Skip to main content

Role of 18F-FDG PET/CT in Pediatric Oncology

  • Chapter
  • First Online:
Nuclear Medicine in Oncology
  • 895 Accesses

Abstract

PET has been recognized as a powerful imaging modality for a variety of diseases in adults, mainly cancer. PET is also emerging as an increasingly important tool in diagnosis, staging, treatment assessment, and surveillance in children and adolescents with cancer. This chapter reviews the clinical role of 18F-FDG PET/CT in pediatric oncology and its radiation safety.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel RL, Miller KD, Jemal A (2017) Cancer statistics, 2017. CA Cancer J Clin 67:7–30

    Article  PubMed  Google Scholar 

  2. Pingping B, Chunxiao W, Kai G et al (2016) Incidence trend of malignant tumors in children in Shanghai. Chin J Epidemiol 37:106–110

    Google Scholar 

  3. Shammas A, Lim R, Charron M (2009) Pediatric FDG PET/CT: physiologic uptake, normal variants, and benign conditions. Radiographics 29:1467–1486

    Article  PubMed  Google Scholar 

  4. Cory DA, Cohen MD, Smith JA (1987) Thymus in the superior mediastinum simulating adenopathy: appearance on CT. Radiology 162:457–459

    Article  CAS  PubMed  Google Scholar 

  5. Goethals I, Hoste P, De Vriendt C, Smeets P, Verlooy J, Ham H (2010) Time-dependent changes in 18F-FDG activity in the thymus and bone marrow following combination chemotherapy in paediatric patients with lymphoma. Eur J Nucl Med Mol Imaging 37:462–467

    Article  PubMed  Google Scholar 

  6. Taralli S, Leccisotti L, Mattoli MV et al (2015) Physiological activity of spinal cord in children: an 18F-FDG PET-CT study. Spine (Phila Pa 1976) 40:E647–E652

    Article  Google Scholar 

  7. Weiler-Sagie M, Bushelev O, Epelbaum R et al (2010) (18)F-FDG avidity in lymphoma readdressed: a study of 766 patients. J Nucl Med 51:25–30

    Article  PubMed  Google Scholar 

  8. London K, Cross S, Onikul E, Dalla-Pozza L, Howman-Giles R (2011) 18F-FDG PET/CT in paediatric lymphoma: comparison with conventional imaging. Eur J Nucl Med Mol Imaging 38:274–284

    Article  PubMed  Google Scholar 

  9. Kabickova E, Sumerauer D, Cumlivska E et al (2006) Comparison of 18F-FDG-PET and standard procedures for the pretreatment staging of children and adolescents with Hodgkin’s disease. Eur J Nucl Med Mol Imaging 33:1025–1031

    Article  PubMed  Google Scholar 

  10. Purz S, Mauz-Korholz C, Korholz D et al (2011) [18F]Fluorodeoxyglucose positron emission tomography for detection of bone marrow involvement in children and adolescents with Hodgkin’s lymphoma. J Clin Oncol 29:3523–3528

    Article  PubMed  Google Scholar 

  11. Chen S, Wang S, He K, Ma C, Fu H, Wang H (2018) PET/CT predicts bone marrow involvement in paediatric non-Hodgkin lymphoma and may preclude the need for bone marrow biopsy in selected patients. Eur Radiol 28:2942–2950

    Article  PubMed  Google Scholar 

  12. Rosolen A, Perkins SL, Pinkerton CR et al (2015) Revised International pediatric non-Hodgkin lymphoma staging system. J Clin Oncol 33:2112–2118

    Article  PubMed  PubMed Central  Google Scholar 

  13. Furth C, Steffen IG, Amthauer H et al (2009) Early and late therapy response assessment with [18F]fluorodeoxyglucose positron emission tomography in pediatric Hodgkin’s lymphoma: analysis of a prospective multicenter trial. J Clin Oncol 27:4385–4391

    Article  PubMed  Google Scholar 

  14. Sandlund JT et al (2015) International pediatric non-Hodgkin lymphoma response criteria. J Clin Oncol 33(18):2106–2111

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bhojwani D, McCarville MB, Choi JK et al (2015) The role of FDG-PET/CT in the evaluation of residual disease in paediatric non-Hodgkin lymphoma. Br J Haematol 168:845–853

    Article  CAS  PubMed  Google Scholar 

  16. Byun BH, Kong CB, Lim I et al (2013) Comparison of (18)F-FDG PET/CT and (99 m)Tc-MDP bone scintigraphy for detection of bone metastasis in osteosarcoma. Skeletal Radiol 42:1673–1681

    Article  PubMed  Google Scholar 

  17. Hurley C, McCarville MB, Shulkin BL et al (2016) Comparison of (18) F-FDG-PET-CT and bone scintigraphy for evaluation of osseous metastases in newly diagnosed and recurrent osteosarcoma. Pediatr Blood Cancer 63:1381–1386

    Article  PubMed  PubMed Central  Google Scholar 

  18. Volker T, Denecke T, Steffen I et al (2007) Positron emission tomography for staging of pediatric sarcoma patients: results of a prospective multicenter trial. J Clin Oncol 25:5435–5441

    Article  PubMed  Google Scholar 

  19. Quartuccio N, Fox J, Kuk D et al (2015) Pediatric bone sarcoma: diagnostic performance of (1)(8)F-FDG PET/CT versus conventional imaging for initial staging and follow-up. Am J Roentgenol 204:153–160

    Article  Google Scholar 

  20. Sharma P, Khangembam BC, Suman KC et al (2013) Diagnostic accuracy of 18F-FDG PET/CT for detecting recurrence in patients with primary skeletal Ewing sarcoma. Eur J Nucl Med Mol Imaging 40:1036–1043

    Article  CAS  PubMed  Google Scholar 

  21. Dharmarajan KV, Wexler LH, Gavane S et al (2012) Positron emission tomography (PET) evaluation after initial chemotherapy and radiation therapy predicts local control in rhabdomyosarcoma. Int J Radiat Oncol Biol Phys 84:996–1002

    Article  PubMed  Google Scholar 

  22. Baum SH, Fruhwald M, Rahbar K, Wessling J, Schober O, Weckesser M (2011) Contribution of PET/CT to prediction of outcome in children and young adults with rhabdomyosarcoma. J Nucl Med 52:1535–1540

    Article  CAS  PubMed  Google Scholar 

  23. Salem U et al (2017) 18F-FDG PET/CT as an indicator of survival in Ewing sarcoma of bone. J Cancer 8(15):2892–2898

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Dong Y, Zhang X, Wang S, Chen S, Ma C (2017) 18F-FDG PET/CT is useful in initial staging, restaging for pediatric rhabdomyosarcoma. Q J Nucl Med Mol Imaging 61:438–446

    Article  PubMed  Google Scholar 

  25. Kong CB et al (2013) (1)(8)F-FDG PET SUVmax as an indicator of histopathologic response after neoadjuvant chemotherapy in extremity osteosarcoma. Eur J Nucl Med Mol Imaging 40(5):728–736

    Article  CAS  PubMed  Google Scholar 

  26. Denecke T, Hundsdorfer P, Misch D et al (2010) Assessment of histological response of paediatric bone sarcomas using FDG PET in comparison to morphological volume measurement and standardized MRI parameters. Eur J Nucl Med Mol Imaging 37:1842–1853

    Article  PubMed  Google Scholar 

  27. Hawkins DS, Conrad EU III, Butrynski JE, Schuetze SM, Eary JF (2009) [F-18]-fluorodeoxy-D-glucose-positron emission tomography response is associated with outcome for extremity osteosarcoma in children and young adults. Cancer 115:3519–3525

    Article  PubMed  Google Scholar 

  28. Casey DL, Wexler LH, Fox JJ et al (2014) Predicting outcome in patients with rhabdomyosarcoma: role of [(18)f]fluorodeoxyglucose positron emission tomography. Int J Radiat Oncol Biol Phys 90:1136–1142

    Article  PubMed  Google Scholar 

  29. Hawkins DS, Schuetze SM, Butrynski JE et al (2005) [18F]Fluorodeoxyglucose positron emission tomography predicts outcome for Ewing sarcoma family of tumors. J Clin Oncol 23:8828–8834

    Article  PubMed  Google Scholar 

  30. Raciborska A et al (2016) Response to chemotherapy estimates by FDG PET is an important prognostic factor in patients with Ewing sarcoma. Clin Transl Oncol 18(2):189–195

    Article  CAS  PubMed  Google Scholar 

  31. Papathanasiou ND, Gaze MN, Sullivan K et al (2011) 18F-FDG PET/CT and 123I-metaiodobenzylguanidine imaging in high-risk neuroblastoma: diagnostic comparison and survival analysis. J Nucl Med 52:519–525

    Article  CAS  PubMed  Google Scholar 

  32. Sharp SE, Shulkin BL, Gelfand MJ, Salisbury S, Furman WL (2009) 123I-MIBG scintigraphy and 18F-FDG PET in neuroblastoma. J Nucl Med 50:1237–1243

    Article  PubMed  Google Scholar 

  33. Taggart DR, Han MM, Quach A et al (2009) Comparison of iodine-123 metaiodobenzylguanidine (MIBG) scan and [18F]fluorodeoxyglucose positron emission tomography to evaluate response after iodine-131 MIBG therapy for relapsed neuroblastoma. J Clin Oncol 27:5343–5349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Melzer HI, Coppenrath E, Schmid I et al (2011) (1)(2)(3)I-MIBG scintigraphy/SPECT versus (1)(8)F-FDG PET in paediatric neuroblastoma. Eur J Nucl Med Mol Imaging 38:1648–1658

    Article  PubMed  Google Scholar 

  35. Choi YJ et al (2014) (18)F-FDG PET as a single imaging modality in pediatric neuroblastoma: comparison with abdomen CT and bone scintigraphy. Ann Nucl Med 28(4):304–313

    Article  PubMed  Google Scholar 

  36. Dhull VS et al (2015) Diagnostic value of 18F-FDG PET/CT in paediatric neuroblastoma: comparison with 131I-MIBG scintigraphy. Nucl Med Commun 36(10):1007–1013

    Article  PubMed  Google Scholar 

  37. Lee JW, Cho A, Yun M, Lee JD, Lyu CJ, Kang WJ (2015) Prognostic value of pretreatment FDG PET in pediatric neuroblastoma. Eur J Radiol 84:2633–2639

    Article  PubMed  Google Scholar 

  38. Li C, Zhang J, Chen S et al (2017) Prognostic value of metabolic indices and bone marrow uptake pattern on preoperative 18F–FDG PET/CT in pediatric patients with neuroblastoma. Eur J Nucl Med Mol Imaging 45:306–315

    Article  PubMed  Google Scholar 

  39. Smith MA, Seibel NL, Altekruse SF et al (2010) Outcomes for children and adolescents with cancer: challenges for the twenty-first century. J Clin Oncol 28:2625–2634

    Article  PubMed  PubMed Central  Google Scholar 

  40. Shulkin BL, Mitchell DS, Ungar DR et al (1995) Neoplasms in a pediatric population: 2-[F-18]-fluoro-2-deoxy-D-glucose PET studies. Radiology 194:495–500

    Article  CAS  PubMed  Google Scholar 

  41. Moinul Hossain AK et al (2010) FDG positron emission tomography/computed tomography studies of Wilms’ tumor. Eur J Nucl Med Mol Imaging 37(7):1300–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Begent J, Sebire NJ, Levitt G et al (2011) Pilot study of F(18)-Fluorodeoxyglucose positron emission tomography/computerised tomography in Wilms’ tumour: correlation with conventional imaging, pathology and immunohistochemistry. Eur J Cancer 47:389–396

    Article  PubMed  Google Scholar 

  43. Misch D, Steffen IG, Schonberger S et al (2008) Use of positron emission tomography for staging, preoperative response assessment and posttherapeutic evaluation in children with Wilms tumour. Eur J Nucl Med Mol Imaging 35:1642–1650

    Article  PubMed  Google Scholar 

  44. Borgwardt L, Hojgaard L, Carstensen H et al (2005) Increased fluorine-18 2-fluoro-2-deoxy-D-glucose (FDG) uptake in childhood CNS tumors is correlated with malignancy grade: a study with FDG positron emission tomography/magnetic resonance imaging coregistration and image fusion. J Clin Oncol 23:3030–3037

    Article  PubMed  Google Scholar 

  45. Zukotynski K, Fahey F, Kocak M et al (2014) 18F-FDG PET and MR imaging associations across a spectrum of pediatric brain tumors: a report from the pediatric brain tumor consortium. J Nucl Med 55:1473–1480

    Article  CAS  PubMed  Google Scholar 

  46. Kruer MC, Kaplan AM, Etzl MM Jr et al (2009) The value of positron emission tomography and proliferation index in predicting progression in low-grade astrocytomas of childhood. J Neurooncol 95:239–245

    Article  PubMed  Google Scholar 

  47. Pirotte BJ, Lubansu A, Massager N, Wikler D, Goldman S, Levivier M (2007) Results of positron emission tomography guidance and reassessment of the utility of and indications for stereotactic biopsy in children with infiltrative brainstem tumors. J Neurosurg 107:392–399

    Article  PubMed  CAS  Google Scholar 

  48. Zukotynski KA et al (2011) Evaluation of 18F-FDG PET and MRI associations in pediatric diffuse intrinsic brain stem glioma: a report from the Pediatric Brain Tumor Consortium. J Nucl Med 52(2):188–195

    Article  PubMed  Google Scholar 

  49. Fulham MJ, Melisi JW, Nishimiya J, Dwyer AJ, Di Chiro G (1993) Neuroimaging of juvenile pilocytic astrocytomas: an enigma. Radiology 189:221–225

    Article  CAS  PubMed  Google Scholar 

  50. Sunada I, Tsuyuguchi N, Hara M, Ochi H (2002) 18F-FDG and 11C-methionine PET in choroid plexus papilloma--report of three cases. Radiat Med 20:97–100

    PubMed  Google Scholar 

  51. Tsuyuguchi N, Matsuoka Y, Sunada I, Matsusaka Y, Haque M (2001) Evaluation of pleomorphic xanthoastrocytoma by use of positron emission tomography with. AJNR Am J Neuroradiol 22:311–313

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Preston DL, Ron E, Tokuoka S et al (2007) Solid cancer incidence in atomic bomb survivors: 1958-1998. Radiat Res 168:1–64

    Article  CAS  PubMed  Google Scholar 

  53. Miglioretti DL, Johnson E, Williams A et al (2013) The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk. JAMA Pediatr 167:700–707

    Article  PubMed  PubMed Central  Google Scholar 

  54. Fahey FH, Treves ST, Adelstein SJ (2012) Minimizing and communicating radiation risk in pediatric nuclear medicine. J Nucl Med Technol 40(1):13–24

    PubMed  Google Scholar 

  55. Chawla SC, Federman N, Zhang D et al (2010) Estimated cumulative radiation dose from PET/CT in children with malignancies: a 5-year retrospective review. Pediatr Radiol 40:681–686

    Article  PubMed  Google Scholar 

  56. Stauss J, Franzius C, Pfluger T et al (2008) Guidelines for 18F-FDG PET and PET-CT imaging in paediatric oncology. Eur J Nucl Med Mol Imaging 35:1581–1588

    Article  CAS  PubMed  Google Scholar 

  57. Alessio AM et al (2009) Weight-based, low-dose pediatric whole-body PET/CT protocols. J Nucl Med 50(10):1570–1577

    Article  PubMed  Google Scholar 

  58. Accorsi R, Karp JS, Surti S (2010) Improved dose regimen in pediatric PET. J Nucl Med 51:293–300

    Article  PubMed  Google Scholar 

  59. Alessio AM, Sammer M, Phillips GS, Manchanda V, Mohr BC, Parisi MT (2011) Evaluation of optimal acquisition duration or injected activity for pediatric 18F-FDG PET/CT. J Nucl Med 52:1028–1034

    Article  PubMed  Google Scholar 

  60. Fahey FH, Palmer MR, Strauss KJ, Zimmerman RE, Badawi RD, Treves ST (2007) Dosimetry and adequacy of CT-based attenuation correction for pediatric PET: phantom study. Radiology 243:96–104

    Article  PubMed  Google Scholar 

  61. Pichler BJ et al (2010) PET/MRI: paving the way for the next generation of clinical multimodality imaging applications. J Nucl Med 51(3):333–336

    Article  PubMed  Google Scholar 

  62. Hirsch FW, Sattler B, Sorge I et al (2013) PET/MR in children. Initial clinical experience in paediatric oncology using an integrated PET/MR scanner. Pediatr Radiol 43:860–875

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd. and Shanghai Jiao Tong University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fu, H., Chen, S., Wang, H. (2019). Role of 18F-FDG PET/CT in Pediatric Oncology. In: Huang, G. (eds) Nuclear Medicine in Oncology. Springer, Singapore. https://doi.org/10.1007/978-981-13-7458-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7458-6_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7457-9

  • Online ISBN: 978-981-13-7458-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics