Skip to main content

Detection of Pulsars Using an Artificial Neural Network

  • Conference paper
  • First Online:
Emerging Technology in Modelling and Graphics

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 937))

Abstract

The research paper demonstrates how to devise an optimal machine learning classifier for the detection of pulsars and then analyzes the performance of various classification models. Pulsars are classified as zero (not a pulsar) or one (pulsar) using logistic regression, decision tree, random forests, KNN classifier, and an artificial neural network. The performance has been analyzed based on five parameters: accuracy, recall, precision, specificity, and prevalence. For this, emission data from the HTRU2 dataset which was collected from the High Time Resolution Universe Survey is being used. Before using any classification algorithms, the patterns in the data were analyzed to understand the correlation between the different characteristics. The classifier proposed in this paper was found to give 98.01% accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Aldrich, R. A. fisher and the making of maximum likelihood 1912–1922. Statist. Sci. 12(3), 162–176 (1997). https://doi.org/10.1214/ss/1030037906

    Article  MathSciNet  MATH  Google Scholar 

  2. N.S. Altman, An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46(3), 175–185 (1992). https://doi.org/10.1080/00031305.1992.10475879

    Article  MathSciNet  Google Scholar 

  3. S.D. Bates, M. Bailes, B.R. Barsdell, N.D.R. Bhat, M. Burgay, S. Burke-Spolaor, D.J. Champion, P. Coster, N. D’Amico, A. Jameson, S. Johnston, M.J. Keith, M. Kramer, L. Levin, A. Lyne, S. Milia, C. Ng, C. Nietner, A. Possenti, B. Stappers, D. Thornton, W. van Straten, The high time resolution universe pulsar survey VI. An artificial neural network and timing of 75 pulsars. Mon. Not. R. Astron. Soc. 427(2), 1052–1065 (2012). https://doi.org/10.1111/j.1365-2966.2012.22042.x

    Article  Google Scholar 

  4. D.R. Cox, The regression analysis of binary sequences. J. R. Stat. Soc. Ser. B (Methodol.) 20(2), 215–242 (1958). http://www.jstor.org/stable/2983890

    MathSciNet  MATH  Google Scholar 

  5. T. Fawcett, An introduction to roc analysis. Pattern Recognit. Lett. 27(8), 861–874 (2006). https://doi.org/10.1016/j.patrec.2005.10.010, http://www.sciencedirect.com/science/article/pii/S016786550500303X (ROC Analysis in Pattern Recognition)

    Article  MathSciNet  Google Scholar 

  6. R.H.R. Hahnloser, R. Sarpeshkar, M.A. Mahowald, R.J. Douglas, H.S. Seung, Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit. Nature 405, 947–951 (2000). https://doi.org/10.1038/35016072

    Article  Google Scholar 

  7. T.K. Ho, Random decision forests, in Proceedings of 3rd International Conference on Document Analysis and Recognition, vol 1 (1995), pp. 278–282 https://doi.org/10.1109/ICDAR.1995.598994

  8. R.J. Lyon, B.W. Stappers, S. Cooper, J.M. Brooke, J.D. Knowles, Fifty years of pulsar candidate selection: from simple filters to a new principled real-time classification approach. Mon. Not. R. Astron. Soc. 459(1), 1104–1123 (2016). https://doi.org/10.1093/mnras/stw656

    Article  Google Scholar 

  9. W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115–133 (1943). https://doi.org/10.1007/BF02478259

    Article  MathSciNet  MATH  Google Scholar 

  10. V. Morello, E.D. Barr, M. Bailes, C.M. Flynn, E.F. Keane, W. van Straten, Spinn: a straightforward machine learning solution to the pulsar candidate selection problem. Mon. Not. R. Astron. Soc. 443(2), 1651–1662 (2014). https://doi.org/10.1093/mnras/stu1188

    Article  Google Scholar 

  11. A. Punia, A. Sardana, M. Subashini, Evaluating advanced machine learning techniques for pulsar detection from htru survey, in 2017 International Conference on Intelligent Sustainable Systems (ICISS) (2017), pp. 470–474. https://doi.org/10.1109/ISS1.2017.8389455

  12. J.R. Quinlan, Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986). https://doi.org/10.1007/BF00116251

    Article  Google Scholar 

  13. P. Verhulst, Notice sur la loi que la population suit dans son accroissement. Corresp. Math. Phys. 10, 113–126 (1838). https://ci.nii.ac.jp/naid/10015246307/en/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajarshi Lahiri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lahiri, R., Dey, S., Roy, S., Nag, S. (2020). Detection of Pulsars Using an Artificial Neural Network. In: Mandal, J., Bhattacharya, D. (eds) Emerging Technology in Modelling and Graphics. Advances in Intelligent Systems and Computing, vol 937. Springer, Singapore. https://doi.org/10.1007/978-981-13-7403-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7403-6_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7402-9

  • Online ISBN: 978-981-13-7403-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics