Bacterial Chitinase System as a Model of Chitin Biodegradation

  • Takafumi ItohEmail author
  • Hisashi Kimoto
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1142)


Chitin, a structural polysaccharide of β-1,4-linked N-acetyl-D-glucosamine residues, is the second most abundant natural biopolymer after cellulose. The metabolism of chitin affects the global carbon and nitrogen cycles, which are maintained by marine and soil-dwelling bacteria. The degradation products of chitin metabolism serve as important nutrient sources for the chitinolytic bacteria. Chitinolytic bacteria have elaborate enzymatic systems for the degradation of the recalcitrant chitin biopolymer. This chapter introduces chitin degradation and utilization systems of the chitinolytic bacteria. These bacteria secrete many chitin-degrading enzymes, including processive chitinases, endo-acting non-processive chitinases, lytic polysaccharide monooxygenases, and N-acetyl-hexosaminidases. Bacterial chitinases play a fundamental role in the degradation of chitin. Enzymatic properties, catalytic mechanisms, and three-dimensional structures of chitinases have been extensively studied by many scientists. These enzymes can be exploited to produce a range of chitin-derived products, e.g., biocontrol agents against many plant pathogenic fungi and insects. We introduce bacterial chitinases in terms of their reaction modes and structural features.


Bacterial chitinase Bacterial chitinolysis Endo-acting non-processive chitinase Processive chitinase 


  1. Alam MM, Mizutani T, Isono M, Nikaidou N, Watanabe T (1996) Three chitinase genes (chiA, chiC, and chiD) comprise the chitinase system of Bacillus circulans WL-12. J Ferment Bioeng 82:28–36CrossRefGoogle Scholar
  2. Andronopoulou E, Vorgias CE (2004) Multiple components and induction mechanism of the chitinolytic system of the hyperthermophilic archaeon Thermococcus chitonophagus. Appl Microbiol Biotechnol 65:694–702CrossRefGoogle Scholar
  3. Arakane Y, Muthukrishnan S (2010) Insect chitinase and chitinase-like proteins. Cell Mol Life Sci 67:201–216CrossRefGoogle Scholar
  4. Attwood MM, Zola H (1967) The association between chitin and protein in some chitinous tissues. Comp Biochem Physiol 20:993–998CrossRefGoogle Scholar
  5. Austin PR, Brine CJ, Castle JE, Zikakis JP (1981) Chitin: New facets of research. Science 212:749–753CrossRefGoogle Scholar
  6. Berger LR, Reynolds DM (1958) The chitinase system of a strain of Streptomyces griseus. Biochim Biophys Acta 29:522–534CrossRefGoogle Scholar
  7. Bassler BL, Yu C, Lee YC, Roseman S (1991) Chitin utilization by marine bacteria. Degradation and catabolism of chitin oligosaccharides by Vibrio furnissii. J Biol Chem 266:24276–24286PubMedGoogle Scholar
  8. Berg T, Schild S, Reidl J (2007) Regulation of the chitobiose-phosphotransferase system in Vibrio cholerae. Arch Microbiol 187:433–439CrossRefGoogle Scholar
  9. Bhattacharya D, Nagpure A, Gupta RK (2007) Bacterial chitinases: properties and potential. Crit Rev Biotechnol 27:21–28CrossRefGoogle Scholar
  10. Boraston AB (2005) The interaction of carbohydrate-binding modules with insoluble non-crystalline cellulose is enthalpically driven. Biochem J 385:479–484CrossRefGoogle Scholar
  11. Brameld KA, Goddard WA (1998) Substrate distortion to a boat conformation at subsite -1 is critical in the mechanism of family 18 chitinases. J Am Chem Soc 120:3571–3580CrossRefGoogle Scholar
  12. Clarke ND (1994) A proposed mechanism for the self-splicing of proteins. Proc Natl Acad Sci USA 91:11084–11088CrossRefGoogle Scholar
  13. Colson S, van Wezel GP, Craig M, Noens EE, Nothaft H, Mommaas AM, Titgemeyer F, Joris B, Rigali S (2008) The chitobiose-binding protein, DasA, acts as a link between chitin utilization and morphogenesis in Streptomyces coelicolor. Microbiology 154:373–382CrossRefGoogle Scholar
  14. Fuchs RL, McPherson SA, Drahos DJ (1986) Cloning of a Serratia marcescens gene encoding chitinase. Appl Environ Microbiol 51:504–509PubMedPubMedCentralGoogle Scholar
  15. Fukamizo T (2000) Chitinolytic enzymes: catalysis, substrate binding, and their application. Curr Protein Pept Sci 1:105–124CrossRefGoogle Scholar
  16. Georgelis N, Yennawar NH, Cosgrove DJ (2012) Structural basis for entropy-driven cellulose binding by a type-A cellulose-binding module (CBM) and bacterial expansin. Proc Natl Acad Sci USA 109:14830–14835CrossRefGoogle Scholar
  17. Ghinet MG, Roy S, Poulin-Laprade D, Lacombe-Harvey MÈ, Morosoli R, Brzezinski R (2010) Chitosanase from Streptomyces coelicolor A3(2): biochemical properties and role in protection against antibacterial effect of chitosan. Biochem Cell Biol 88:907–916CrossRefGoogle Scholar
  18. Gooday GW (1990a) The ecology of chitin degradation. Adv Mibrob Ecol 11:387–430CrossRefGoogle Scholar
  19. Gooday GW (1990b) Physiology of microbial degradation of chitin and chitosan. Biodegradation 1:177–190CrossRefGoogle Scholar
  20. Grover A (2012) Plant chitinases: genetic diversity and physiological roles. Crit Rev Plant Sci 31:57–73CrossRefGoogle Scholar
  21. Hall TM, Porter JA, Young KE, Koonin EV, Beachy PA, Leahy DJ (1997) Crystal structure of a Hedgehog autoprocessing domain: homology between Hedgehog and self-splicing proteins. Cell 91:85–97CrossRefGoogle Scholar
  22. Hamre AG, Lorentzen SB, Väljamäe P, Sørlie M (2014) Enzyme processivity changes with the extent of recalcitrant polysaccharide degradation. FEBS Lett 588:4620–4624CrossRefGoogle Scholar
  23. Hashimoto M, Ikegami T, Seino S, Ohuchi N, Fukada H, Sugiyama J, Shirakawa M, Watanabe T (2000) Expression and characterization of the chitin-binding domain of chitinase A1 from Bacillus circulans WL-12. J Bacteriol 182:3045–3054CrossRefGoogle Scholar
  24. Hiramatsu S, Fujie M, Usami S, Sakai K, Yamada T (2000) Two catalytic domains of Chlorella virus CVK2 chitinase. J Biosci Bioeng 89:252–257CrossRefGoogle Scholar
  25. Hirono I, Yamashita M, Aoki T (1998) Note: Molecular cloning of chitinasegenes from Vibrio anguillarum and V. parahaemolyticus. J Appl Microbiol 84:1175–1178CrossRefGoogle Scholar
  26. Horn SJ, Sørbotten A, Synstad B, Sikorski P, Sørlie M, Vårum KM, Eijsink VG (2006) Endo/exo mechanism and processivity of family 18 chitinases produced by Serratia marcescens. FEBS J 273:491–503CrossRefGoogle Scholar
  27. Howard MB, Ekborg NA, Taylor LE 2nd, Weiner RM, Hutcheson SW (2004) Chitinase B of Microbulbifer degradans 2-40 contains two catalytic domains with different chitinolytic activities. J Bacteriol 186:1297–1303CrossRefGoogle Scholar
  28. Hult EL, Katouno F, Uchiyama T, Watanabe T, Sugiyama J (2005) Molecular directionality in crystalline beta-chitin: hydrolysis by chitinases A and B from Serratia marcescens 2170. Biochem J 388:851–856CrossRefGoogle Scholar
  29. Hunt DE, Gevers D, Vahora NM, Polz MF (2008) Conservation of the chitin utilization pathway in the Vibrionaceae. Appl Environ Microbiol 74:44–51CrossRefGoogle Scholar
  30. Ito T, Katayama T, Hattie M, Sakurama H, Wada J, Suzuki R, Ashida H, Wakagi T, Yamamoto K, Stubbs KA, Fushinobu S (2013) Crystal structures of a glycoside hydrolase family 20 lacto-N-biosidase from Bifidobacterium bifidum. J Biol Chem 288:11795–11806CrossRefGoogle Scholar
  31. Itoh T, Hibi T, Fujii Y, Sugimoto I, Fujiwara A, Suzuki F, Iwasaki Y, Kim JK, Taketo A, Kimoto H (2013) Cooperative degradation of chitin by extracellular and cell surface-expressed chitinases from Paenibacillus sp. strain FPU-7. Appl Environ Microbiol 79:7482–7490CrossRefGoogle Scholar
  32. Itoh T, Hibi T, Suzuki F, Sugimoto I, Fujiwara A, Inaka K, Tanaka H, Ohta K, Fujii Y, Taketo A, Kimoto H (2016) Crystal structure of chitinase ChiW from Paenibacillus sp. str. FPU-7 reveals a novel type of bacterial cell-surface-expressed multi-modular enzyme machinery. PLoS ONE 11:e0167310CrossRefGoogle Scholar
  33. Itoh T, Sugimoto I, Hibi T, Suzuki F, Matsuo K, Fujii Y, Taketo A, Kimoto H (2014) Overexpression, purification, and characterization of Paenibacillus cell surface-expressed chitinase ChiW with two catalytic domains. Biosci Biotechnol Biochem 78:624–634CrossRefGoogle Scholar
  34. Jee JG, Ikegami T, Hashimoto M, Kawabata T, Ikeguchi M, Watanabe T, Shirakawa M (2002) Solution structure of the fibronectin type III domain from Bacillus circulans WL-12 chitinase A1. J Biol Chem 277:1388–1397CrossRefGoogle Scholar
  35. Kawase T, Yokokawa S, Saito A, Fujii T, Nikaidou N, Miyashita K, Watanabe T (2006) Comparison of enzymatic and antifungal properties between family 18 and 19 chitinases from S. coelicolor A3(2). Biosci Biotechnol Biochem 70:988–998CrossRefGoogle Scholar
  36. Keyhani NO, Roseman S (1999) Physiological aspects of chitin catabolism in marine bacteria. Biochim Biophys Acta 1473:108–122CrossRefGoogle Scholar
  37. Kitaoku Y, Fukamizo T, Numata T, Ohnuma T (2017) Chitin oligosaccharide binding to the lysin motif of a novel type of chitinase from the multicellular green alga, Volvox carteri. Plant Mol Biol 93:97–108CrossRefGoogle Scholar
  38. Kusaoke H, Shinya S, Fukamizo T, Kimoto H (2017) Biochemical and biotechnological trends in chitin, chitosan, and related enzymes produced by Paenibacillus IK-5 Strain. Int J Biol Macromol 104:1633–1640CrossRefGoogle Scholar
  39. Lacombe-Harvey MÈ, Brzezinski R, Beaulieu C (2018) Chitinolytic functions in actinobacteria: ecology, enzymes, and evolution. Appl Microbiol BiotechnolGoogle Scholar
  40. Li H, Greene LH (2010) Sequence and structural analysis of the chitinase insertion domain reveals two conserved motifs involved in chitin-binding. PLoS ONE 5:e8654CrossRefGoogle Scholar
  41. Li X, Roseman S (2004) The chitinolytic cascade in Vibrios is regulated by chitin oligosaccharides and a two-component chitin catabolic sensor/kinase. Proc Natl Acad Sci USA 101:627–631CrossRefGoogle Scholar
  42. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The Carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495CrossRefGoogle Scholar
  43. Macdonald SS, Blaukopf M, Withers SG (2015) N-Acetylglucosaminidases from CAZy family GH3 are really glycoside phosphorylases, thereby explaining their use of histidine as an acid/base catalyst in place of glutamic acid. J Biol Chem 290:4887–4895CrossRefGoogle Scholar
  44. Madhuprakash J, Dalhus B, Rani TS, Podile AR, Eijsink VGH, Sørlie M (2018) Key residues affecting transglycosylation activity in family 18 chitinases: insights into donor and acceptor subsites. Biochemistry 57:4325–4337CrossRefGoogle Scholar
  45. Mallakuntla MK, Vaikuntapu PR, Bhuvanachandra B, Das SN, Podile AR (2017) Transglycosylation by a chitinase from Enterobacter cloacae subsp. cloacae generates longer chitin oligosaccharides. Sci Rep 7:5113CrossRefGoogle Scholar
  46. Meena S, Gothwal RK, Krishna Mohan M, Ghosh P (2014) Production and purification of a hyperthermostable chitinase from Brevibacillus formosus BISR-1 isolated from the Great Indian Desert soils. Extremophiles 18:451–462CrossRefGoogle Scholar
  47. Meibom KL, Li XB, Nielsen AT, Wu CY, Roseman S, Schoolnik GK (2004) The Vibrio cholerae chitin utilization program. Proc Natl Acad Sci U S A. 101:2524–2529CrossRefGoogle Scholar
  48. Meibom KL, Blokesch M, Dolganov NA, Wu CY, Schoolnik GK (2005) Chitin induces natural competence in Vibrio cholerae. Sci 310:1824–1827.Google Scholar
  49. Merzendorfer H, Zimoch L (2003) Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J Exp Biol 206:4393–4412CrossRefGoogle Scholar
  50. Miyashita K, Fujii T, Saito A (2000) Induction and repression of a Streptomyces lividans chitinase gene promoter in response to various carbon sources. Biosci Biotechnol Biochem 64:39–43CrossRefGoogle Scholar
  51. Monreal J, Reese ET (1969) The chitinase of Serratia marcescens. Can J Microbiol 15:689–696CrossRefGoogle Scholar
  52. Ohno T, Armand S, Hata T, Nikaidou N, Henrissat B, Mitsutomi M, Watanabe T (1996) A modular family 19 chitinase found in the prokaryotic organism Streptomyces griseus HUT 6037. J Bacteriol 178:5065–5070CrossRefGoogle Scholar
  53. Payne CM, Baban J, Horn SJ, Backe PH, Arvai AS, Dalhus B, Bjørås M, Eijsink VG, Sørlie M, Beckham GT, Vaaje-Kolstad G (2012) Hallmarks of processivity in glycoside hydrolases from crystallographic and computational studies of the Serratia marcescens chitinases. J Biol Chem 287:36322–36330CrossRefGoogle Scholar
  54. Perrakis A, Tews I, Dauter Z, Oppenheim AB, Chet I, Wilson KS, Vorgias CE (1994) Crystal structure of a bacterial chitinase at 2.3 A resolution. Structure 2:1169–1180CrossRefGoogle Scholar
  55. Rathore AS, Gupta RD (2015) Chitinases from bacteria to human: properties, applications, and future perspectives. Enzyme Res. 2015:791907CrossRefGoogle Scholar
  56. Rombouts FM, Phaff HJ (1976) Lysis of yeast cell walls. Lytic β-(1→6)-glucanase from Bacillus circulans WL-12. Eur J Biochem 63:109–120CrossRefGoogle Scholar
  57. Saito A, Ebise H, Orihara Y, Murakami S, Sano Y, Kimura A, Sugiyama Y, Ando A, Fujii T, Miyashita K (2013) Enzymatic and genetic characterization of the DasD protein possessing N-acetyl-β-D-glucosaminidase activity in Streptomyces coelicolor A3(2). FEMS Microbiol Lett 340:33–40CrossRefGoogle Scholar
  58. Saito A, Fujii T, Yoneyama T, Redenbach M, Ohno T, Watanabe T, Miyashita K (1999) High-multiplicity of chitinase genes in Streptomyces coelicolor A3(2). Biosci Biotechnol Biochem 63:710–718CrossRefGoogle Scholar
  59. Saito A, Shinya T, Miyamoto K, Yokoyama T, Kaku H, Minami E, Shibuya N, Tsujibo H, Nagata Y, Ando A, Fujii T, Miyashita K (2007) The dasABC gene cluster, adjacent to dasR, encodes a novel ABC transporter for the uptake of N, N’-diacetylchitobiose in Streptomyces coelicolor A3(2). Appl Environ Microbiol 73:3000–3008CrossRefGoogle Scholar
  60. Schaefer J, Kramer KJ, Garbow JR, Jacob GS, Stejskal EO, Hopkins TL, Speirs RD (1987) Aromatic cross-links in insect cuticle: detection by solid-state 13C and 15N NMR. Science 235:1200–1204CrossRefGoogle Scholar
  61. Schneewind O, Missiakas DM (2012) Protein secretion and surface display in Gram-positive bacteria. Philos Trans R Soc Lond B Biol Sci 367:1123–1139CrossRefGoogle Scholar
  62. Schrempf H (2001) Recognition and degradation of chitin by streptomycetes. Antonie Van Leeuwenhoek 79:285–289CrossRefGoogle Scholar
  63. Shimosaka M, Fukumori Y, Narita T, Zhang X, Kodaira R, Nogawa M, Okazaki M (2001) The bacterium Burkholderia gladioli strain CHB101 produces two different kinds of chitinases belonging to families 18 and 19 of the glycosyl hydrolases. J Biosci Bioeng 91:103–105CrossRefGoogle Scholar
  64. Shirota K, Sato T, Sekiguchi J, Miyauchi K, Mochizuki A, Matsumiya M (2008) Purification and characterization of chitinase isozymes from a red algae, Chondrus verrucosus. Biosci Biotechnol Biochem 72:3091–3099CrossRefGoogle Scholar
  65. Sikorski P, Sørbotten A, Horn SJ, Eijsink VG, Vårum KM (2006) Serratia marcescens chitinases with tunnel-shaped substrate-binding grooves show endo activity and different degrees of processivity during enzymatic hydrolysis of chitosan. Biochemistry 45:9566–9574CrossRefGoogle Scholar
  66. Suzuki K, Sugawara N, Suzuki M, Uchiyama T, Katouno F, Nikaidou N, Watanabe T (2002) Chitinases A, B, and C1 of Serratia marcescens 2170 produced by recombinant Escherichia coli: enzymatic properties and synergism on chitin degradation. Biosci Biotechnol Biochem 66:1075–1083CrossRefGoogle Scholar
  67. Suzuki K, Taiyoji M, Sugawara N, Nikaidou N, Henrissat B, Watanabe T (1999) The third chitinase gene (chiC) of Serratia marcescens 2170 and the relationship of its product to other bacterial chitinases. Biochem J 343:587–596CrossRefGoogle Scholar
  68. Świątek MA, Tenconi E, Rigali S, van Wezel GP (2012a) Functional analysis of the N-acetylglucosamine metabolic genes of Streptomyces coelicolor and role in control of development and antibiotic production. J Bacteriol 194:1136–1144CrossRefGoogle Scholar
  69. Świątek MA, Urem M, Tenconi E, Rigali S, van Wezel GP (2012b) Engineering of N-acetylglucosamine metabolism for improved antibiotic production in Streptomyces coelicolor A3(2) and an unsuspected role of NagA in glucosamine metabolism. Bioengineered 3:280–285CrossRefGoogle Scholar
  70. Tanaka T, Fukui T, Imanaka T (2001) Different cleavage specificities of the dual catalytic domains in chitinase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Biol Chem 276:35629–35635CrossRefGoogle Scholar
  71. Tharanathan RN, Kittur FS (2003) Chitin-the undisputed biomolecule of great potential. Crit Rev Food Sci Nutr 43:61–87CrossRefGoogle Scholar
  72. Tews I, Terwisscha van Scheltinga AC, Perrakis A, Wilson KS, Dijkstra BW (1997) Substrate-assisted catalysis unifies two families of chitinolytic enzymes. J Am Chem Soc 119:7954–7959CrossRefGoogle Scholar
  73. Uchiyama T, Kaneko R, Yamaguchi J, Inoue A, Yanagida T, Nikaidou N, Regue M, Watanabe T (2003) Uptake of N, N’-diacetylchitobiose [(GlcNAc)2] via the phosphotransferase system is essential for chitinase production by Serratia marcescens 2170. J Bacteriol 185:1776–1782CrossRefGoogle Scholar
  74. Uchiyama T, Katouno F, Nikaidou N, Nonaka T, Sugiyama J, Watanabe T (2001) Roles of the exposed aromatic residues in crystalline chitin hydrolysis by chitinase A from Serratia marcescens 2170. J Biol Chem 276:41343–41349CrossRefGoogle Scholar
  75. Umemoto N, Ohnuma T, Osawa T, Numata T, Fukamizo T (2015) Modulation of the transglycosylation activity of plant family GH18 chitinase by removing or introducing a tryptophan side chain. FEBS Lett 589:2327–2333CrossRefGoogle Scholar
  76. Uni F, Lee S, Yatsunami R, Fukui T, Nakamura S (2012) Mutational analysis of a CBM family 5 chitin binding domain of an alkaline chitinase from Bacillus sp J813. Biosci Biotechnol Biochem 76:530–535CrossRefGoogle Scholar
  77. Vaaje-Kolstad G, Horn SJ, Sørlie M, Eijsink VG (2013) The chitinolytic machinery of Serratia marcescens-a model system for enzymatic degradation of recalcitrant polysaccharides. FEBS J 280:3028–3049CrossRefGoogle Scholar
  78. van Aalten DM, Komander D, Synstad B, Gåseidnes S, Peter MG, Eijsink VG (2001) Structural insights into the catalytic mechanism of a family 18 exo-chitinase. Proc Natl Acad Sci USA 98:8979–8984CrossRefGoogle Scholar
  79. Watanabe T, Ariga Y, Sato U, Toratani T, Hashimoto M, Nikaidou N, Kezuka Y, Nonaka T, Sugiyama J (2003) Aromatic residues within the substrate-binding cleft of Bacillus circulans chitinase A1 are essential for hydrolysis of crystalline chitin. Biochem J 376:237–244CrossRefGoogle Scholar
  80. Watanabe T, Ishibashi A, Ariga Y, Hashimoto M, Nikaidou N, Sugiyama J, Matsumoto T, Nonaka T (2001) Trp122 and Trp134 on the surface of the catalytic domain are essential for crystalline chitin hydrolysis by Bacillus circulans chitinase A1. FEBS Lett 494:74–78CrossRefGoogle Scholar
  81. Watanabe T, Ito Y, Yamada T, Hashimoto M, Sekine S, Tanaka H (1994) The roles of the C-terminal domain and type III domains of chitinase A1 from Bacillus circulans WL-12 in chitin degradation. J Bacteriol 176:4465–4472CrossRefGoogle Scholar
  82. Watanabe T, Oyanagi W, Suzuki K, Tanaka H (1990) Chitinase system of Bacillus circulans WL-12 and importance of chitinase A1 in chitin degradation. J Bacteriol 172:4017–4022CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Faculty of Bioscience and BiotechnologyFukui Prefectural UniversityEiheiji-cho, Yoshida-gun, FukuiJapan

Personalised recommendations