Skip to main content

Na+/I Symporter Target for Thyroid Disease Imaging and Treatment

  • Chapter
  • First Online:
Nuclear Medicine in Oncology
  • 891 Accesses

Abstract

Utilizing iodide to synthesize thyroid hormones is a biological signature of thyroid that has been used for the diagnosis and treatment of benign and malignant thyroid diseases [1]. Radioiodine is a classical theranostic representations for personalized targeted therapy and molecular imaging in nuclear medicine history [2]. Thyroid scan with radioiodine or technetium-99m (99mTc) pertechnetate has unique ability in the assessment of thyroid nodules with anatomical and functional information. Radioiodine whole-body scan (WBS) has played an important role in the detection of normal thyroid tissue remnants and local and distant metastases of differentiated thyroid cancer (DTC) as well as restaging after radioiodine therapy and long-term follow-up.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahn BC (2012) Sodium iodide symporter for nuclear molecular imaging and gene therapy: from bedside to bench and back. Theranostics 2(4):392–402

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Silberstein EB (2012) Radioiodine: the classic theranostic agent. Semin Nucl Med 42(3):164–170

    PubMed  Google Scholar 

  3. Zhang J, Lazar MA (2000) The mechanism of action of thyroid hormones. Annu Rev Physiol 62:439–466

    CAS  PubMed  Google Scholar 

  4. Ravera S, Reyna-Neyra A, Ferrandino G et al (2017) The sodium/iodide symporter (NIS): molecular physiology and preclinical and clinical applications. Annu Rev Physiol 79:261–289

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Riedel C, Levy O, Carrasco N (2001) Post-transcriptional regulation of the sodium/iodide symporter by thyrotropin. J Biol Chem 276(24):21458–21463

    CAS  PubMed  Google Scholar 

  6. Schmutzler C, Schmitt TL, Glaser F et al (2002) The promoter of the human sodium/iodide-symporter gene responds to retinoic acid. Mol Cell Endocrinol 189(1–2):145–155

    CAS  PubMed  Google Scholar 

  7. Serrano-Nascimento C, Nicola JP, Teixeira Sda S et al (2016) Excess iodide downregulates Na(+)/I(−) symporter gene transcription through activation of PI3K/Akt pathway. Mol Cell Endocrinol 426:73–90

    CAS  PubMed  Google Scholar 

  8. Vu-Phan D, Koenig RJ (2014) Genetics and epigenetics of sporadic thyroid cancer. Mol Cell Endocrinol 386(1–2):55–66

    CAS  PubMed  Google Scholar 

  9. Galrao AL, Camargo RY, Friguglietti CU et al (2014) Hypermethylation of a new distal sodium/iodide symporter (NIS) enhancer (NDE) is associated with reduced NIS expression in thyroid tumors. J Clin Endocrinol Metab 99(6):E944–E952

    CAS  PubMed  Google Scholar 

  10. Zhang Z, Liu D, Murugan AK et al (2014) Histone deacetylation of NIS promoter underlies BRAF V600E-promoted NIS silencing in thyroid cancer. Endocr Relat Cancer 21(2):161–173

    PubMed  PubMed Central  Google Scholar 

  11. Riesco-Eizaguirre G, Wert-Lamas L, Perales-Paton J et al (2015) The miR-146b-3p/PAX8/NIS regulatory circuit modulates the differentiation phenotype and function of thyroid cells during carcinogenesis. Cancer Res 75(19):4119–4130

    CAS  PubMed  Google Scholar 

  12. Shen CT, Qiu ZL, Song HJ et al (2016) miRNA-106a directly targeting RARB associates with the expression of Na(+)/I(-) symporter in thyroid cancer by regulating MAPK signaling pathway. J Exp Clin Cancer Res 35(1):101

    PubMed  PubMed Central  Google Scholar 

  13. O’Doherty J, Jauregui-Osoro M, Brothwood T et al (2017) (18)F-tetrafluoroborate, a PET probe for imaging sodium/iodide symporter expression: whole-body biodistribution, safety, and radiation dosimetry in thyroid cancer patients. J Nucl Med 58(10):1666–1671

    PubMed  Google Scholar 

  14. Haugen BR, Alexander EK, Bible KC et al (2016) 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 26(1):1–133

    PubMed  PubMed Central  Google Scholar 

  15. Lamartina L, Durante C, Filetti S et al (2015) Low-risk differentiated thyroid cancer and radioiodine remnant ablation: a systematic review of the literature. J Clin Endocrinol Metab 100(5):1748–1761

    CAS  PubMed  Google Scholar 

  16. Ruel E, Thomas S, Dinan M et al (2015) Adjuvant radioactive iodine therapy is associated with improved survival for patients with intermediate-risk papillary thyroid cancer. J Clin Endocrinol Metab 100(4):1529–1536

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Edmonds CJ, Hayes S, Kermode JC et al (1977) Measurement of serum TSH and thyroid hormones in the management of treatment of thyroid carcinoma with radioiodine. Br J Radiol 50(599):799–807

    CAS  PubMed  Google Scholar 

  18. Mazzaferri EL, Kloos RT (2002) Is diagnostic iodine-131 scanning with recombinant human TSH useful in the follow-up of differentiated thyroid cancer after thyroid ablation? J Clin Endocrinol Metab 87(4):1490–1498

    CAS  PubMed  Google Scholar 

  19. Bianchi L, Baroli A, Lomuscio G et al (2012) Dosimetry in the therapy of metastatic differentiated thyroid cancer administering high 131I activity: the experience of Busto Arsizio Hospital (Italy). Q J Nucl Med Mol Imaging 56(6):515–521

    CAS  PubMed  Google Scholar 

  20. Benua RS, Cicale NR, Sonenberg M et al (1962) The relation of radioiodine dosimetry to results and complications in the treatment of metastatic thyroid cancer. Am J Roentgenol Radium Ther Nucl Med 87:171–182

    CAS  PubMed  Google Scholar 

  21. Maxon HR, Thomas SR, Hertzberg VS et al (1983) Relation between effective radiation dose and outcome of radioiodine therapy for thyroid cancer. N Engl J Med 309(16):937–941

    CAS  PubMed  Google Scholar 

  22. Kuker R, Sztejnberg M, Gulec S (2017) I-124 imaging and dosimetry. Mol Imaging Radionucl Ther 26(Suppl 1):66–73

    PubMed  PubMed Central  Google Scholar 

  23. Chiesa C, Castellani MR, Vellani C et al (2009) Individualized dosimetry in the management of metastatic differentiated thyroid cancer. Q J Nucl Med Mol Imaging 53(5):546–561

    CAS  PubMed  Google Scholar 

  24. Sgouros G, Kolbert KS, Sheikh A et al (2004) Patient-specific dosimetry for 131I thyroid cancer therapy using 124I PET and 3-dimensional-internal dosimetry (3D-ID) software. J Nucl Med 45(8):1366–1372

    CAS  PubMed  Google Scholar 

  25. Flower MA, Schlesinger T, Hinton PJ et al (1989) Radiation dose assessment in radioiodine therapy. 2. Practical implementation using quantitative scanning and PET, with initial results on thyroid carcinoma. Radiother Oncol 15(4):345–357

    CAS  PubMed  Google Scholar 

  26. Dorn R, Kopp J, Vogt H et al (2003) Dosimetry-guided radioactive iodine treatment in patients with metastatic differentiated thyroid cancer: largest safe dose using a risk-adapted approach. J Nucl Med 44(3):451–456

    CAS  PubMed  Google Scholar 

  27. Wierts R, Brans B, Havekes B et al (2016) Dose-response relationship in differentiated thyroid cancer patients undergoing radioiodine treatment assessed by means of 124I PET/CT. J Nucl Med 57(7):1027–1032

    CAS  PubMed  Google Scholar 

  28. Deandreis D, Rubino C, Tala H et al (2017) Comparison of empiric versus whole-body/-blood clearance dosimetry-based approach to radioactive iodine treatment in patients with metastases from differentiated thyroid cancer. J Nucl Med 58(5):717–722

    CAS  PubMed  Google Scholar 

  29. Urhan M, Dadparvar S, Mavi A et al (2007) Iodine-123 as a diagnostic imaging agent in differentiated thyroid carcinoma: a comparison with iodine-131 post-treatment scanning and serum thyroglobulin measurement. Eur J Nucl Med Mol Imaging 34(7):1012–1017

    CAS  PubMed  Google Scholar 

  30. Santhanam P, Taieb D, Solnes L et al (2017) Utility of I-124 PET/CT in identifying radioiodine avid lesions in differentiated thyroid cancer: a systematic review and meta-analysis. Clin Endocrinol (Oxf) 86(5):645–651

    CAS  Google Scholar 

  31. Haslerud T, Brauckhoff K, Reisaeter L et al (2016) F18-FDG-PET for recurrent differentiated thyroid cancer: a systematic meta-analysis. Acta Radiol 57(10):1193–1200

    PubMed  Google Scholar 

  32. Feine U, Lietzenmayer R, Hanke JP et al (1995) 18FDG whole-body PET in differentiated thyroid carcinoma. Flipflop in uptake patterns of 18FDG and 131I. Nuklearmedizin 34(4):127–134

    CAS  PubMed  Google Scholar 

  33. Leboulleux S, El Bez I, Borget I et al (2012) Postradioiodine treatment whole-body scan in the era of 18-fluorodeoxyglucose positron emission tomography for differentiated thyroid carcinoma with elevated serum thyroglobulin levels. Thyroid 22(8):832–838

    CAS  PubMed  Google Scholar 

  34. Rosario PW, Furtado Mde S, Mineiro Filho AF et al (2012) Value of diagnostic radioiodine whole-body scanning after initial therapy in patients with differentiated thyroid cancer at intermediate and high risk for recurrence. Thyroid 22(11):1165–1169

    CAS  PubMed  Google Scholar 

  35. Pacini F, Capezzone M, Elisei R et al (2002) Diagnostic 131-iodine whole-body scan may be avoided in thyroid cancer patients who have undetectable stimulated serum Tg levels after initial treatment. J Clin Endocrinol Metab 87(4):1499–1501

    CAS  PubMed  Google Scholar 

  36. Rosario PW, Mineiro Filho AF, Lacerda RX et al (2012) The value of diagnostic whole-body scanning and serum thyroglobulin in the presence of elevated serum thyrotropin during follow-up of anti-thyroglobulin antibody-positive patients with differentiated thyroid carcinoma who appeared to be free of disease after total thyroidectomy and radioactive iodine ablation. Thyroid 22(2):113–116

    CAS  PubMed  Google Scholar 

  37. Chudgar AV, Shah JC (2017) Pictorial review of false-positive results on radioiodine scintigrams of patients with differentiated thyroid cancer. Radiographics 37(1):298–315

    PubMed  Google Scholar 

  38. Jiang X, Zeng H, Gong J et al (2015) Unusual uptake of radioiodine in a retroperitoneal bronchogenic cyst in a patient with thyroid carcinoma. Clin Nucl Med 40(5):435–436

    PubMed  Google Scholar 

  39. Jiang X, Wang Q, Huang R (2015) Nasal visualization on radioiodine whole-body scintigraphy due to benign abnormality. Clin Nucl Med 40(4):340–342

    PubMed  Google Scholar 

  40. Shen G, Jing X, Zhang Y et al (2017) Unusual uptake of radioiodine in a subcutaneous lipoma in a patient with differentiated thyroid cancer. Clin Nucl Med 42(1):e75–e76

    PubMed  Google Scholar 

  41. Zhou H, Yan J, Huang R et al (2018) Unusual uptake of 131I in a cutaneous benign fibrous histiocytoma in a patient with thyroid cancer. Clin Nucl Med 43(1):e31–e32

    PubMed  Google Scholar 

  42. Means JH, Holmes GW (1923) Further observations on the Roentgen ray treatment of toxic goiter. Arch Intern Med 31:303

    Google Scholar 

  43. Hertz S, Roberts A (1946) Radioactive iodine in the study of thyroid physiology; the use of radioactive iodine therapy in hyperthyroidism. JAMA 131:81–86

    CAS  Google Scholar 

  44. Chapman EM, Evans RD (1946) The treatment of hyperthyroidism with radioactive iodine. JAMA 131:86–91

    CAS  Google Scholar 

  45. Crispell KR, Parson W, Sprinkle P (1953) A simplified technique for the diagnosis of hyperthyroidism, utilizing the one-hour uptake of orally administered I131. J Clin Endocrinol Metab 13(2):221–224

    CAS  PubMed  Google Scholar 

  46. Becker DV, Sawin CT (1996) Radioiodine and thyroid disease: the beginning. Semin Nucl Med 26(3):155–164

    CAS  PubMed  Google Scholar 

  47. Bahn Chair RS, Burch HB, Cooper DS et al (2011) Hyperthyroidism and other causes of thyrotoxicosis: management guidelines of the American Thyroid Association and American Association of Clinical Endocrinologists. Thyroid 21(6):593–646

    PubMed  Google Scholar 

  48. Ross DS, Burch HB, Cooper DS et al (2016) 2016 American Thyroid Association guidelines for diagnosis and management of hyperthyroidism and other causes of thyrotoxicosis. Thyroid 26(10):1343–1421

    Google Scholar 

  49. Wartofsky L, Glinoer D, Solomon B et al (1991) Differences and similarities in the diagnosis and treatment of Graves’ disease in Europe, Japan, and the United States. Thyroid 1(2):129–135

    CAS  PubMed  Google Scholar 

  50. Burch HB, Burman KD, Cooper DS (2012) A 2011 survey of clinical practice patterns in the management of Graves’ disease. J Clin Endocrinol Metab 97(12):4549–4558

    CAS  PubMed  Google Scholar 

  51. Meng Z, Zhang G, Sun H et al (2015) Differentiation between Graves’ disease and painless thyroiditis by diffusion-weighted imaging, thyroid iodine uptake, thyroid scintigraphy and serum parameters. Exp Ther Med 9(6):2165–2172

    PubMed  PubMed Central  Google Scholar 

  52. Wang RF, Tan J, Zhang GZ et al (2010) A comparative study of influential factors correlating with early and late hypothyroidism after (131)I therapy for Graves’ disease. Chin Med J (Engl) 123(12):1528–1532

    Google Scholar 

  53. Zheng W, Jian T, Guizhi Z et al (2012) Analysis of (1)(3)(1)I therapy and correlation factors of Graves’ disease patients: a 4-year retrospective study. Nucl Med Commun 33(1):97–101

    PubMed  Google Scholar 

  54. Rivkees SA, Sklar C, Freemark M (1998) Clinical review 99: the management of Graves’ disease in children, with special emphasis on radioiodine treatment. J Clin Endocrinol Metab 83(11):3767–3776

    CAS  PubMed  Google Scholar 

  55. Boice JD Jr (2005) Radiation-induced thyroid cancer—what’s new? J Natl Cancer Inst 97(10):703–705

    PubMed  Google Scholar 

  56. Bartalena L, Baldeschi L, Dickinson AJ et al (2008) Consensus statement of the European group on Graves’ orbitopathy (EUGOGO) on management of Graves’ orbitopathy. Thyroid 18(3):333–346

    PubMed  Google Scholar 

  57. Davis S, Kopecky KJ, Hamilton TE et al (2004) Thyroid neoplasia, autoimmune thyroiditis, and hypothyroidism in persons exposed to iodine 131 from the Hanford nuclear site. JAMA 292(21):2600–2613

    CAS  PubMed  Google Scholar 

  58. Shore RE (1992) Issues and epidemiological evidence regarding radiation-induced thyroid cancer. Radiat Res 131(1):98–111

    CAS  PubMed  Google Scholar 

  59. Read CH Jr, Tansey MJ, Menda Y (2004) A 36-year retrospective analysis of the efficacy and safety of radioactive iodine in treating young Graves’ patients. J Clin Endocrinol Metab 89(9):4229–4233

    CAS  PubMed  Google Scholar 

  60. Ron E, Doody MM, Becker DV et al (1998) Cancer mortality following treatment for adult hyperthyroidism. Cooperative thyrotoxicosis therapy follow-up study group. JAMA 280(4):347–355

    CAS  PubMed  Google Scholar 

  61. Angusti T, Codegone A, Pellerito R et al (2000) Thyroid cancer prevalence after radioiodine treatment of hyperthyroidism. J Nucl Med 41(6):1006–1009

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd. and Shanghai Jiao Tong University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, R., Tian, R., Meng, Z. (2019). Na+/I Symporter Target for Thyroid Disease Imaging and Treatment. In: Huang, G. (eds) Nuclear Medicine in Oncology. Springer, Singapore. https://doi.org/10.1007/978-981-13-7458-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7458-6_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7457-9

  • Online ISBN: 978-981-13-7458-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics