Skip to main content

Cyber-Physical-Social Semantic Link Network

Abstract

Is there any cause-effect link between thinking, experiencing and knowledge? This problem has challenged philosophers and scientists for centuries. Understanding and representing reality is a key step toward finding the link. Semantics modelling is an approach to understanding and representing reality.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-13-7311-4_3
  • Chapter length: 87 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-981-13-7311-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 3.1
Fig. 3.2
Fig. 3.3
Fig. 3.4
Fig. 3.5
Fig. 3.6
Fig. 3.7
Fig. 3.8
Fig. 3.9
Fig. 3.10
Fig. 3.11
Fig. 3.12
Fig. 3.13
Fig. 3.14
Fig. 3.15
Fig. 3.16
Fig. 3.17
Fig. 3.18
Fig. 3.19
Fig. 3.20

References

  • Abrial JR (1974) Data semantics. In: Klimbie JW and Koffemen KL (eds) Data Base Management, North-Holland, Amsterdam, pp l–59

    Google Scholar 

  • Angles R, Gutierrez C (2008) Survey of graph database models. ACM Comput Surv 40(1):1–39

    Google Scholar 

  • Bachman CW (1969) Data structure diagrams. Data Base 1(2):4–10

    CrossRef  Google Scholar 

  • Bachman CW (1973) The programmer as navigator. ACM Turing Award Lect Commun ACM 16(11):653–658

    Google Scholar 

  • Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Berners-Lee T, Fischetti M (1999) Weaving the Web: The original design and ultimate destiny of the World Wide Web by its inventor. Harper San Francisco, USA

    Google Scholar 

  • Campbell DT (1979) Assessing the impact of planned social change. Evaluat Program Plann 2(1):67–90

    CrossRef  Google Scholar 

  • Cao M, Sun X, Zhuge H (2018) The contribution of cause-effect link to representing the core of scientific paper—The role of Semantic Link Network. PLoS ONE 13(6):e0199303. https://doi.org/10.1371/journal.pone.0199303

    CrossRef  Google Scholar 

  • Chen P (1976) The Entity-Relationship Model—Toward a unified view of data. ACM Trans Database Systems (TODS) 1(1):9–36

    MathSciNet  CrossRef  Google Scholar 

  • Codd EF (1970) A Relational model of data for large shared data banks. Commun ACM 13(6):377–387

    MATH  CrossRef  Google Scholar 

  • Darwin C (1859) On the origin of species, by means of natural selection or the preservation of favoured races in the struggle of life. John Murray, London

    CrossRef  Google Scholar 

  • Dobruschin PL (1968) The description of a random field by means of conditional probabilities and conditions of its regularity. Theory Probab Appl 13(2):197–224

    MathSciNet  CrossRef  Google Scholar 

  • Feigenbaum EA (1980) Knowledge engineering: the applied side of artificial intelligence. Stanford Report No. STAN-CS-80-812

    Google Scholar 

  • Fredrickson BL, Kahneman D (1993) Duration neglect in retrospective evaluations of affective episodes. J Pers Soc Psychol 65(1):45–55

    CrossRef  Google Scholar 

  • Gödel K (1951) Some basic theorems on the foundations of mathematics and their implications. In: Feferman S (ed) 1995. Kurt Gödel Collected works, Vol. III, Oxford University Press, pp 304–323

    Google Scholar 

  • Goodhart CAE (1984) Problems of monetary management: the UK experience. In: Monetary Theory and Practice. Springer, London, UK

    Google Scholar 

  • Hart PE, Duda RO (1977) Prospector—a computer-based consultation system for mineral exploration Conference on Standards for Computer Applications in Resource Studies. Taita Hills, Kenya

    Google Scholar 

  • Kossinets G, Watts DJ (2006) Empirical analysis of an evolving social network. Science 311(5757):88–90

    MathSciNet  MATH  CrossRef  Google Scholar 

  • LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444

    CrossRef  Google Scholar 

  • Liben-Nowell D, Kleinberg J (2007) The link-prediction problem for social networks. J Am Soc Inform Sci Technol 58(7):1019–1031

    CrossRef  Google Scholar 

  • Marx K (1867) (1990) [1867] Capital, Volume I. Fowkes, Ben (trans.). London: Penguin Books

    Google Scholar 

  • Maslow AH (1943) A theory of human motivation. Psychol Rev 50(4):370–396

    CrossRef  Google Scholar 

  • Minsky M (1968) Semantic information processing. MIT Press, Cambridge

    MATH  Google Scholar 

  • Newell A, Simon HA (1976) Computer science as empirical inquiry: symbols and search. Commun ACM 19(3):113–126

    MathSciNet  CrossRef  Google Scholar 

  • Newman MEJ (2004) Fast algorithm for detecting community structure in networks. Phys Rev E 69(6):066133

    CrossRef  Google Scholar 

  • Page L, Brin S, Motwani R, Winograd T (1999) The PageRank citation ranking: Bringing order to the Web. Technical Report. Stanford InfoLab. http://ilpubs.stanford.edu:8090/422/

  • Pearl J (1985) Bayesian networks: a model of self-activated memory for evidential reasoning. Proceedings of the 7th Conference of the Cognitive Science Society pp 329–334

    Google Scholar 

  • Pearl J (1986) Fusion, propagation, and structuring in belief networks. Artif Intell 29:241–288

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Piateski G, Frawley W (1991) Knowledge discovery in databases. MIT Press Cambridge, MA, USA

    Google Scholar 

  • Popper K (1959) The logic of scientific discovery. Hutchinson & Co., Ltd, London

    MATH  Google Scholar 

  • Porter ME (1979) How competitive forces shape strategy. Harvard Bus Rev 57(2):137–145

    Google Scholar 

  • Quillian MR (1967) Word concept: a theory and simulation of some basic semantic capabilities. Behav Sci 12(5):410–430

    CrossRef  Google Scholar 

  • Quillian MR (1969) The teachable language comprehender: a simulation program and theory of language. Commun ACM 12(8):459–467

    CrossRef  Google Scholar 

  • Richardson M, Domingos PM (2006) Markov logic networks. Mach Learn 62:107–136

    CrossRef  Google Scholar 

  • Richens RH (1956) Reprogramming for mechanical translation. Mechanical. Translation 3(1):20–23

    Google Scholar 

  • Shi X, Li X (2019) A symbiosis-based life cycle management approach for sustainable resource flows of industrial ecosystem. J Clean Prod 226(20):324–335

    CrossRef  Google Scholar 

  • Simon HA (1957) Models of Man: Social and Rational, Wiley, 1st edition

    Google Scholar 

  • Smith A (1776) An Inquiry into the Nature and Causes of the Wealth of Nations, W. Strahan and T. Cadell, London

    Google Scholar 

  • Sowa JF (1987) Semantic Networks, in the Encyclopedia of Artificial Intelligence, Wiley

    Google Scholar 

  • Spencer H (1896) System of synthetic philosophy. Molinari Institute, Auburn, USA

    Google Scholar 

  • Sun X, Zhuge H (2018) Summarization of scientific paper through reinforcement ranking on Semantic Link Network. IEEE Access 6:40611–40625

    CrossRef  Google Scholar 

  • Vilain M, Kautz H (1986) Constraint propagation algorithms for temporal reasoning. In: Proceedings of AAAI 86, pp 377–382, www.aaai.org

  • Zhuge H (1998) Inheritance rules for flexible model retrieval. Decis Support Syst 22(4):379–390

    CrossRef  Google Scholar 

  • Zhuge H (2003) Active e-document framework ADF: model and tool. Inf Manag 41(1):87–97

    MATH  CrossRef  Google Scholar 

  • Zhuge H (2004a) The knowledge grid. World Scientific Publishing Co, London

    CrossRef  Google Scholar 

  • Zhuge H (2004b) Retrieve Images by understanding semantic links and clustering image fragments. J Syst Softw 73(3):455–466

    CrossRef  Google Scholar 

  • Zhuge H (2005a) The future interconnection environment. IEEE Comput 38(4):27–33

    CrossRef  Google Scholar 

  • Zhuge H (2005b) Exploring an epidemic in an E-science environment. Commun ACM 48(9):109–114

    CrossRef  Google Scholar 

  • Zhuge H (2006a) Discovery of knowledge flow in science. Commun ACM 49(5):101–117

    CrossRef  Google Scholar 

  • Zhuge H (2006b) Semantic component networking: toward the synergy of static reuse and dynamic clustering of resources in the knowledge grid. J Syst Softw 79:1469–1482

    CrossRef  Google Scholar 

  • Zhuge H (2007) Autonomous semantic link networking model for the Knowledge Grid. Concurr Comput: Pract Exp 7(19):1065–1085

    CrossRef  Google Scholar 

  • Zhuge H (2008) The web resource space model. Springer

    Google Scholar 

  • Zhuge H (2009) Communities and emerging semantics in semantic link network: discovery and learning. IEEE Trans Knowl Data Eng 21(6):785–799

    MathSciNet  CrossRef  Google Scholar 

  • Zhuge H (2010) Interactive semantics. Artif Intell 174:190–204

    CrossRef  Google Scholar 

  • Zhuge H (2011) Semantic linking through spaces for Cyber-Physical-Socio Intelligence: a methodology. Artif Intell 175:988–1019

    CrossRef  Google Scholar 

  • Zhuge H (2012) The Knowledge Grid: toward the Cyber-Physical Society. World Scientific Publishing Co., London, 2nd edition

    Google Scholar 

  • Zhuge H (2015) Mapping big data into knowledge with cognitive cyber-infrastructure. Preprint, arXiv 1507(06500):2015

    Google Scholar 

  • Zhuge H (2016) Multi-dimensional summarization in cyber-physical society. Morgan Kaufmann, Netherlands, UK and USA

    Google Scholar 

  • Zhuge H, Li X (2007) Peer-to-Peer in metric space and semantic space. IEEE Trans Knowl Data Eng 19(6):759–771

    CrossRef  Google Scholar 

  • Zhuge H, Xing Y (2012) Probabilistic Resource Space Model for managing resources in Cyber-Physical Society. IEEE Service Computing 5(3):404–421

    CrossRef  Google Scholar 

  • Zhuge H, Zhang J (2010) Topological centrality and its applications. J Am Soc Inform Sci Technol 61(9):1824–1841

    CrossRef  Google Scholar 

  • Zhuge H, Cheung TY, Pung HK (2001) A timed workflow process model. J Syst Softw 55(3):231–243

    CrossRef  Google Scholar 

  • Zhuge H, Zheng L, Zhang N, Li X (2004) An automatic semantic relationships discovery approach. In: Proceedings of the 13th International World Wide Web Conference. ACM, USA

    Google Scholar 

  • Zhuge H, Liu J, Feng L, Sun X, He C (2005) Query routing in a P2P semantic link network. Comput Intell 21(2):197–216

    CrossRef  Google Scholar 

  • Zipf GK (1949) Human behaviour and the principle of least effort: an introduction to human ecology. Addison-Wesley Press, Inc., Cambridge, Mass, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Zhuge, H. (2020). Cyber-Physical-Social Semantic Link Network. In: Cyber-Physical-Social Intelligence. Springer, Singapore. https://doi.org/10.1007/978-981-13-7311-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7311-4_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7310-7

  • Online ISBN: 978-981-13-7311-4

  • eBook Packages: Computer ScienceComputer Science (R0)