Skip to main content
  • 597 Accesses

Abstract

Owing to the energy crisis, batteries have captured numerous attentions due to their large energy density with stable electrochemical properties, and they have been successfully applied in power electric vehicles, hybrid electric vehicles, and millions of electronic devices. Batteries, regardless of their chemistry-aqueous, non-aqueous, Li, or Na based, store energy within the electrode structure through charge transfer reactions. Therefore, speeding up charge transfer reactions is the key to improve the performance of batteries device. Downsizing the materials’ particles could shorten the ion diffusion distance and lead to an improved rate performance. So, nanomaterials have become a hot research area for electrode materials. In this chapter, we provide an overall summary in evaluation of nanostructured materials for batteries, including lead-acid batteries, lithium-ion batteries, sodium-ion batteries, metal-air battery, and lithium-sulfur battery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham KM, Rauh RD, Brummer SB (1978) ChemInform abstract: a low temperature sodium-sulfur battery incorporating a soluble sulfur cathode. Chemischer Informationsdienst 9(39):85027

    Google Scholar 

  • Adelhelm P, Hartmann P, Bender CL, Busche M, Eufinger C, Janek J (2015) From lithium to sodium: cell chemistry of room temperature sodium-air and sodium-sulfur batteries. Beilstein Journal of Nanotechnology 6:1016–1055

    CAS  PubMed  PubMed Central  Google Scholar 

  • Al Salem H, Chitturi VR, Babu G, Santana JA, Gopalakrishnan D, Arava LMR (2016) Stabilizing polysulfide-shuttle in a Li-S battery using transition metal carbide nanostructures. Rsc Adv 6(111):110301–110306

    CAS  Google Scholar 

  • Arumugam D, Kalaignan GP (2008) Synthesis and electrochemical characterizations of Nano-SiO2-coated LiMn2O4 cathode materials for rechargeable lithium batteries. 624(1):197–204

    Google Scholar 

  • Aurbach D, Markovsky B, Rodkin A, Levi E, Cohen YS, Kim HJ, Schmidt MJEA (2003) On the capacity fading of LiCoO2 intercalation electrodes: the effect of cycling, storage, temperature, and surface film forming additives 47(27):4291–4306

    Google Scholar 

  • Bang HJ, Donepudi VS, Prakash JJEA (2003) Preparation and characterization of partially substituted LiMyMn2-yO4 (M=Ni, Co, Fe) spinel cathodes for Li-ion batteries. 48(4):443–451

    Google Scholar 

  • Bruce et al. (2011) Li-O2 and Li-S batteries with high energy storage. Nat Mater 2012, 11:19. https://doi.org/10.1038/NMAT3237

  • Cai J, Zhang YP, Shields LBE, Zhang ZZ, Liu N, Shields CBJJoPS (2001) Preparation and electrochemical/thermal properties of LiNi0.74Co0.26O2 cathode material 92(1):35–39

    Google Scholar 

  • Cao R, Xu W, Lv D, Xiao J, Zhang J-G (2015) Anodes for rechargeable lithium-sulfur batteries. Adv Energy Mater 5(16):513–537

    Google Scholar 

  • Chang D-R, Lee S-H, Kim S-W, Kim H-T (2002) Binary electrolyte based on tetra(ethylene glycol) dimethyl ether and 1,3-dioxolane for lithium–sulfur battery. J Power Sources 112(2):452–460

    CAS  Google Scholar 

  • Chang HH, Chang CC, Su CY, Wu HC, Yang MH, Wu NL (2008) Effects of TiO2 coating on high temperature cycle performance of LiFePO4-based lithium-ion batteries. J Power Sources 185(1):466–472

    CAS  Google Scholar 

  • Chang Y, Mao X, Zhao Y, Feng S, Chen H, Finlow D (2009) Lead-acid battery use in the development of renewable energy systems in China. J Power Sources 191(1):176–183

    CAS  Google Scholar 

  • Chen CH, Liu J, Stoll ME, Henriksen G, Vissers DR, Amine K (2004) Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries. 128 (2):278–285

    Google Scholar 

  • Chen F, Yang B, Zhang W, Ma J, Lv J, Yang Y (2017a) Enhanced recycling network for spent e-bicycle batteries: a case study in Xuzhou, China. Waste Manage 60:660–665

    Google Scholar 

  • Chen S, Wu C, Shen L, Zhu C, Huang Y, Xi K, Maier J, Yu Y (2017b) Challenges and perspectives for NASICON-type electrode materials for advanced sodium-ion batteries. Adv Mater 29(48):1700431

    Google Scholar 

  • Cheng F, Chen J (2012) Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem Soc Rev 41(6):2172–2192

    CAS  PubMed  Google Scholar 

  • Cheng et al. (2012) Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat Nanotechnol 7(5):309–314

    Google Scholar 

  • Cheon S-E, Ko K-S, Cho J-H, Kim S-W, Chin E-Y, Kim H-T (2003) Rechargeable lithium sulfur battery. J Electrochem Soc 150(6):A796–A799

    CAS  Google Scholar 

  • Choi J-W, Kim J-K, Cheruvally G, Ahn J-H, Ahn H-J, Kim K-W (2007) Rechargeable lithium/sulfur battery with suitable mixed liquid electrolytes. Electrochim Acta 52(5):2075–2082

    CAS  Google Scholar 

  • Choi S, Jung G, Kim JE, Lim T, Suh KS (2018) Lithium intercalated graphite with preformed passivation layer as superior anode for Lithium ion batteries. Appl Surf Sci 455:367–372

    CAS  Google Scholar 

  • Cui M, Bai P, Jiang Q, Sun S, Wang X (2014) A novel synthesis and characterization of LiFePO4 and LiFePO4/C as a cathode material for lithium-ion battery 246(3):232–238

    Google Scholar 

  • Cui Z, Zu C, Zhou W, Manthiram A, Goodenough JB (2016) Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries. Adv Mater 28(32):6926–6931

    CAS  PubMed  Google Scholar 

  • DiVincenzo DP, Mele EJ (1985) Cohesion and structure in stage-1 graphite intercalation compounds. Phys Rev B 32(4):2538–2553

    CAS  Google Scholar 

  • Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334(6058):928–935

    CAS  PubMed  Google Scholar 

  • Egan DR, Ponce de León C, Wood RJK, Jones RL, Stokes KR, Walsh FC (2013) Developments in electrode materials and electrolytes for aluminium–air batteries. J Power Sources 236:293–310

    CAS  Google Scholar 

  • Fan L, Zhuang HL, Gao L, Lu Y, Archer LA (2017) Regulating Li deposition at artificial solid electrolyte interphases. J Mater Chem A 5(7):3483–3492

    CAS  Google Scholar 

  • Fan X, Wu Y, Ye S, Xu B (2008) Research and development of separator for lithium-ion batteries 22(12):11–15

    Google Scholar 

  • Fang R, Zhao S, Pei S, Qian X, Hou P-X, Cheng H-M, Liu C, Li F (2016) Toward more reliable lithium-sulfur batteries: an all-graphene cathode structure. ACS Nano 10(9):8676–8682

    CAS  PubMed  Google Scholar 

  • Feng XY, Ding N, Wang L, Ma XH, Li YM, Chen CH (2013) Synthesis and reversible lithium storage of Cr2O5 as a new high energy density cathode material for rechargeable lithium batteries. J Power Sources 222:184–187

    CAS  Google Scholar 

  • Fu Y, Manthiram A (2012) Orthorhombic bipyramidal sulfur coated with polypyrrole nanolayers as a cathode material for lithium-sulfur batteries. J Phys Chem C 116(16):8910–8915

    CAS  Google Scholar 

  • Girishkumar G, McCloskey BD, Luntz AC, Swanson SA, Wilcke W (2010) Lithium-air battery: promise and challenges. J Phys Chem Lett 1(14):2193–2203

    Google Scholar 

  • Gaillard F, Levillain E (1995) Visible time-resolved spectroelectrochemistry: application to study of the reduction of sulfur (S8) in dimethylformamide. J Electroanal Chem 398(1):77–87

    Google Scholar 

  • Hamani D, Ati M, Tarascon J-M, Rozier P (2011) NaxVO2 as possible electrode for Na-ion batteries. Electrochem Commun 13(9):938–941

    CAS  Google Scholar 

  • Han CP, He YB, Liu M, Li BH, Yang QH, Wong CP, Kang FY (2017) A review of gassing behavior in Li4Ti5O12-based lithium ion batteries. J Mater Chem A 5(14):6368–6381

    CAS  Google Scholar 

  • Han S-C, Kim K-W, Ahn H-J, Ahn J-H, Lee J-Y (2003) Charge–discharge mechanism of mechanically alloyed NiS used as a cathode in rechargeable lithium batteries. J Alloy Compd 361(1):247–251

    CAS  Google Scholar 

  • Hassoun J, Scrosati B (2010) Moving to a solid-state configuration: a valid approach to making lithium-sulfur batteries viable for practical applications. Adv Mater 22(45):5198–5201

    CAS  PubMed  Google Scholar 

  • Herbert D, Ulam J (1962). U.S. Patent 3043896

    Google Scholar 

  • Hong LYWJL (2014) Fundamental scientific aspects of lithium ion batteries (IX)—nonaqueous electrolyte materials. Energy Storage Sci Technol 3(3):262–282

    Google Scholar 

  • Hwang J-Y, Kim HM, Lee S-K, Lee J-H, Abouimrane A, Khaleel MA, Belharouak I, Manthiram A, Sun Y-K (2016) High-energy, high-rate, lithium-sulfur batteries: synergetic effect of hollow TiO2-webbed carbon nanotubes and a dual functional carbon-paper interlayer. Adv Energy Mater 6(1):1501480

    Google Scholar 

  • Jeong ED, Won MS, Shim Y (1998) Cathodic properties of a lithium-ion secondary battery using LiCoO2 prepared by a complex formation reaction 70 (1):70–77

    Google Scholar 

  • Ji X, Nazar LF (2010) Advances in Li–S batteries. J Mater Chem 20(44):9821–9826

    CAS  Google Scholar 

  • Jin K, Katayama Y, Miura T, Kishi T (1998) Lithium insertion behaviour of Li1+xV3O8 prepared by precipitation technique in CH3OH. 110(3–4):199–207

    Google Scholar 

  • Jung Y, Kim S (2007) New approaches to improve cycle life characteristics of lithium-sulfur cells. Electrochem Commun 9(2):249–254

    CAS  Google Scholar 

  • Kakuda T, Uematsu K, Toda K, Sato M (2007) Electrochemical performance of Al-doped LiMn2O4 prepared by different methods in solid-state reaction. 167(2):499–503

    Google Scholar 

  • Kanno R, Kubo H, Kawamoto Y, Kamiyama T, Izumi F, Takeda Y, Takano M (1994) Phase relationship and lithium deintercalation in lithium nickel oxides 110(110):216–225

    Google Scholar 

  • Kim S-W, Seo D-H, Ma X, Ceder G, Kang K (2012) Electrode Materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater 2(7):710–721

    CAS  Google Scholar 

  • Kumagai N, Ooto H, Kumagai N (1997) Preparation and electrochemical characteristics of quaternary Li-Mn–V–O spinel as the positive materials for rechargeable lithium batteries 68(2):600–603

    Google Scholar 

  • Kumar V, Kameswara Rao PV, Rawal A (2017) Amplification of electrolyte uptake in the absorptive glass mat (AGM) separator for valve regulated lead acid (VRLA) batteries. J Power Sources 341:19–26

    CAS  Google Scholar 

  • Lee J-S, Tai Kim S, Cao R, Choi N-S, Liu M, Lee KT, Cho J (2011) Metal-air batteries with high energy density: Li-Air versus Zn-Air. Adv Energy Mater 1(1):34–50

    CAS  Google Scholar 

  • Lee J, Wu Y, Peng Z (2018) Hetero-nanostructured materials for high-power lithium ion batteries. J Colloid Interf Sci 529:505–519

    CAS  Google Scholar 

  • Lee JI, Choi NS, Park S (2012) Highly stable Si-based multicomponent anodes for practical use in lithium-ion batteries. Energy Environ Sci 5(7):7878–7882

    CAS  Google Scholar 

  • Lee SW, Kim KS, Moon HS, Kim HJ, Cho BW, Cho WI, Ju JB, Park J (2004) Electrochemical characteristics of Al2O3-coated lithium manganese spinel as a cathode material for a lithium secondary battery 126(1):150–155

    Google Scholar 

  • Leghié P, Lelieur JP, Levillain E (2002) Comments on the mechanism of the electrochemical reduction of sulphur in dimethylformamide. Electrochem Commun 4(5):406–411

    Google Scholar 

  • Li H, Wang Z, Chen L, Huang XJAM (2010) Research on Advanced Materials for Li-ion Batteries. 21 (45):4593-4607

    Google Scholar 

  • Li Q, Zhu S, Lu Y (2017) 3D porous cu current collector/Li-metal composite anode for stable lithium-metal batteries. Adv Func Mater 27(18):1606422

    Google Scholar 

  • Li Y, Dai H (2014) Recent advances in zinc-air batteries. Chem Soc Rev 43(15):5257–5275

    CAS  PubMed  Google Scholar 

  • Li Y, Gong M, Liang Y, Feng J, Kim JE, Wang H, Hong G, Zhang B, Dai H (2013) Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nature Commun 4:1805

    Google Scholar 

  • Liu et al. (2012) In situ atomic-scale imaging of electrochemical lithiation insilicon[J].Nat Nano 7(11):749–756

    Google Scholar 

  • Liang Z, Lin D, Zhao J, Lu Z, Liu Y, Liu C, Lu Y, Wang H, Yan K, Tao X, Cui Y (2016) Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proc Natl Acad Sci USA 113(11):2862–2867

    CAS  PubMed  Google Scholar 

  • Lin D, Liu Y, Cui Y (2017) Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol 12:194–206

    CAS  PubMed  Google Scholar 

  • Lin D, Liu Y, Liang Z, Lee H-W, Sun J, Wang H, Yan K, Xie J, Cui Y (2016) Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat Nanotechnol 11(7):626–632

    CAS  PubMed  Google Scholar 

  • Lingzhi Z (2009) Summaries of lithium-ion battery and progress of its anode materials 36(5):106–107

    Google Scholar 

  • Liu H, Cao Q, Fu LJ, Li C, Wu YP, Wu H (2006) Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries 8(10):1553–1557

    Google Scholar 

  • Liu H, Cui Y (2018) Microwave-assisted hydrothermal synthesis of hollow flower-like Zn2V2O7 with enhanced cycling stability as electrode for lithium ion batteries. Mater Lett 228:369–371

    CAS  Google Scholar 

  • Liu H, Zhang Z, Lin Z (2001) New progress in studies of lithium nickel oxide as positive electrode materials of lithium ion batteris 7(2):145–154

    Google Scholar 

  • Liu P, Ru Q, Wang Z, Wang B, Guo Q, Zhang P, Hou X, Su S, Ling FC-C (2018) Harnessing the synergic lithium storage and morphology evolution of 1D bundle-like NiCo2O4@TiO2 hybrid to prolong the cycling life for lithium ion batteries. Chem Eng J 350:902–910

    CAS  Google Scholar 

  • Liu W, Sang J, Chen L, Tian J, Zhang H, Olvera Palma G (2015) Life cycle assessment of lead-acid batteries used in electric bicycles in China. J Cleaner Prod 108:1149–1156

    CAS  Google Scholar 

  • Liu Y, Lin D, Liang Z, Zhao J, Yan K, Cui Y (2016) Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat Commun 7:10992

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma X, Chen H, Ceder G (2011) Electrochemical properties of monoclinic NaMnO2. J Electrochem Soc 158(12):A1307–A1312

    CAS  Google Scholar 

  • Manthiram A, Fu Y, Su Y-S (2013) Challenges and prospects of lithium-sulfur batteries. Acc Chem Res 46(5):1125–1134

    CAS  PubMed  Google Scholar 

  • Mao Y, Li G, Guo Y, Li Z, Liang C, Peng X, Lin Z (2017) Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium-sulfur batteries. Nat Commun 8:14628

    PubMed  PubMed Central  Google Scholar 

  • Miao F, Miao R, Wu W, Cong W, Zang Y, Tao B (2018) A stable hybrid anode of graphene/silicon nanowires array for high-performance lithium-ion battery. Mater Lett 228:262–265

    CAS  Google Scholar 

  • Mikhaylik YV, Akridge JR (2004) Polysulfide shuttle study in the Li/S battery system. J Electrochem Soc 151(11):A1969–A1976

    CAS  Google Scholar 

  • Muto S, Tatsumi K, Kojima Y, Oka H, Kondo H, Horibuchi K, Ukyo Y (2012) Effect of Mg-doping on the degradation of LiNiO2-based cathode materials by combined spectroscopic methods 205(2):449–455

    Google Scholar 

  • Ozawa K (1994) Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system 69(3–4):212–221

    Google Scholar 

  • Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries 144(4):1188–1194

    Google Scholar 

  • Pan HL, Hu YS, Chen LQ (2013) Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci 6(8):2338–2360

    CAS  Google Scholar 

  • Perkins JD, Bahn CS, Mcgraw JM, Parilla PA, Ginley DSJC (2010) ChemInform abstract: pulsed laser deposition and characterization of crystalline lithium cobalt dioxide (LiCoO2) thin films 33(11):A1302–A1312

    Google Scholar 

  • Picciotto LAD, Adendorff KT, Liles DC, Thackeray M (1993) Structural characterization of Li1+xV3O8 insertion electrodes by single-crystal X-ray diffraction 62(3–4):297–307

    Google Scholar 

  • Rahman MA, Wang X, Wen C (2013) High energy density metal-air batteries: a review. J Electrochem Soc 160(10):A1759–A1771

    CAS  Google Scholar 

  • Rauh R, Abraham K, Pearson G, Surprenant J, Brummer S (1979) A lithium/dissolved sulfur battery with an organic electrolyte. J Electrochem Soc 126(4):523–527

    CAS  Google Scholar 

  • Ryu H-S, Ahn H-J, Kim K-W, Ahn J-H, Lee J-Y (2006) Discharge process of Li/PVdF/S cells at room temperature. J Power Sources 153(2):360–364

    CAS  Google Scholar 

  • Sathiya M, Thomas J, Batuk D, Pimenta V, Gopalan R, Tarascon J-M (2017) Dual stabilization and sacrificial effect of Na2CO3 for increasing capacities of Na-Ion cells based on P2-NaxMO2 electrodes. Chem Mater 29(14):5948–5956

    CAS  Google Scholar 

  • Sawai K, Ohmae T, Suwaki H, Shiomi M, Osumi S (2007) Idling-stop vehicle road tests of advanced valve-regulated lead-acid (VRLA) battery. J Power Sources 174(1):54–60

    CAS  Google Scholar 

  • Seh ZW, Sun Y, Zhang Q, Cui Y (2016a) Designing high-energy lithium-sulfur batteries. Chem Soc Rev 45(20):5605–5634

    CAS  PubMed  Google Scholar 

  • Seh ZW, Sun Y, Zhang Q, Cui Y (2016b) Designing high-energy lithium–sulfur batteries. Chem Soc Rev 45(20):5605–5634

    CAS  PubMed  Google Scholar 

  • Shim J, Striebel KA (2007) Electrochemical characterization of thermally oxidized natural graphite anodes in lithium-ion batteries. J Power Sources 164(2):862–867

    CAS  Google Scholar 

  • Shim J, Striebel KA, Cairns EJ (2002) The lithium/sulfur rechargeable cell. J Electrochem Soc 149(10):A1321–A1325

    CAS  Google Scholar 

  • Song MY, Lee R (2002) Synthesis by sol–gel method and electrochemical properties of LiNiO2 cathode material for lithium secondary battery 111(1):97–103

    Google Scholar 

  • Soria ML, Valenciano J, Ojeda A (2004) Development of ultra high power, valve-regulated lead-acid batteries for industrial applications. J Power Sources 136(2):376–382

    CAS  Google Scholar 

  • Sources W-J (2011) Structure and performance of LiFePO4 cathode materials: a review 196(6):2962–2970

    Google Scholar 

  • Suga et al. (2009) Emerging N-Type Redox-Active Radical Polymer for a Totally Organic Polymer‐Based Rechargeable Battery. Adv Mater 21:1627–1630

    Google Scholar 

  • Sun J, Sun Y, Pasta M, Zhou G, Li Y, Liu W, Xiong F, Cui Y (2016) Entrapment of polysulfides by a black-phosphorus-modified separator for lithium-sulfur batteries. Adv Mater 28(44):9797–9803

    CAS  PubMed  Google Scholar 

  • Sun WN, Ying JR, Huang Z, Jiang CY, Wan CR (2009) Organic sulfide electrode materials for lithium-ion batteries. Progress in Chemistry 21(9):1963–1968

    Google Scholar 

  • Suo L, Hu Y-S, Li H, Armand M, Chen L (2013) A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat Commun 4(2):1481

    PubMed  Google Scholar 

  • Taniguchi IJI, Research EC (2005) Physical and electrochemical properties of spherical nanostructured LiCrxMn2-xO4 particles synthesized by ultrasonic spray pyrolysis 44 (17):6560–6565

    Google Scholar 

  • Thackeray MM, David WIF, Bruce PG, Goodenough JB (1983) Lithium insertion into manganese spinels 18(4):461–472

    Google Scholar 

  • Tu J, Zhao XB, Xie J, Cao GS, Zhuang DG, Zhu TJ, Tu JP (2007) Enhanced low voltage cycling stability of LiMn2O4 cathode by ZnO coating for lithium ion batteries 432(1):313–317

    Google Scholar 

  • Wadsley AD (2010) Crystal chemistry of non-stoichiometric pentavalent vandadium oxides: crystal structure of Li1+xV3O8 10(4):261–267

    Google Scholar 

  • Wang D, Li H, Shi S, Huang X, Chen L (2005) Improving the rate performance of LiFePO4 by Fe-site doping 50(14):2955–2958

    Google Scholar 

  • Wang DP, Fu M, Ha Y, Wang H, Wu R (2018) Metal-organic framework-derived mesoporous octahedral copper oxide/titania composites for high-performance lithium-ion batteries. J Colloid Interf Sci 529:265–272

    CAS  Google Scholar 

  • Wang GX, Bewlay SL, Konstantinov K, Liu HK, Dou SX, Ahn J.-H (2004) Physical and electrochemical properties of doped lithium iron phosphate electrodes 50(2):443–447

    Google Scholar 

  • Wang H, Yang Y, Liang Y, Robinson JT, Li Y, Jackson A, Cui Y, Dai H (2011) Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett 11(7):2644–2647

    CAS  PubMed  Google Scholar 

  • Wang J, Yang J, Wan C, Du K, Xie J, Xu N (2003) Sulfur composite cathode materials for rechargeable lithium batteries. Adv Func Mater 13(6):487–492

    CAS  Google Scholar 

  • Wang J, Yang J, Xie J, Xu N (2002) A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries. Adv Mater 14(13–14):963–965

    CAS  Google Scholar 

  • Wang JW, He Y, Fan F, Liu XH, Xia S, Liu Y, Harris CT, Li H, Huang JY, Mao SX, Zhu T (2013) Two-phase electrochemical lithiation in amorphous silicon. Nano Lett 13(2):709–715

    CAS  PubMed  Google Scholar 

  • Wang Y, Jin Y, Jia M (2018) Ultralong Fe3O4 nanowires embedded graphene aerogel composite anodes for lithium ion batteries. Mater Lett 228:395–398

    CAS  Google Scholar 

  • Wang Y, Yan YL, Ren B, Yang R, Zhang W, Xu YH (2017) Activated porous carbon wrapped sulfur sub-microparticles as cathode materials for lithium sulfur batteries. IOP Conf Ser Mater Sci Eng 182:012013

    Google Scholar 

  • Wang ZH, Cao XY, Ge P, Zhu LM, Xie LL, Hou HS, Qiu XQ, Ji XB (2017) Hollow-sphere ZnSe wrapped around carbon particles as a cycle-stable and high-rate anode material for reversible Li-ion batteries. New J Chem 41(14):6693–6699

    CAS  Google Scholar 

  • Wen Y, He K, Zhu Y, Han F, Xu Y, Matsuda I, Ishii Y, Cumings J, Wang C (2014) Expanded graphite as superior anode for sodium-ion batteries. Nat Commun 5:5033

    Google Scholar 

  • Wu F, Chen J, Chen R, Wu S, Li L, Chen S, Zhao T (2011) Sulfur/polythiophene with a core/shell structure: synthesis and electrochemical properties of the cathode for rechargeable lithium batteries. J Phys Chem C 115(13):6057–6063

    CAS  Google Scholar 

  • Wu M, Jin J, Wen Z (2016) Influence of a surface modified Li anode on the electrochemical performance of Li–S batteries. RSC Adv 6(46):40270–40276

    CAS  Google Scholar 

  • Wu M, Wen Z, Jin J, Chowdari BVR (2016) Trimethylsilyl chloride-modified Li anode for enhanced performance of Li-S cells. ACS Appl Mater Interfaces 8(25):16386–16395

    CAS  PubMed  Google Scholar 

  • Xu GJ, Han PX, Dong SM, Liu HS, Cui GL, Chen LQ (2017) Li4Ti5O12-based energy conversion and storage systems: status and prospects. Coord Chem Rev 343:139–184

    CAS  Google Scholar 

  • Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang J-G (2014) Lithium metal anodes for rechargeable batteries. Energy Environ Sci 7(2):513–537

    CAS  Google Scholar 

  • Yamin H, Penciner J, Gorenshtain A, Elam M, Peled E (1985) The electrochemical behavior of polysulfides in tetrahydrofuran. J Power Sources 14(1):129–134

    CAS  Google Scholar 

  • Yang H, Qi K, Gong L, Liu W, Zaman S, Guo X, Qiu Y, Xia BY (2018) Lead oxide enveloped in N-doped graphene oxide composites for enhanced high-rate partial-state-of-charge performance of lead-acid battery. ACS Sustain Chem Eng 6(9):11408–11413

    CAS  Google Scholar 

  • Yang Y, Huang GY, Sun H, Ahmad M, Mou Q, Zhang H (2018) Preparation and electrochemical properties of mesoporous NiCo2O4 double-hemisphere used as anode for lithium-ion battery. J Colloid Interf Sci 529:357–365

    CAS  Google Scholar 

  • Yang Z, Ding Y, Jiang Y, Zhang P, Jin H (2018) Hierarchical C/SiOx/TiO2 ultrathin nanobelts as anode materials for advanced lithium ion batteries. Nanotechnology 29(40):1361

    Google Scholar 

  • Yang Z, Guo J, Das SK, Yu Y, Zhou Z, Abruna HD, Archer LA (2013) In situ synthesis of lithium sulfide-carbon composites as cathode materials for rechargeable lithium batteries. J Mater Chem A 1(4):1433–1440

    CAS  Google Scholar 

  • Yanxia S, Lijuan Z (2017) Lithium rich ternary cathode materials for dynamical type lithium ion battery 80(1):34–40

    Google Scholar 

  • Yu L, Qiu X, Xi J, Zhu W, Chen L (2006) Enhanced high-potential and elevated-temperature cycling stability of LiMn2O4 cathode by TiO2 modification for Li-ion battery 51(28):6406–6411

    Google Scholar 

  • Yuan L, Yuan H, Qiu X, Chen L, Zhu W (2009) Improvement of cycle property of sulfur-coated carbon nanotubes composite cathode for lithium/sulfur batteries. J Power Sources 189(2):1141–1146

    CAS  Google Scholar 

  • Zhai J, Zhao M, Wang D, Qiao Y (2010) Effect of MgO nanolayer coated on Li3V2(PO4)3/C cathode material for lithium-ion battery 502(2):401–406

    Google Scholar 

  • Zhang LL, Liang G, Ignatov A, Croft MC, Xiong XQ, Hung IM, Huang YH, Hu XL, Zhang WX, Peng YL (2011) Effect of vanadium incorporation on electrochemical performance of LiFePO4 for lithium-ion batteries. J Phys Chem C 115(27):13520–13527

    CAS  Google Scholar 

  • Zhang SS, Jow TR (2002) Optimization of synthesis condition and electrode fabrication for spinel LiMn2O4 cathode 109(1):172–177

    Google Scholar 

  • Zhang T, Tao Z, Chen J (2014) Magnesium–air batteries: from principle to application. Mater Horiz 1(2):196–206

    Google Scholar 

  • Zhang Y, Wang X, Zeng L, Song S, Liu DJDT (2012) Green and controlled synthesis of Cu2O-graphene hierarchical nanohybrids as high-performance anode materials for lithium-ion batteries via an ultrasound assisted approach 41(15):4316–4319

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan Pang .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pang, H., Cao, X., Zhu, L., Zheng, M. (2020). Nanomaterials for Batteries. In: Synthesis of Functional Nanomaterials for Electrochemical Energy Storage. Springer, Singapore. https://doi.org/10.1007/978-981-13-7372-5_6

Download citation

Publish with us

Policies and ethics