Skip to main content
  • 449 Accesses

Abstract

Human imagination and dreams often give rise to novel science and technology. As a frontier of twenty-first century, nanotechnology was born out of such dreams.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe H, Liu J, Ariga K (2016) Catalytic nanoarchitectonics for environmentally compatible energy generation. Mater Today 19(1):12–18

    CAS  Google Scholar 

  • Agubra VA, Zuniga L, Flores D, Villareal J, Alcoutlabi M (2016) Composite nanofibers as advanced materials for Li-ion, Li-O2 and Li-S batteries. Electrochim Acta 192:529–550

    CAS  Google Scholar 

  • Arico AS, Bruce P, Scrosati B, Tarascon J-M, Van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4(5):366

    CAS  PubMed  Google Scholar 

  • Armaroli N, Balzani V (2007) The future of energy supply: challenges and opportunities. Angew Chem Int Ed 46(1–2):52–66

    CAS  Google Scholar 

  • Asif M, Muneer T (2007) Energy supply, its demand and security issues for developed and emerging economies. Renew Sustain Energy Rev 11(7):1388–1413

    Google Scholar 

  • Barkalina N, Charalambous C, Jones C, Coward K (2014) Nanotechnology in reproductive medicine: emerging applications of nanomaterials. Nanomed Nanotech Biol Med 10(5):e921–e938

    Google Scholar 

  • Biju V (2014) Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem Soc Rev 43(3):744–764

    CAS  PubMed  Google Scholar 

  • Boverhof DR, Bramante CM, Butala JH, Clancy SF, Lafranconi M, West J, Gordon SC (2015) Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regul Toxicol Pharmacol 73(1):137–150

    CAS  PubMed  Google Scholar 

  • Bromberg L, Cohn D, Rabinovich A, Heywood J (2001) Emissions reductions using hydrogen from plasmatron fuel converters. Int J Hydrogen Energy 26(10):1115–1121

    CAS  Google Scholar 

  • Candelaria SL, Shao Y, Zhou W, Li X, Xiao J, Zhang J-G, Wang Y, Liu J, Li J, Cao G (2012) Nanostructured carbon for energy storage and conversion. Nano Energy 1(2):195–220

    CAS  Google Scholar 

  • Carrow JK, Gaharwar AK (2015) Bioinspired polymeric nanocomposites for regenerative medicine. Macromol Chem Phys 216(3):248–264

    CAS  Google Scholar 

  • Catherine L, Olivier P (2017) Gold nanoparticles for physics, chemistry and biology

    Google Scholar 

  • Chen T, Dai L (2014) Flexible supercapacitors based on carbon nanomaterials. J Mater Chem A 2(28):10756–10775

    CAS  Google Scholar 

  • Chen Z, Yuan Y, Zhou H, Wang X, Gan Z, Wang F, Lu Y (2014) 3D nanocomposite architectures from carbon-nanotube-threaded nanocrystals for high-performance electrochemical energy storage. Adv Mater 26(2):339–345

    CAS  PubMed  Google Scholar 

  • Choi B, Chang S, Lee Y, Bae J, Kim H, Huh Y (2012) 3D heterostructured architectures of Co3O4 nanoparticles deposited on porous graphene surfaces for high performance of lithium ion batteries. Nanoscale 4(19):5924–5930

    CAS  PubMed  Google Scholar 

  • Choi SH, Ko YN, Lee JK, Kang YC (2015) 3D MoS2–graphene microspheres consisting of multiple nanospheres with superior sodium ion storage properties. Adv Func Mater 25(12):1780–1788

    CAS  Google Scholar 

  • Choi S, Lee H, Ghaffari R, Hyeon T, Kim DH (2016) Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv Mater 28(22):4203–4218

    CAS  PubMed  Google Scholar 

  • Commission E (2011) Commission Recommendation of 18 October 2011 on the definition of nanomaterial. Official Journal of the European Communities: Legis

    Google Scholar 

  • Cook TR, Dogutan DK, Reece SY, Surendranath Y, Teets TS, Nocera DG (2010) Solar energy supply and storage for the legacy and nonlegacy worlds. Chem Rev 110(11):6474–6502

    CAS  PubMed  Google Scholar 

  • Dai L, Chang DW, Baek JB, Lu W (2012) Carbon nanomaterials for advanced energy conversion and storage. Small 8(8):1130–1166

    Google Scholar 

  • Devi RV, Doble M, Verma RS (2015) Nanomaterials for early detection of cancer biomarker with special emphasis on gold nanoparticles in immunoassays/sensors. Biosens Bioelectron 68:688–698

    Google Scholar 

  • Dincer I (2000) Renewable energy and sustainable development: a crucial review. Renew Sustain Energy Rev 4(2):157–175

    Google Scholar 

  • Dutta A, Datta J (2014) Energy efficient role of Ni/NiO in PdNi nano catalyst used in alkaline DEFC. J Mater Chem A 2(9):3237–3250

    CAS  Google Scholar 

  • Fabiano A, Chetoni P, Zambito Y (2015) Mucoadhesive nano-sized supramolecular assemblies for improved pre-corneal drug residence time. Drug Dev Ind Pharm 41(12):2069–2076

    CAS  PubMed  Google Scholar 

  • Feynman R (2018) There’s plenty of room at the bottom. In: Feynman and computation

    Google Scholar 

  • Frewer L, Gupta N, George S, Fischer A, Giles E, Coles D (2014) Consumer attitudes towards nanotechnologies applied to food production. Trends Food Sci Technol 40(2):211–225

    CAS  Google Scholar 

  • Gai S, Yang G, Yang P, He F, Lin J, Jin D, Xing B (2018) Recent advances in functional nanomaterials for light–triggered cancer therapy. Nano Today 19:146–187

    CAS  Google Scholar 

  • Ganesan P, Prabu M, Sanetuntikul J, Shanmugam S (2015) Cobalt sulfide nanoparticles grown on nitrogen and sulfur codoped graphene oxide: an efficient electrocatalyst for oxygen reduction and evolution reactions. ACS Catalysis 5(6):3625–3637

    CAS  Google Scholar 

  • Gao M-R, Xu Y-F, Jiang J, Yu S-H (2013) Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chem Soc Rev 42(7):2986–3017

    CAS  PubMed  Google Scholar 

  • Gawande MB, Goswami A, Felpin F-X, Asefa T, Huang X, Silva R, Zou X, Zboril R, Varma RS (2016) Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem Rev 116(6):3722–3811

    CAS  PubMed  Google Scholar 

  • Ghaderi-Ghahfarokhi M, Barzegar M, Sahari M, Gavlighi HA, Gardini F (2017) Chitosan-cinnamon essential oil nano-formulation: application as a novel additive for controlled release and shelf life extension of beef patties. Int J Biol Macromol 102:19–28

    CAS  PubMed  Google Scholar 

  • Ghorani B, Tucker N (2015) Fundamentals of electrospinning as a novel delivery vehicle for bioactive compounds in food nanotechnology. Food Hydrocolloids 51:227–240

    CAS  Google Scholar 

  • Guo R, Guo Y, Duan H, Li H, Liu H (2017) Synthesis of orthorhombic perovskite-type ZnSnO3 Single-crystal nanoplates and their application in energy harvesting. ACS Appl Mater Interf 9(9):8271–8279

    CAS  Google Scholar 

  • Hatto P (2011) ISO consensus definitions relevant to nanomaterials and nanotechnologies. In: 4th annual nano safety for success dialogue ISO TC 229and BSI NTI/1 Nano. https://doi.org/10.5772/58672technologiesstandardizationcommittees29thand30thMarch

  • Hochbaum AI, Yang P (2009) Semiconductor nanowires for energy conversion. Chem Rev 110(1):527–546

    Google Scholar 

  • Hu X, Zhang W, Liu X, Mei Y, Huang Y (2015) Nanostructured Mo-based electrode materials for electrochemical energy storage. Chem Soc Rev 44(8):2376–2404

    CAS  PubMed  Google Scholar 

  • Jain KK, Jain KK (2017) The handbook of nanomedicine. Springer, Berlin

    Google Scholar 

  • Ji L, Lin Z, Alcoutlabi M, Zhang X (2011) Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci 4(8):2682–2699

    CAS  Google Scholar 

  • Ji L, Meduri P, Agubra V, Xiao X, Alcoutlabi M (2016) Graphene-based nanocomposites for energy storage. Adv Energy Mater 6(16):1502159

    Google Scholar 

  • Kagan CR, Fernandez LE, Gogotsi Y, Hammond PT, Hersam MC, Nel AE, Penner RM, Willson CG, Weiss PS (2016) Nano Day: celebrating the next decade of nanoscience and nanotechnology 10(10):9093–9103

    CAS  Google Scholar 

  • Kim H-G, Bae J-H, Jastrzebski Z, Cherkas A, Heo B-G, Gorinstein S, Ku Y-G (2016) Binding, antioxidant and anti-proliferative properties of bioactive compounds of sweet paprika (Capsicum annuum L.). Plant Foods Hum Nutr 71(2):129–136

    Google Scholar 

  • Kumar S, Ahlawat W, Kumar R, Dilbaghi N (2015) Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of biosensors for healthcare. Biosens Bioelectron 70:498–503

    CAS  PubMed  Google Scholar 

  • Lee DJ, Yu S-H, Lee HS, Jin A, Lee J, Lee JE, Sung Y-E, Hyeon T (2017) Facile synthesis of metal hydroxide nanoplates and their application as lithium-ion battery anodes. J Mater Chem A 5(18):8744–8751

    CAS  Google Scholar 

  • Lin N, Huang J, Dufresne A (2012) Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 4(11):3274–3294

    CAS  PubMed  Google Scholar 

  • Lin D, Liu Y, Cui Y (2017) Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol 12(3):194

    CAS  PubMed  Google Scholar 

  • Liu N, Lu Z, Zhao J, Mcdowell MT, Lee HW, Zhao W, Cui Y (2014) A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat Nanotechnol 9(3):187–192

    CAS  PubMed  Google Scholar 

  • Li J, Cheng F, Huang H, Li L, Zhu J-J (2015) Nanomaterial-based activatable imaging probes: from design to biological applications. Chem Soc Rev 44(21):7855–7880

    CAS  PubMed  Google Scholar 

  • Li D, Wang Y, Sun Y, Lu Y, Chen S, Wang B, Zhang H, Xia Y, Yang D (2018) Turning gelidium amansii residue into nitrogen-doped carbon nanofiber aerogel for enhanced multiple energy storage. Carbon 137:31–40

    CAS  Google Scholar 

  • Lu X, Wang C, Favier F, Pinna N (2017) Electrospun nanomaterials for supercapacitor electrodes: designed architectures and electrochemical performance. Adv Energy Mater 7:1601301

    Google Scholar 

  • Lü Y, Zhan W, He Y, Wang Y, Kong X, Kuang Q, Xie Z, Zheng L (2014) MOF-templated synthesis of porous Co3O4 concave nanocubes with high specific surface area and their gas sensing properties. ACS Appl Mater Interf 6(6):4186–4195

    Google Scholar 

  • Ma X, Luo W, Yan M, He L, Mai L (2016) In situ characterization of electrochemical processes in one dimensional nanomaterials for energy storages devices. Nano Energy 24:165–188

    CAS  Google Scholar 

  • Mao J, Zhou T, Zheng Y, Gao H, Liu HK, Guo Z (2018) Two-dimensional nanostructures for sodium-ion battery anodes. J Mater Chem A 6(8):3284–3303

    CAS  Google Scholar 

  • Manoharan M (2008) Research on the frontiers of materials science: the impact of nanotechnology on new material development. Technol Soc 30(3–4):401–404

    Google Scholar 

  • Min SY, Kim TS, Lee Y, Cho H, Xu W, Lee TW (2015) Organic nanowire fabrication and device applications. Small 11(1):45–62

    CAS  PubMed  Google Scholar 

  • Mondal S, Rana U, Malik S (2015) Graphene quantum dot-doped polyaniline nanofiber as high performance supercapacitor electrode materials. Chem Commun 51(62):12365–12368

    CAS  Google Scholar 

  • Murphy CJ (2002) Nanocubes and nanoboxes. Science 298(5601):2139–2141

    CAS  PubMed  Google Scholar 

  • Nazir S, Hussain T, Ayub A, Rashid U, MacRobert AJ (2014) Nanomaterials in combating cancer: therapeutic applications and developments. Nanomed Nanotechnol Biol Med 10(1):19–34

    Google Scholar 

  • Omer AM (2008) Energy, environment and sustainable development. Renew Sustain Energy Rev 12(9):2265–2300

    CAS  Google Scholar 

  • Ortega S, Ibáñez M, Liu Y, Zhang Y, Kovalenko MV, Cadavid D, Cabot A (2017) Bottom-up engineering of thermoelectric nanomaterials and devices from solution-processed nanoparticle building blocks. Chem Soc Rev 46(12):3510–3528

    CAS  PubMed  Google Scholar 

  • Ouyang S, Hu X, Zhou Q (2015) Envelopment–internalization synergistic effects and metabolic mechanisms of graphene oxide on single-cell chlorella vulgaris are dependent on the nanomaterial particle size. ACS Appl Mater Interf 7(32):18104–18112

    CAS  Google Scholar 

  • Peng X, Peng L, Wu C, Xie Y (2014) Two dimensional nanomaterials for flexible supercapacitors. Chem Soc Rev 43(10):3303–3323

    CAS  PubMed  Google Scholar 

  • Peng L, Fang Z, Zhu Y, Yan C, Yu G (2017) Holey 2D nanomaterials for electrochemical energy storage. Adv Energy Mater. https://doi.org/10.1002/aenm.201702179

    Article  Google Scholar 

  • Perreault F, De Faria AF, Elimelech M (2015) Environmental applications of graphene-based nanomaterials. Chem Soc Rev 44(16):5861–5896

    CAS  PubMed  Google Scholar 

  • Pfenninger S, Hawkes A, Keirstead J (2014) Energy systems modeling for twenty-first century energy challenges. Renew Sustain Energy Rev 33:74–86

    Google Scholar 

  • Pomerantseva E, Gogotsi Y (2017) Two-dimensional heterostructures for energy storage. Nat Energy. https://doi.org/10.1038/nenergy.2017.89

    Article  Google Scholar 

  • Qu C, Zhang L, Meng W, Liang Z, Zhu B, Dang D, Dai S, Zhao B, Tabassum H, Gao S (2018) MOF-Derived α-NiS nanorods on graphene as an electrode for high-energy-density supercapacitors. J Mater Chem A 6:4003–4012

    CAS  Google Scholar 

  • Rengan AK, Bukhari AB, Pradhan A, Malhotra R, Banerjee R, Srivastava R, De A (2015) In vivo analysis of biodegradable liposome gold nanoparticles as efficient agents for photothermal therapy of cancer. Nano Lett 15(2):842–848

    CAS  PubMed  Google Scholar 

  • Sampaio M, Bacsa R, Benyounes A, Axet R, Serp P, Silva CG, Silva A, Faria JL (2015) Synergistic effect between carbon nanomaterials and ZnO for photocatalytic water decontamination. J Catal 331:172–180

    CAS  Google Scholar 

  • Shao A, Xie Y, Zhu S, Guo Z, Zhu S, Guo J, Shi P, James TD, Tian H, Zhu WH (2015) Far-red and near-IR AIE-active fluorescent organic nanoprobes with enhanced tumor-targeting efficacy: shape-specific effects. Angew Chem 127(25):7383–7388

    Google Scholar 

  • Shen L, Lv H, Chen S, Kopold P, van Aken PA, Wu X, Maier J, Yu Y (2017) Carbon nanowires: peapod-like Li3VO4/N-doped carbon nanowires with pseudocapacitive properties as advanced materials for high-energy lithium-ion capacitors. Adv Mater. https://doi.org/10.1002/adma.201770196

    Article  PubMed  PubMed Central  Google Scholar 

  • Si Y, Chen M, Wu L (2016) Syntheses and biomedical applications of hollow micro-/nano-spheres with large-through-holes. Chem Soc Rev 45(3):690–714

    CAS  PubMed  Google Scholar 

  • Sichert JA, Tong Y, Mutz N, Vollmer M, Fischer S, Milowska KZ, García Cortadella R, Nickel B, Cardenas-Daw C, Stolarczyk JK (2015) Quantum size effect in organometal halide perovskite nanoplatelets. Nano Lett 15 (10):6521–6527

    Google Scholar 

  • Sobon G (2015) Mode-locking of fiber lasers using novel two-dimensional nanomaterials: graphene and topological insulators. Photonics Res 3(2):A56–A63

    Google Scholar 

  • Song J, Li J, Li X, Xu L, Dong Y, Zeng H (2015) Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv Mater 27(44):7162–7167

    CAS  PubMed  Google Scholar 

  • Stark WJ, Stoessel PR, Wohlleben W, Hafner A (2015) Industrial applications of nanoparticles. Chem Soc Rev 44(16):5793–5805

    CAS  PubMed  Google Scholar 

  • Su X, Wu Q, Li J, Xiao X, Lott A, Lu W, Sheldon BW, Wu J (2014) Silicon-based nanomaterials for lithium-ion batteries: a review. Adv Energy Mater. https://doi.org/10.1002/aenm.201300882

    Article  Google Scholar 

  • Sun H, Deng J, Qiu L, Fang X, Peng H (2015a) Recent progress in solar cells based on one-dimensional nanomaterials. Energy Environ Sci 8(4):1139–1159

    Google Scholar 

  • Sun Y, Sills RB, Hu X, Seh ZW, Xiao X, Xu H, Luo W, Jin H, Xin Y, Li T (2015b) A bamboo-inspired nanostructure design for flexible, foldable, and twistable energy storage devices. Nano Lett 15(6):3899–3906

    Google Scholar 

  • Tan C, Liu Z, Huang W, Zhang H (2015) Non-volatile resistive memory devices based on solution-processed ultrathin two-dimensional nanomaterials. Chem Soc Rev 44(9):2615–2628

    CAS  PubMed  Google Scholar 

  • Tan C, Cao X, Wu X-J, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G-H, Sindoro M, Zhang H (2017) Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev 117(9):6225–6331

    CAS  PubMed  Google Scholar 

  • Tanaka K, Chujo Y (2015) Recent progress of optical functional nanomaterials based on organoboron complexes with β-diketonate, ketoiminate and diiminate. NPG Asia Mater 7(11):e223

    CAS  Google Scholar 

  • Tao X, Wang J, Ying Z, Cai Q, Zheng G, Gan Y, Huang H, Xia Y, Liang C, Zhang W (2014) Strong Sulfur binding with conducting magnéli-phase TinO2n–1 nanomaterials for improving lithium-sulfur batteries. Nano Lett 14(9):5288–5294

    CAS  PubMed  Google Scholar 

  • Wang Y-J, Zhao N, Fang B, Li H, Bi XT, Wang H (2015) Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: particle size, shape, and composition manipulation and their impact to activity. Chem Rev 115(9):3433–3467

    CAS  PubMed  Google Scholar 

  • Wang P, Lombi E, Zhao F-J, Kopittke PM (2016a) Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci 21(8):699–712

    Google Scholar 

  • Wang J, Zhang X, Wei Q, Lv H, Tian Y, Tong Z, Liu X, Hao J, Qu H, Zhao J (2016b) 3D self-supported nanopine forest-like Co3O4@CoMoO4 core–shell architectures for high-energy solid state supercapacitors. Nano Energy 19:222–233

    Google Scholar 

  • Wang L, Xiong Q, Xiao F, Duan H (2017) 2D nanomaterials based electrochemical biosensors for cancer diagnosis. Biosens Bioelectron 89:136–151

    CAS  PubMed  Google Scholar 

  • Wang C, Kaneti YV, Bando Y, Lin J, Liu C, Li J, Yamauchi Y (2018) Metal–organic framework-derived one-dimensional porous or hollow carbon-based nanofibers for energy storage and conversion. Mater Horiz 5:394–407

    CAS  Google Scholar 

  • Wei Q, Xiong F, Tan S, Huang L, Lan EH, Dunn B, Mai L (2017) Energy storage: porous one‐dimensional nanomaterials: design, fabrication and applications in electrochemical energy storage. Adv Mater. https://doi.org/10.1002/adma.201602300

  • Wu XL, Jiang LY, Cao FF, Guo YG, Wan LJ (2009) LiFePO4 nanoparticles embedded in a nanoporous carbon matrix: superior cathode material for electrochemical energy-storage devices. Adv Mater 21(25–26):2710–2714

    CAS  Google Scholar 

  • Wu LC, Chen YJ, Mao ML, Li QH, Zhang M (2014) Facile Synthesis of spike-piece-structured Ni(OH)2 interlayer nanoplates on nickel foam as advanced pseudocapacitive materials for energy storage. ACS Appl Mater Interf 6(7):5168–5174

    CAS  Google Scholar 

  • Wu S, Xu R, Lu M, Ge R, Iocozzia J, Han C, Jiang B, Lin Z (2015) Graphene-containing nanomaterials for lithium-ion batteries. Adv Energy Mater. https://doi.org/10.1002/aenm.201500400

    Article  Google Scholar 

  • Wu Q, Yang L, Wang X, Hu Z (2017) From carbon-based nanotubes to nanocages for advanced energy conversion and storage. Acc Chem Res 50(2):435–444

    CAS  PubMed  Google Scholar 

  • Xin YC, Perumal A, Bruno A, Yantara N, Veldhuis S, Martinezsarti L, Chandran B, Chirvony VS, Lo SZA, So J (2018) Self-assembled hierarchical nanostructured perovskites enable highly efficient LEDs via energy cascade. Energy Environ Sci 11:1770–1778

    Google Scholar 

  • Xing J, Yan F, Zhao Y, Chen S, Yu H, Zhang Q, Zeng R, Demir HV, Sun X, Huan A (2016) High-efficiency light-emitting diodes of organometal halide perovskite amorphous nanoparticles. ACS Nano 10(7):6623–6630

    CAS  PubMed  Google Scholar 

  • Zalfani M, van der Schueren B, Mahdouani M, Bourguiga R, Yu W-B, Wu M, Deparis O, Li Y, Su B-L (2016) ZnO quantum dots decorated 3DOM TiO2 nanocomposites: symbiose of quantum size effects and photonic structure for highly enhanced photocatalytic degradation of organic pollutants. Appl Catal B 199:187–198

    CAS  Google Scholar 

  • Zhang H (2015) Ultrathin two-dimensional nanomaterials. ACS nano 9(10):9451–9469

    CAS  PubMed  Google Scholar 

  • Zhang A, Lieber CM (2015) Nano-bioelectronics. Chem Rev 116(1):215–257

    PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Uchaker E, Candelaria SL, Cao G (2013) Nanomaterials for energy conversion and storage. Chem Soc Rev 42(7):3127–3171

    CAS  PubMed  Google Scholar 

  • Zhang J, Zhao Z, Xia Z, Dai L (2015a) A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat Nanotechnol 10(5):444

    Google Scholar 

  • Zhang X, Wang K, Liu M, Zhang X, Tao L, Chen Y, Wei Y (2015b) Polymeric AIE-based nanoprobes for biomedical applications: recent advances and perspectives. Nanoscale 7(27):11486–11508

    Google Scholar 

  • Zhang H, Yun Q, Lu Q, Zhang X, Tan C (2017) Three-dimensional architectures constructed from transition metal dichalcogenide nanomaterials for electrochemical energy storage and conversion. Angew Chem. https://doi.org/10.1002/anie.201706426

    Article  Google Scholar 

  • Zhao B, Jiang S, Su C, Cai R, Ran R, Tadé MO, Shao Z (2013) A 3D porous architecture composed of TiO2 nanotubes connected with a carbon nanofiber matrix for fast energy storage. J Mater Chem A 1(39):12310–12320

    CAS  Google Scholar 

  • Zhao Z, Li M, Zhang L, Dai L, Xia Z (2015) Design principles for heteroatom-doped carbon nanomaterials as highly efficient catalysts for fuel cells and metal–air batteries. Adv Mater 27(43):6834–6840

    CAS  PubMed  Google Scholar 

  • Zhu C, Yang G, Li H, Du D, Lin Y (2014) Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem 87(1):230–249

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan Pang .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pang, H., Cao, X., Zhu, L., Zheng, M. (2020). Introduction. In: Synthesis of Functional Nanomaterials for Electrochemical Energy Storage. Springer, Singapore. https://doi.org/10.1007/978-981-13-7372-5_1

Download citation

Publish with us

Policies and ethics