. K., & Ahlawat, K. (2010). Bioremediation of fungicides by spent mushroom substrate and its associated microflora. Indian Journal of Microbiology, 50(4), 390–395.

    Article  CAS  Google Scholar 

  • Alonso, J., Garcίa, M. A., Pérez-López, M., & Melgar, M. J. (2003). The concentrations and bioconcentration factors of copper and zinc in edible mushrooms. Archives of Environmental Contamination and Toxicology, 44, 180–188.

    Article  CAS  Google Scholar 

  • Anyakorah, C. I., Nwude, D., & Jinadu, T. (2015). Lead accumulation in oyster mushroom, Pleurotus tuber-regium (Sing) from a continuously lead contaminated soil. Mycosphere, 6(2), 145–149.

    Article  Google Scholar 

  • Attiwill, P. M., & Adams, M. A. (1993). Nutrient cycling in forests. New Phytologist, 124, 561–582.

    Article  CAS  Google Scholar 

  • Baldrian, P., In Der Wiesche, C., Gabriel, J., Nerud, F., & Zadražil, F. (2000). Influence of cadmium and mercury on activities of ligninolytic enzymes and degradation of polycyclic aromatic hydrocarbons by Pleurotus ostreatus in soil. Applied and Environmental Microbiology, 66(6), 2471–2478.

    Article  CAS  Google Scholar 

  • Bennet, J. W., Wunch, K. G., & Faison, B. D. (2002). Use of fungi biodegradation: Manual of environmental microbiology edition. Washington, DC: ASM Press.

    Google Scholar 

  • Borovička, J., & Řanda, Z. (2007). Distribution of iron, cobalt, zinc and selenium in macrofungi. Mycological Progress, 6, 249–259.

    Article  Google Scholar 

  • Borovička, J., Řanda, Z., & Jelίnek, E. (2006). Gold content of ectomycorrhizal and saprobic macrofungi – An update. Journal of Physics: Conference Series, 41, 169–173.

    Google Scholar 

  • Borovićka, J., Ŕanda, Z., Jelίnek, E., Kotrba, P., & Dunn Colin, E. (2007). Hyperaccumulation of silver by Amanita strobiliformis and related species of the section Lepidella. Mycological Research, 111, 1339–1344.

    Article  CAS  Google Scholar 

  • Buscot, F., Munch, J. C., Charcosset, J. Y., Gardes, M., Nehls, U., & Hampp, R. (2000). Recent advances in exploring physiology and biodiversity of ectomycorrhizas highlight the functioning of these symbioses in ecosystems. FEMS Microbiology Reviews, 24, 601–614.

    Article  CAS  Google Scholar 

  • Buswell, J. A. (1995). Potential of spent mushroom substrate for bioremediation purposes. Mushroom News, 43(5), 28–34.

    Google Scholar 

  • Cajthaml, T., Bhatt, M., Šašek, V., & Matějů. (2002). Bioremediation of PAH-contaminated soil by composting – A case study. Folia Microbiologica, 47(6), 696–700.

    Article  CAS  Google Scholar 

  • Cerniglia, C. E. (1992). Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation, 3, 351–368.

    Article  CAS  Google Scholar 

  • Cho, N. S., Wilkolazka, A. J., Staszczak, M., Cho, H. Y., & Ohga, S. (2009). The role of laccase from white rot fungi to stress conditions. Journal of the Faculty of Agriculture, Kyushu University, 54, 81–83.

    CAS  Google Scholar 

  • Cohen, R., Persky, L. & Hadar, Y. (2002). Biotechnological applications and potential of wood degrading mushrooms of the genus Pleurotus. Applied Microbiology and Biotechnology, 58, 582–594.

    Google Scholar 

  • Das, N. (2005). Heavy metals biosorption by mushrooms. Natural Product Radiance, 4(6), 454–459.

    Google Scholar 

  • Das, N., Vimala, R., & Karthika, P. (2008). Biosorption of heavy metals-An overview. Indian Journal of Biotechnology, 7, 159–169.

    CAS  Google Scholar 

  • Dell, B. (2002). Role of mycorrhizal fungi in ecosystems. CMU Journal, 1(1), 47–60.

    Google Scholar 

  • Demirbaş, A. (2001). Heavy metal bioaccumulation by mushrooms from artificially fortified soil. Food Chemistry, 74, 293–301.

    Article  Google Scholar 

  • Elekes, C. C., & Busuioc, G. (2010). The mycoremediation of metals polluted soils using wild growing species of mushrooms. Latest trends on engineering education. ISBN: 978-960-474-202-8.

    Google Scholar 

  • Eramo, A., & Brennan, R. A. (2009). New use for mushroom compost; bioremediation of diesel-contaminated soil. Mushroom News, 57(11), 10–17.

    Google Scholar 

  • Fahr, K., Wetzstein, H.-G., Grey, R., & Schlosser, D. (1999). Degradation of 2,4-dichlorophenol and pentachlorophenol by two brown rot fungi. FEMS Microbiology Letters, 175, 127–132.

    Article  CAS  Google Scholar 

  • Fogarty, A. W., & Tuovinen, O. H. (1991). Microbiological degradation of pesticides in yard waste composting. Microbiological Reviews, 55, 225–233.

    CAS  Google Scholar 

  • Fogel, R. (1980). Mycorrhizae and nutrient cycling in natural forest ecosystems. New Phytologist, 86, 199–212.

    Article  CAS  Google Scholar 

  • Friberg, L., Piscato, M., Nordbert, C. G., & Kjellstrom, T. (1979). Cadmium in the environment. Berlin: Springer.

    Google Scholar 

  • García, M. A., Alanso, J., Fernández, M. I., & Melgar, M. J. (1998). Lead content in edible wild mushrooms in Northwest Spain as indicator of environmental contamination. Archives of Environmental Contamination and Toxicology, 34, 330–335.

    Article  Google Scholar 

  • Gąsecka, M., Drzewiecka, K., Stachowiak, J., Siwulski, M., Goliński, P., Sobieralski, K., & Golak, I. (2012). Degradation of polycyclic aromatic hydrocarbons (pahs) by spent mushroom substrates of Agaricus bisporus and Lentinula edodes. Acta Scientiarum Polonorum, Hortorum Cultus, 11(4), 39–46.

    Google Scholar 

  • Gautam, S., Kaithwas, G., Bharagava, R. N., & Saxena, G. (2017). Pollutants in tannery wastewater, pharmacological effects and bioremediation approaches for human health protection and environmental safety. In R. N. Bharagava (Ed.), Environmental pollutants and their bioremediation approaches (1st ed., pp. 369–396). Boca Raton: CRC Press/Taylor & Francis Group. https://doi.org/10.1201/9781315173351-14.

    Chapter  Google Scholar 

  • Gebrelibanos, M., Megersa, N., & Taddesse, A. M. (2016). Levels of essential and non-essential metals in edible mushrooms cultivated in Haramaya, Ethiopia. International Journal of Food Contamination, 3(2), 1–12.

    Google Scholar 

  • Gisbert, C., Ros, R., De Haro, A., Walker, D. J., Bernal, M. P., Serrano, R., & Navarro-Avino, J. (2009). A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochemical and Biophysical Research Communications, 303, 440–445.

    Article  CAS  Google Scholar 

  • Goutam, S. P., Saxena, G., Singh, V., Yadav, A. K., & Bharagava, R. N. (2018). Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater. Chemical Engineering Journal, 336, 386–396. https://doi.org/10.1016/j.cej.2017.12.029.

    Article  CAS  Google Scholar 

  • Gramss, G., Kirsche, B., Voigt, K. D., Gunther, T., & Fritsche, W. (1999). Conversion rates of five polycyclic aromatic hydrocarbonsin liquid cultures of fifty-eight fungi and the concomitant production of oxidative enzymes. Mycological Research, 103, 1009–1018.

    Article  CAS  Google Scholar 

  • Green, A. N., Meharg, A. A., Till, C., Troke, J., & Nicholson Jeremy, K. (1999). Degradation of 4-fluorobiphenyl by mycorrhizal fungi as determined by 19F nuclear magnetic resonance spectroscopy and 14C radiolabelling analysis. Applied and Environmental Microbiology, 65, 4021–4027.

    CAS  Google Scholar 

  • Gurel, L., Senturk, I., Bahadir, T., & Buyukgungor, H. (2010). Treatment of Nickel plating industrial wastewater by fungus immobilized onto rice bran. Journal of Microbial & Biochemical Technology, 2, 34–37.

    CAS  Google Scholar 

  • Guthrie, R. K., & Davis, E. M. (1985). Biodegradation of effluents. In A. Mizrahi & A. L. Van Wezel (Eds.), Advances in biotechnological processes (Vol. 5, pp. 149–152). New York: Alan Liss.

    Google Scholar 

  • Heinfling, A., Martίnez, M. J., Martίnez, A. T., Bergbauer, M., & Szewzyk, U. (1998). Transformation of industrial dyes by manganese peroxidases from Bjerkandera adusta and Pleurotus eryngii in a manganese-independent reaction. Applied and Environmental Microbiology, 64(8), 2788–2793.

    CAS  Google Scholar 

  • Hofrichter, M., Scheibner, K., Sack, U., & Fritsche, W. (1997). Degradative capacities of white-rot and litter decaying fungi for persistent natural and xenobiotic compounds. In R. D. Rai, B. L. Dhar, & R. N. Verma (Eds.), Advances in mushroom biology, production (pp. 271–280). Solan: Mushroom Society of India, NRCM.

    Google Scholar 

  • Hofrichter, M., Ziegenhagen, D., Sorge, S., Ullrich, R., Bublitz, E., & Fritsche, W. (1999). Degradation of lignite (low-rank coal) by ligninolytic basidiomycetes and their manganese peroxidase system. Applied Microbiology and Biotechnology, 5(22), 78–84.

    Article  Google Scholar 

  • Isildak, O., Türkekul, İ., Elmastaş, M., & Aboul-Enein, H. (2007). Bioaccumulation of heavy metals in some wild grown edible mushrooms. Analytical Letters, 40, 1099–1116.

    Article  CAS  Google Scholar 

  • Ivan, Š., Paula, Ž., Dalibor, B., & Mladenka, M. S. (2015). Trace element contents in the edible mushroom boletus edulis bull. Ex fries. Agriculturae Conspectus Scientificus, 80(4), 223–227.

    Google Scholar 

  • Ivan, Š., Ante, K., Ivica, K., Tomislava, M., Draženko, T., & Milan, P. (2016). Heavy metal contents and bioaccumulation potential of some wild edible mushrooms. Izvorni znanstveni članci – Original Scientific Papers Šumarski List, 1–2, 29–37.

    Google Scholar 

  • Jarzyńska, G., & Falandysz, J. (2012). Metallic elements profile of Hazel (Hard) Bolete (Leccinum griseum) mushroom and associated upper soil horizon. African Journal of Biotechnology, 11(20), 4588–4594.

    Google Scholar 

  • Javaid, A., Bajwa, R., & Javaid, A. (2010). Biosorption of heavy metals using a dead macrofungus Schizophyllum commune Fries: Evaluation of equilibrium and kinetic models. Pakistan Journal of Botany, 42(3), 2118.

    Google Scholar 

  • Jonas, U., Hammer, E., Schauer, E., & Bollag, J. (1998). Transformation of 2-hydroxydibenzofurabny laccases of the white rot fungi Trametes versicolor and Pycnoporus cinnabarinus and characterization of oligomerization products. Biodegradation, 8, 371–378.

    Google Scholar 

  • Juhasz, A. L., & Naidu, R. (2000). Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: A review of the microbial degradation of Benzo[a] pyrene. International Biodeterioration and Biodegradation, 45, 57–88.

    Article  CAS  Google Scholar 

  • Kenneth, E. H. (1996). Extracellular free radical biochemistry of ligninolytic fungi. New Journal of Chemistry, 20, 195–198.

    Google Scholar 

  • Kerem, Z., Jensen, K. A., & Hammel, K. E. (1999). Biodegradative mechanism of the brown rot basidiomycete Gloeophyllum trabeum: Evidence for an extracellular hydroquinone-driven fenton reaction. FEBS Letters, 446, 49–54.

    Article  CAS  Google Scholar 

  • Lange, B., Kremer, S., Sterner, O., & Anke, H. (1996). Metabolism of pyrene by basidiomycetous fungi of the genera Crinipellis, Marasmius and Marasmiellus. Canadian Journal of Microbiology, l4(2), 179–l81.

    Google Scholar 

  • Limón-Pacheco, J., & Gonsebatt, M. E. (2009). The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 674(1), 137–147.

    Article  CAS  Google Scholar 

  • Maihara, V. A., Moura, P. L., Catharino, M. G., Castro, L. P., & Figueira, R. C. L. (2008). Arsenic and cadmium content in edible mushrooms from São Paulo, Brazil determined by INAA and GF AAS. Journal of Radioanalytical and Nuclear Chemistry, 278(2), 395–397.

    Article  CAS  Google Scholar 

  • Mane, V. P., Patil, S. S., Syed, A. A., & Baig, M. M. V. (2007). Bioconversion of low quality lignocellulosic agricultural waste into edible protein by Pleurotus sajor-caju (Fr.) singer. Journal of Zhejiang University Science B, 8(10), 745–751.

    Article  CAS  Google Scholar 

  • Martens, R., & Zadrazil, E. (1998). Screening of white rot fungi for their ability to mineralize polycyclic aromatic hydrocarbons in soil. Folia Microbiologica, 43(1), 97–103.

    Article  CAS  Google Scholar 

  • Martens, R., Wetzstein, H.-G., Zadrazil, F., Capelari, M., Hoffmann, P., & Schmeer, N. (1996). Degradation of the fluoroquinolone enrofloxacin by wood-rotting fungi. Applied and Environmental Microbiology, 62(11), 4206–4209.

    CAS  Google Scholar 

  • Martinez, A. T., Camarero, S., Guillen, F., Gutierrez, A., Munoz, C., Varela, E., Martinez, M. J., Barrasa, J. M., Ruel, K., & Pelayo, J. M. (1994). Progress in biopulping of non-woody materials – Chemical, enzymatic and ultrastructural aspects of wheat straw delignification with ligninolytic fungi from the genus Pleurotus. FEMS Microbiology Reviews, 13, 265–274.

    Article  CAS  Google Scholar 

  • Mishra, V., Majumder, C. B., & Agarwal, V. K. (2012). Sorption of Zn (II) ion onto the surface of activated carbon derived from eucalyptus bark saw dust from industrial wastewater: Isotherm, kinetics, mechanistic modeling and thermodynamics. Desalination and Water Treatment, 46(1–3), 332–351.

    Article  CAS  Google Scholar 

  • Mohiuddin, K. M., Mehediul Alam, M., Arefin, T., & Ahmed, I. (2015). Assessment of nutritional composition and heavy metal content in some edible mushroom varieties collected from different areas of Bangladesh. Asian Journal of Medical and Biological Research, 1(3), 495–501.

    Article  Google Scholar 

  • Nagai, M. (2002). Purification and characterization of an extracellular laccase from the edible mushroom Lentinula edodes and decolorization of chemically different dyes. Applied Microbiology and Biotechnology, 60, 327–335.

    Article  CAS  Google Scholar 

  • Olusola, S. A., & Anslem, E. E. (2010). Bioremediation of a crude oil polluted soil with Pleurotus pulmonarius and Glomus mosseae using Amaranthus hybridusas a test plant. Journal of Bioremediation & Biodegradation, 1, 111.

    Google Scholar 

  • Patterson, J. W., & Passino, R. (1987). Metals speciation separation and recovery. Chelsea: Lewis Publishers.

    Google Scholar 

  • Perez-Moreno, J., & Read, D. J. (2000). Mobilization and transfer of nutrients from litter to tree seedlings via the vegetative mycelium of ectomycorrhizal plants. New Phytologist, 145, 301–309.

    Article  CAS  Google Scholar 

  • Pickard, M. A., Roman, R., Tinoco, R., & Yazquez’ Duhalt, R. (1999). Polycyclic aromatic hydrocarbon metabolism by white rot fungi and oxidation by Coriolopsis gallica UAMH 8260 laicase. Applied and Environmental Microbiology, 65, 3805–3809.

    CAS  Google Scholar 

  • Pothuluri, J. V., & Cerniglia, C. E. (1994). Microbial metabolism of polycyclic aromatic hydrocarbons. In G. R. Chaudhry (Ed.), Biological degradation and bioremediation of toxic chemicals (pp. 92–124). Portland: Dioscorides Press.

    Google Scholar 

  • Prakash, V. (2017). Mycoremediation of environmental pollutants. International Journal of Chem Tech Research, 10(3), 149–155.

    CAS  Google Scholar 

  • Read, D. L., Leake, J. R., & Langdale, A. R. (1989). The nitrogen nutrition of mycorrhizal fungi and their host plants. In L. Boddy, R. Marchant, & D. J. Read (Eds.), Nitrogen, phosphorus and sulphur utilization by fungi (pp. 181–204). Cambridge: Cambridge University Press.

    Google Scholar 

  • Sack, U., Heinze, T. M., Deck, J., Cerniglia, C. E., Martens, R., Zadrazil, F., & Fritsche, W. (1997). Comparison of phenanthrene and pyrene degradation by different wood-decaying fungi. Applied and Environmental Microbiology, 63(10), 3919–3925.

    CAS  Google Scholar 

  • Schlosser, D., Fahr, K., Karl, W., & Wetzstein, H.-G. (2000). Hydroxylated metabolites of 2,4-dichlorophenol imply a fenton-type reaction in Gloeophyllum striatum. Applied and Environmental Microbiology, 66(6), 2479–2483.

    Article  CAS  Google Scholar 

  • Semple, K. T., & Fermor, T. R. (1995). The bioremediation of xenobiotic- contamination by composts and associated microflora. Mushroom Science, 14(2), 917–924.

    Google Scholar 

  • Stihi, C., Radulescu, C., Busuioc, G., Popescu, I. V., Gheboianu, A., & Ene, A. (2011). Studies on accumulation of heavy metals from substrate to edible wild mushrooms. Romanian Journal of Physics, 56(1–2), 257–264.

    CAS  Google Scholar 

  • Sultana, K., Quresh, R. A., & Bashir, B. H. (2007). Impact of mushrooms and toad stools on environment. Electronic Journal of Environment, Agricultural and Food Chemistry, 6(11), 2534–2542.

    Google Scholar 

  • Tuomela, M., Vikman, M., Hatakka, A., & Itävaara, M. (2000). Biodegradation of lignin in a compost environment- A review. Bioresource Technology, 72, 169–183.

    Article  CAS  Google Scholar 

  • Valli, K., & Gold, M. H. (1991). Degradation of 2,4-dichlorophenol by the lignin-degrading fungus Phanerochaete chrysosporium. Journal of Bacteriology, 173(1), 345–352.

    Article  CAS  Google Scholar 

  • Varsha, Y. M., Naga Deepthi, C. H., & Chenna, S. (2011). An emphasis on Xenobiotic degradation in environmental cleanup. Journal of Bioremediation & Biodegradation, S11, 001. https://doi.org/10.4172/2155-6199.S11-001.

    Article  Google Scholar 

  • Venkata, S. M., Takuro, K. T. O., Robert, A. K., & Yoshihisa, S. (2006). Bioremediation technologies for treatment of PAH-contaminated soil and strategies to enhance process efficiency. Reviews in Environmental Science and Biotechnology, 5, 347–374.

    Article  CAS  Google Scholar 

  • Vimala, R., & Das, N. (2009). Biosorption of cadmium (II) and lead (II) from aqueous solutions using mushrooms: A comparative study. Journal of Hazardous Materials, 168, 376–382.

    Article  CAS  Google Scholar 

  • Wetzstein, H.-G., Schmeer, N., & Karl, W. (1997). Degradation of the Fluoroquinolone Enrofloxacin by the brown rot fungus Gloeophyllum striatum: Identification of metabolites. Applied and Environmental Microbiology, 63(11), 4272–4281.

    CAS  Google Scholar 

  • Wunch, K. G., Alworth, W., & Bennett, J. W. (1999). Mineralization of benzo[a]pyrene by Marasmiellus troyanus, a mushroom isolated from a toxic waste site. Microbiological Research, 154, 75–79.

    Article  CAS  Google Scholar 

  • Zhang, D., Frankowska, A., Jarzyńska, G., Kojta, A. K., Drewnowska, M., Wydmańska, D., Bielawski, L., Wang, J., & Falandysz, J. (2010). Metals of King Bolete (Boletus edulis) Bull.: Fr. Collected at the same site over two years. African Journal of Agricultural Research, 5(22), 3050–3055.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vishwakarma, P. (2019). Role of Macrofungi in Bioremediation of Pollutants. In: Arora, P. (eds) Microbial Metabolism of Xenobiotic Compounds. Microorganisms for Sustainability, vol 10. Springer, Singapore. https://doi.org/10.1007/978-981-13-7462-3_14

Download citation

Publish with us

Policies and ethics